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Abstract: This study aims to apply the cluster method to objectively classify rainfall patterns in the 
Mamminasata monsoon region based on observational data and Climate Hazards Group InfraRed 
Precipitation with Station (CHIRPS) data. Validation was carried out using dichotomous and numerical 
comparisons with in situ observational data to strengthen the validity of CHIRPS data. The results 
showed that observational and CHIRPS data showed three different rainfall patterns. The first pattern 
shows rainfall at the beginning or end of the year ranging from 80-110 mm, decreasing after the 9th day 
of March, then increasing again in May to mid-June. The second pattern has a slightly lower rainfall 
intensity than the first one. The third pattern shows rainfall that increases beyond 100 mm at the end of 
each year, decreasing after February and reaching its lowest point in August. Towards the end of the 
year, there is an increase exponentially. CHIRPS rainfall predictions tend to overestimate in the 
southwest coastal area of Mamminasata, while underestimations are observed in the northern urban 
areas and eastern mountains. The accuracy of satellite rainfall estimates varies significantly across the 
Mamminasata region. In general, the performance of CHIRPS rainfall estimates is better in lowland 
areas than in mountainous areas. 
Keywords: CHIRPS, Mamminasata, Monsoonal, Rainfall pattern.  

 
1. Introduction  

Indonesia, situated within the maritime continent, experiences a diverse rainfall pattern. The global 
circulation influences rainfall patterns in Indonesia. The occurrence of rainfall on the Indonesian marine 
continent (IMC) is significantly affected by global phenomena such as El Niño Southern Oscillation 
(ENSO), Madden Julian Oscillation (MJO), and Indian Ocean Dipole (IOD) [1]–[6]. As a result, 
rainfall in Indonesia varies from region to region. The rainy season makes Indonesia prone to flooding, 
while the dry season is prone to drought. Based on its rainfall type, Indonesia reveals three patterns, 
namely the monsoonal rainfall pattern, which has a peak rainfall in December, January, and February; 
the local pattern, with its peak rainfall in June, July, and August; and the equatorial pattern which 
experiences two peak rainfalls. 

Mamminasata, which stands for the regions of Makassar, Maros, Sungguminasa, and Takalar, is a 
significant area in Indonesia. Makassar, the capital of South Sulawesi Province, is a bustling metropolis 
supporting the development of its surrounding regions, including Maros Regency, Gowa Regency, and 
Takalar Regency. This has led to a rapid population growth, reaching 2.88 million people in 2020. As a 
central hub for various activities, Mamminasata requires extensive urban infrastructure and facilities. 
With 8.7 million annual flights [7], it is an essential gateway to eastern Indonesia and attracts people 
for economic, educational, and cultural purposes. The urban area of Mamminasata was officially 
established in 2003, covering an area of 246,230 hectares. It was designated as a National Strategic Area 
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through Government Regulation Number 26 of 2008 on the National Area Spatial Plan. Numerous 
strategies have been implemented to support the region's development. However, the swift growth has 
led to inadequate control over land use, impacting the area's resilience to natural changes [8]. Flooding 
has become a notable consequence of the region's dynamic weather conditions in recent times [9], [10]. 

Although the rainfall pattern in Mammimasata is monsoon, the flooding distribution in this city 
varies. Over the past five years, the Mamminasata Region has encountered multiple floods during the 
peak of the rainy season. The most devastating flood occurred on January 21, 2019, resulting in the loss 
of more than 50 people and being regarded as the most significant flood incident [11]. In this incident, 
the highest flood was located on the Maros-Makassar border. In early 2024, severe flooding occurred in 
the Makassar City area, but the Maros-Makassar border was unaffected. The severity of this flood has 
instilled concerns among people about its recurrence in the future. Reports on this incident highlighted 
that the Maros-Makassar border area suffered the worst impact. Therefore, it can be inferred that the 
flood-affected locations were not evenly distributed. Understanding the intensity of rainfall distribution 
patterns that can potentially contribute to flooding in this region is crucial since not all heavy rain 
events lead to floods or landslides [12]. 

The accuracy of weather observations is heavily influenced by the number and network of weather 
stations [13], [14]. Determining the observation network involves considering the shape and quantity 
of observation sites. Deciding on the required stations balances desired accuracy and cost 
considerations. The scarcity of rainfall measurements on the Earth's surface is primarily due to 
limitations such as limited funds, human resources, and challenging field conditions. Achieving a 
detailed analysis of rainfall at sub-district or village levels requires using dense rain gauges, which are 
currently unavailable in Indonesia. Developing remote-sensing rain observation technology can be a 
potential solution to address this issue. Using remote-sensing techniques makes it possible to gather 
rainfall data without solely relying on surface-based rain gauges. This technology offers an alternative 
approach to overcome the lack of distribution of rain gauges on the surface [15]–[18]. 

In remote sensing observations, rainfall is calculated using the knowledge of electromagnetic waves 
emitted by clouds and captured by satellites/radar. Satellite rainfall estimation can cover an extensive 
area with various spatial and temporal resolutions [19]. The advantages of satellites compared to 
surface observations are high spatial and temporal resolution and real-time [20], making it more 
economical. Some rainfall estimation results, such as Tropical Rainfall Measuring Mission [21], [22], 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks [23]–
[25], and The Climate Prediction Center MORPHing technique [26], however, rainfall estimation 
results from these remote-sensing data vary in accuracy over space (place) and time [27]. Validation of 
CHIRPS rainfall estimates shows that CHIRPS performs well in estimating monthly and annual rainfall 
[28], [29]. 

Rainfall pattern recognition can be carried out using cluster techniques. This method has been 
widely used in various fields, including the classification of weather parameters [30]-[35]. Cluster 
analysis uses many variables grouped into similar objects to obtain groups with similar characteristics. 
Mamminasata, a densely populated area, requires more details about rainfall patterns that can be used in 
reasonable flood anticipation; however, the number of rain gauges is limited [13]. Rainfall estimates, 
such as CHIRPS, can be used as a substitute for in-situ data. However, its accuracy still needs to be 
tested, especially its daily performance. This study aims to apply the cluster method to objectively 
classify rainfall patterns in the monsoonal region of Mamminasata based on observation data and the 
CHIRPS data. 
 
2. Materials and Methods 
2.1. Study Area 

The study area in this research is the Mamminasata Region, as shown in Figure 1. There are 48 
observation stations used for test points. Most measurements were made in areas near the coast where 
the elevation is less than 50 meters above sea level. This study uses daily rainfall accumulation data 
from January 1, 1983 to December 31, 2023. 
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Figure 1.  
Spreading rain gauge in the research location. 

 

Not all monitoring locations initiate observations simultaneously due to staggered equipment 
installation. There are missing or vacant data since the data will be cross-referenced with the estimated 
CHIRPS rainfall data, which commences from January 1, 1983. These data gaps, however, arise not 
solely from the absence of observations but also stem from equipment malfunctions or other technical 
discrepancies. The recorded data and the disparity in observation periods have been rectified to address 
inaccuracies or errors. Data containing inaccuracies are treated on par with void or omitted data, and no 
comparison is drawn against the CHIRPS dataset. 
 
2.2. Clustering Rainfall Pattern 

Rainfall patterns in Indonesia are distinguished based on the subjective monthly rainfall graph [36]. 
By developing statistical methods, differences in several data can be classified using cluster analysis. 
Cluster analysis uses many variables grouped into similar objects to obtain groups with similar 
characteristics. This study calculates rainfall as its distance or (dis)similarity between each pair of 
variables. Suppose there are two elements (x, y), and then use the Euclidean distance in this research. 
Euclidean Distance measures the straight-line distance between two points in Euclidean space. It is 
calculated using the formula: 

𝑑𝑒𝑢𝑐(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1            (1) 

Where: 

- 𝑥 and 𝑦 are two points in n-dimensional space, with coordinates (𝑥1, 𝑥2, … , 𝑥𝑛) and (𝑦1, 𝑦2, … , 𝑦). 

- 𝑑(𝑥, 𝑦) is the Euclidean distance between 𝑝 and 𝑞. 
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2.3. Clustering Rainfall Pattern 
The dichotomous method is used to evaluate the ability of CHIRPS to estimate rainfall events. This 

method describes two categories (dichotomous) of events in rainfall predictions and observations, 
namely the frequency of "Yes" or "No" events. Predictions or estimates are considered "Yes" if rainfall 
values exceed 0.5 mm/day. Conversely, if it is less than 0.5 mm/day, it is calculated as "No." The result 
is that the relationship between rainfall predictions and observations has four conditions: hits, false 
alarms, misses, and correct negatives [30]. Dichotomous has two-dimensional tables that describe the 
discrete distribution of a composite sample of a deterministic rainfall forecast estimate by CHIRPS and 
in-situ observations. The correspondence of hits, false alarms, misses, and correct negatives to CHIRPS 
predictions and rain observations is shown in Table 1. 

 
Table 1.  
Contingency Table Scheme used in the study. 

 Rainfall observation 
Yes No Total 

CHIRPS  
Yes hit (a) false alarm (b) a+b 
No miss (c) correct negative (d) c+d 

Sum  a+c b+d a+b+c+d=n 
 

Evaluation of rainfall estimation capability is quantified using the calculation of Proportion Correct 
(PC), Hit Rate or Probability of Detection (POD), False Alarm Ratio (FAR), Frequency Bias (B), and 
Threat Score (TS) or Critical Success Index (SCI) values using the following equations: 

 

𝑃𝐶 =  
𝐻𝑖𝑡𝑠+𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙
              

                   (2) 

𝑃𝑂𝐷 =  
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠
           

               (3) 

𝐹𝐴𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
          

                                        (4) 

𝐵𝐼𝐴𝑆 =  
𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠
          

                                        (5) 

𝐶𝑆𝐼 =  
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠
         

                            (6) 
 
3. Results 
3.1. Mamminasata Rainfall Pattern 

Rainfall data from observations and CHIRPS rainfall estimates are calculated every 10 days, 
commonly called a decade, and monthly rainfall is used as the basis for grouping rainfall patterns. In 
areas near the coast with low topography, it is generally included in group 3, except for the northern 
part. The rainfall pattern is included in the second group in the northern part of Maros Regency. This 
group 2 rainfall pattern generally occurs in areas with elevations between 5 and 500 meters. The first 
pattern is in the northernmost region of Maros and one location in southern Gowa, as shown in Figure 
2(a). 
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Figure 2.  
Rainfall pattern in Mamminasata based on observation (a), and CHIRPS (b) 

 
In contrast to the observed rainfall pattern, the CHIRPS rainfall pattern is more evident in its 

rainfall cluster group. Although the patterns are generally similar, the differences between the three 
patterns are more precise. The third pattern is in coastal lowlands that are less than 50 meters, while 
the first pattern is in mountainous areas with elevations of more than 200 meters. The second cluster is 
between the first and third clusters, situated between 50 and 200 meters, as shown in Figure 2(b). No 
anomalies were found in CHIRPS rainfall, where mountainous areas with rainfall patterns were included 
in group 2 or lowland areas with rainfall patterns in group 3. Nineteen locations were not the same as 
observed, and CHIRPS rainfall patterns. 
 
3.2. Rainfall Pattern of CHIRPS vs Observation 

Based on the rainfall graph every 10 days or decade, the rainfall graphic pattern in the 
Mamminasata rainfall decreases in the middle of the year and increases at the end and beginning of the 
year. The first pattern includes the areas of Tinggimoncong/BBI Kentang, BPP Mallawa, Gatareng 
Matinggi, and BPP Bulluballea, with rainfall at the beginning or end of the year ranging from 80-110 
mm each and decreasing after March or the 9th date but increasing again in May through mid-June and 
then decreasing in the dry season. The second pattern includes the areas of Paranglompoa/Paladingan, 
for example, SMPK BB Malino/BPP Tinggi Moncong, BB Garing, etc. SMPK BPP Malakaji, BPP 
Cenrana, and Kappang have slightly lower rainfall intensity than the first pattern. Meanwhile, the third 
pattern has rainfall exceeding 100 mm each month at the beginning or end of the year and decreasing 
after February, reaching its lowest point in August or the 23rd month. At the end of the year, the 
rainfall pattern remains the same, increasing exponentially, as seen in Figure 3. 
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Figure 3.  
Decade CHIRPS rainfall distribution. 

 
Compared to the surface rainfall observation, CHIRPS underestimated rainfall at the beginning of 

the year, then overestimated during the dry season and approached the observed value at the end of the 
year, as shown in Figure 4. In general, the first pattern to the third pattern of observed rainfall is almost 
the same as CHIRPS, where there is an increase in rainfall intensity at the time of the transition from 
the rainy season to dry or on the 14th or 15th base. Entering the dry season, rainfall intensity should 
decrease, but at the first and second patterns rise about 50 mm on the 14th or 15th bottom. 

 

 
Figure 4.  
Decade of rainfall surface observation. 

 
The comparison of annual rainfall accumulation is the same for the entire Mamminasata Region, 

almost the same as in Figure 5. The lowest rainfall occurred in 1982 and 1997, with a value of less than 
2000 mm/year, and was an extreme El Nino year. Meanwhile, annual rainfall reaching more than 3000 
mm/year occurred in 1984, 1995, 1999, 2001, 2010, and 2017 during weak to substantial La-Nina 
periods. 
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Figure 5.  
Yearly distribution of CHIRPS rainfall estimates. 

 
Based on the annual rainfall distribution, data for Tinggimoncong/BBI Kentang, BPP Mallawa, 

Gatareng Matinggi, and Bpp. Bulluballea, representing the first pattern, was not installed from 1981 to 
1990, and data was cut off from 1997 to 2004. The CHIRPS annual rainfall estimate is generally 
overestimated, where the estimated annual rainfall is usually more than 2500 mm/year, while the 
results of observations on rains in the first and second pattern values less than 2000 mm/year, 
especially between 2006 and 2006. The first and second rainfall patterns are in the hills covering 
Paranglompoa/Paladingan. SMPK BB Malino/BPP Tinggi Moncong, Tinggimoncong/BBI Potato, BB 
Garing, ex. BPP SMPK Malakaji, BPP Cenrana, Kappang, BPP Mallawa, Gatareng Matinggi, and Bpp. 
Bullubalea is shown in Figure 6. 

 

 
Figure 6.  
Yearly distribution of rainfall surface observation. 

 
3.3. Accuracy of CHIRPS 

Based on the indicators of the dichotomous method, the percent correct, or PC value of CHIRPS is 
between 0.50 and 0.73. Accuracy or PC in areas close to the coast with elevations between 5 and 50 
meters is generally higher than those with higher elevations. Figure 7 on the left shows a decreasing 
gradation of the percent correct (PC) concerning elevation. Mountainous areas over 1000 meters in 
height have the smallest percent correct values. However, it was found that there were locations that 
were very close but had different percent correct values. The condition of the various PC values is 
probably due to an incident where the first location recorded rain while other locations had no rain, or 
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the rain event was random. 
 

 
Figure 7.  
Perform CHIRPS based on (a) Percent Correct (PC) and (b) Bias (BIAS)mn 

 
The number of false alarms on the southwestern coast of Mamminasata was more significant than 

the missing ones, which means that CHIRPS estimates that many errors were made in warnings. The 
number of events predicted by CHIRPS would be rain, but the observations at that location did not 
occur more rain than the prediction error would not happen rain, but the observations did rain. 
Meanwhile, the opposite occurs in the northern part of the city and mountainous areas east of the town, 
where the number of missing items is higher than the number of false alarms. The same as the PC value, 
several locations had different bias values even though their locations were close. Even though the 
number of false alarm errors is more significant, they do not occur in every area. The comparison 
between false or missing alarms and the number of hits can be seen in the value of FAR and POD in 
Figure 8. 
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Figure 8.  
Perform CHIRPS based on (a) FAR and (b) POD 

 
CHIRPS rainfall prediction errors are always present at all locations based on the number of 

missing or false alarms. Based on Figure 8, the proportion of the number of false alarms is in the area 
around Takalar or southwest of Mamminasata and the mountainous regions with higher elevations than 
1000 m, while the least number of false alarms is in the north of the city where the FAR value is less 
than 0.5. The proportion of errors due to missing hits identified from the POD value shows that in the 
area around Takalar or southwest of Mamminasata, it is small compared to the northern part of the city 
and mountains with a POD value of more than 0.5. 

Based on the proportion of the number of hits to all predictions, the northern area of Mamminasata 
is better with a higher CSI value than other areas, as shown in Figure 9. The relatively mountainous 
area has a CSI value of more than 0.36. In contrast, the proportion of hits is more varied for the coastal 
area, with a tendency towards the southern area of Mamminasata being smaller than the northern area 
in Figure 9. 
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Figure 9.  
Perform CHIRPS based on CSI. 

 

4. Discussion 
There is no robust network of meteorological stations in Indonesia, including the Mamminasata 

region, and no homogenous distribution throughout the territory. Therefore, other observation 
sources, such as satellite data, can be considered. Products with long records, such as the Climate 
Hazards Group Infrared Precipitation with Stations (CHIRPS), can be used to help with weather or 
climate analysis [37], [38]. Comparing CHIRPS daily precipitation estimates with rain gauges in 
China showed better in areas with high precipitation than in arid and semi-arid lands [28]. These 
rainfall estimates perform well in monthly rainfall, although slightly overestimating total precipitation 
[29], [39]. The CHIRPS data can capture spatial rainfall distribution in watershed areas [20], [40]. 
However, this product tends to be underestimated compared to the ground-based measurements in all 
seasons and will perform in the land regions and worse at higher elevations. This research confirms 
that high elevation overestimates CHIRPS rainfall.  
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Compared to other satellite rainfall estimates, CHIRPS best estimates rainfall in the arid, hot 
tropical climate and could, therefore, be used for studies related to drought and irrigation [41], [42]. 
However, CHIRPS can tend to underestimate in the rainiest months, especially during high rainfall 
(>100mm/month) and its ability to detect rain is poor in areas above 1000 mean sea level [43]. Based 
on research by Baez-Villanueva et al. (2018), the performance of rainfall CHIRPS estimates is affected 
by climatic and geographic characteristics. These rainfall estimates also produced a more realistic 
representation of rainfall despite the recurring spatial limitations in regions with contrasting emissivity, 
temperature, and orography [44]. Some research found that CHIRPS was one of the products that 
underestimated extreme precipitation values and had a lower correlation coefficient for maximum values 
[45]- [46]. 

Evaluation of daily rainfall CHIRPS estimates in Mamminasata, part of the Indonesian tropical 
maritime continent has a percent correct (PC) value of 0.5 to 0.73. PC accuracy in areas close to the 
coast at low elevations is generally higher than those with higher elevations. CHIRPS' predictions 
tended to be overestimated on the southwestern coast of Mamminasata. In contrast, the northern part of 
the city and mountainous areas east of the town tended to be underestimated. Based on the proportion of 
the number of hits to all predictions, the CSI value is higher in the northern area of Mamminasata than 
in other areas. Several lower-than-the-calculated indicators must be considered to anticipate flooding, 
especially in densely populated areas [13]. Based on the calculation accuracy, CHIRPS's estimated 
rainfall is quite suitable for areas around the coast, but the accuracy is lower in areas with higher 
elevations. 
 

5. Conclusions 
Based on a comparison of rainfall CHIRPS estimates and surface rainfall data observation for 30 

years in the monsoonal area Mamminasata, it can be concluded that: 

1. Rainfall data from observations and CHIRPS have a similar pattern. There is a rainfall pattern in 
areas near the coast with low topography, areas with elevations between 50 and 200 meters, and 
mountainous areas. 

2. CHIRPS rainfall estimates in the Mamminasata region have three rainfall patterns identified through 
observational data and further explained with CHIRPS data. The first is a typical monsoonal rainfall 
pattern, where rainfall is high at the beginning of the year, decreases in the middle of the year, and 
increases at the end. The second pattern is high rainfall at the beginning or end of the year, each 
between 80-110 mm, and decreases after March. Furthermore, there is an increase from May to mid-
June, which then decreases afterward. The third pattern has the same pattern as the second pattern, 
but its intensity is 30% lower. 

3. The accuracy of rainfall estimates using satellites varies significantly in the Mamminasata area. 
Generally, the performance of CHIRPS rainfall estimates is better in lowland areas than in 
mountainous areas. The percent correct (PC) is between 0.50 and 0.73 and performs better along the 
lowland coastal areas. However, CHIRPS predictions lean towards overestimation in the 
southwestern coastal zone, and the northern urban and eastern mountainous regions tend to 
underestimate. 
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