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Abstract: In a solar-rich area, like the Saharan climate in southern Algeria, to optimize all diversions of 
use of this energy to the maximum, it is necessary to accurately evaluate the radiation received from the 
sun. To improve prediction accuracy of daily solar radiation, we present in this paper a new synergistic 
model that combines three powerful techniques LSTM (Long Short-Term Memory Network), GA 
(Genetic Algorithm) and EEMD (Ensemble Empirical Mode Decomposition). EEMD is a technique 
that breaks down complex and highly non-linear solar radiation data into smaller and more manageable 
components to identify hidden trends, patterns. The GA is used to optimize hyperparameters of LSTM 
network so that time relevance can be well captured in the solar radiation data. The EEMD-GA-LSTM 
model was tested in several southern Algerian regions (Biskra, Tamanrasset, Adrar and Tindouf) with 
different climates. As compared to other existing models including ANN-GA, ANN-PSO, ANFIS-GA 
and ANFIS-PSO our method performed markedly good R² values and lower RMSE values (RMSE from 
3.0125% to 1.554%). The findings underline the model's robustness and reliability in solar radiation 
prediction, providing valuable information for renewable energy assessment in arid and semi-arid 
regions. The current study shows the benefit of hybrid models combining metaheuristic optimization 
and deep learning in a complex environmental data set analysis, paving pathways for future work in 
both solar energy fields and climate prediction. 
Keywords: Genetic algorithm, Ensemble empirical mode decomposition, Long short-term memory network, Metaheuristic 
optimization. 

 
1. Introduction  

As renewable energy is attracting increasing interest worldwide, solar energy has been regarded as 
one of the most prospective green power sources. In countries with high solar radiation like southern 
Algeria, accurate prediction of solar radiation is essential to optimally design and operate solar energy 
systems and their applications in agricultural and environmental management. During this, it is seen 
that solar radiation shows a discontinuous characteristic due to the variability caused by cloud cover as 
well as the weather itself which makes forecasting of solar radiation very complex matter [1, 2]. 

Traditional forecasting approaches include the application of both statistical techniques and 
conventional machine learning models [3] this often falls short in terms of achieving the levels of 
intricacy for which non-linear patterns are captured in solar radiation data. Though these 
models could work out the general trends, they do not perform well for dynamic variables and highly 
variable climates characterized by arid and semi-arid climates [4, 5]. However, there 
has lately been interest in the more advanced hybrid approaches that handle such complexities for more 
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accurate and reliable predictions [6]. 
In recent years, hybrid models that combine data decomposition techniques, optimization 

algorithms, and deep learning have demonstrated significant potential in time-series forecasting [7, 8]. 
This paper introduces a novel hybrid model—Ensemble Empirical Mode Decomposition (EEMD), 
Genetic Algorithm (GA), and Long Short-Term Memory (LSTM)—referred to as EEMD-GA-LSTM. 
Each model component solves one problem in solar radiation forecasting: 

• EEMD is a method used for analyzing complex time-series data into simpler IMFs that represent 
the underlying patterns and trends in the overall variation of solar radiation [9, 10]. 
GA: Genetic Algorithm is a model inspired by the principles of natural selection that optimizes 
important LSTM parameters, such as learning rate and sequence length, to improve performance 
[11, 12]. 
LSTM: This neural network is specialized in temporal data, and hence the LSTM model 
effectively grasped the temporal dependencies, which is best for solar radiation forecasting that 
exhibits complex time-based patterns [13, 14]. 

The EEMD-GA-LSTM integrates all of these techniques and benefits from their synergistic 
strengths to achieve more accurate and reliable solar radiation forecasting. In this paper, we applied the 
model to a number of locations in the south of Algeria, namely, Biskra, Tamanrasset, Adrar, and 
Tindouf, which have different climatic features. Compared to other models, ANN-GA, ANN-PSO, 
ANFIS-GA, and ANFIS-PSO [15] it showed that the best model was always the EEMD-GA-LSTM, 
with good values of R² and lower values of RMSE. 

This will contribute to the development of the forecast of solar radiation and will show how 
important hybrid approaches are in capturing environmental patterns. Improved models, like EEMD-
GA-LSTM, enhance renewable energy and climate-sensitive planning applications, especially over 
resource-rich but challenging regions such as the Sahara. 
 
2. Tools and Methodology 
2.1. Regions of Study and Data Acquisition Process 

Several locations were selected in southern Algeria due to its high solar energy potential and 
particular climatic condition to assess the performance of the proposed EEMD-GA-LSTM model in 
forecasting solar radiation. In fact, this region of the country has an arid and semi-arid climate with 
particular environmental conditions that strongly affect the pattern of solar radiation, thus the 
correctness of the forecast will be very important for a better exploitation of solar energy. 
 
2.1.1. Study Areas 

Four major locations are focused on: Biskra, Tamanrasset, Adrar, and Tindouf. These areas 
represent diverse environmental characteristics in the Algerian Sahara and thus enable the model to be 
tested in various climatic conditions [16, 17]: 

• Biskra: It is situated in northeastern Algeria. It possesses a hot desert climate with strong solar 
radiation throughout the year. Its summer temperatures are very high while winters are 
moderate and rainfall is received rarely, thus making it suitable for solar radiation variability 
studies [18]. 

• Tamanrasset: This city is located in southern Algeria in the Hoggar Mountains. Therefore, 
Tamanrasset has a dry, high-desert climate with large diurnal temperature differences and small 
cloud cover. The prevailing conditions of solar radiation are quite different in comparison with 
the others [15, 19]. 

• Adrar: Extreme arid conditions in the central part of the Algerian Sahara characterize the 
region, with high solar radiation throughout the year. It is also known to attain some of the 
highest records as far as insolation rates are concerned; hence it is a useful dataset for assessing 
solar radiation patterns [15, 20]. 
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• Tindouf: It is a western part of Algeria. Its arid desert climate makes it highly relevant for 
studies in solar energy forecasting due to the limited annual rainfall and high levels of radiation 
received from the sun [15]. 

 

 
Figure 1. 
Algeria’s solar potential [21]. 

 
2.1.2. Data Collection 

For each site shown, daily solar radiation data were collected over a number of years to capture both 
seasonal and annual fluctuations. The data were primarily obtained from the weather stations run by the 
Algerian National Meteorological Office. 
The dataset includes all the major meteorological variables, which are described as follows: 

• Temperature (°C): The data collection considered the average day temperatures because the 
changes in temperature affect solar radiation since it alters the formation of clouds and the clarity 
of the atmosphere . 

• Rel. Humidity (%): The relative humidity data is essential in understanding the concentrations of 
moisture in the atmosphere, which have the potential to reduce solar radiation as it passes 
through the Earth's atmosphere.  

• Solar Declination (°): the angle between the sun's rays and the plane of the Earth's equator at any 
given time of the year that impacts the duration and intensity of sunlight. 

The solar hour angle, in degrees, refers to the sun's position with respect to solar noon and is one of 
the important factors determining radiation variability in intensity at any given location. 

Extraterrestrial solar irradiation (Wh/m²) is a reference metric representing the amount of solar 
energy available outside the Earth's atmosphere that allows for modeling of possible solar gain in the 
absence of atmospheric disruptions. 

The data for the wilaya of Biskra spans from 2010 to 2022, while the data for the wilayas of Adrar, 
Tamanrasset, and Tindouf covers the period from 2016 to 2021. 
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2.2. Data Preprocessing 
Normalization of the variables between 0 and 1 was one of the most important steps in optimizing 

the EEMD-GA-LSTM model [13]. The dataset was divided into 80% for training and 20% for 
validation, which helped in testing the robustness of the model across different climatic 
conditions of southern Algeria and its generalizability to other arid and semi-arid regions around the 
world 

The normalization usually is a common practice to avoid the variables having large amplitudes 
from dominating the variables with smaller magnitudes, so the learning algorithm can be misled. This 
process ensures that all variables contribute equitably to the model's training using the following 
normalization equation [22]: 

𝐼
𝑛𝑜𝑟= 

𝐼𝑛𝑜𝑛−𝑛𝑜𝑟𝑚− 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥− 𝐼𝑚𝑖𝑛

                                                                                                                                                   (1)   
                                                                                    

 
Table 1. 
Key features and training specifications of the EEMD-GA-LSTM model. 
Category Details 
Input Data Daily solar radiation data (Biskra, Tamanrasset, Adrar, Tindouf ). 
Preprocessing EEMD to decompose data into IMFs. 
Optimization Genetic Algorithm (GA) for hyperparameter tuning. 
Model LSTM with optimized architecture (layers, neurons). 
Metrics 

R2, RMSE and MAE 
Hyperparameters Tuned via GA: layers, neurons, learning rate, batch size. 
Training 80% training, 20% testing; 100–200 epochs with early stopping. 

 
3. Predictive Performance Indicators 

Evaluation metrics widely used in the literature were applied to determine the performance of the 
methods under assessment [23]. The indices include the Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), and the Coefficient of Determination (R²), which are defined below: 
 
3.1. Mean Absolute Error (MAE) [24]: 

𝑀𝐴𝐸

=  
1

𝑛
 ∑|𝑦𝑖

𝑛

𝑖=1

− 𝑦�̂�|                                                                                                                                                                   (2) 
Where 𝑦𝑖  represents the experimental values 𝑦�̂�  the predicted values, and 𝑛  the total number of 

observations. MAE quantifies the average magnitude of errors in a set of predictions. 
 
3.2. Root Mean Square Error (RMSE ) [25]: 

𝑅𝑀𝑆𝐸

=  √
1

𝑛
 ∑(𝑦𝑖 −  𝑦�̂�)

2

𝑛

𝑖=1

                                                                                                                                                        (3) 

RMSE measures the square root of the average squared differences between predicted and observed 
values, emphasizing larger errors. 
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3.3. Coefficient of Determination (R²) [26]: 

𝑅2

=  1

−
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦�̅�)
2𝑛

𝑖=1

                                                                                                                                                              (4) 

Where 𝑦�̅� is the mean of observed values. R² represents the proportion of variance in the observed data 
explained by the model; the closer it is to 1, the better the predictive performance of the model is. 
 
4. Results and Discussion 
 

  
(a) (b) 

 
 

(c) (d) 
Figure 2.  
Normalized Solar Radiation Signal in the Regions (a) Biskra, (b) Adrar, (c) Tamanrasset, and (d) Tindouf. 
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Figure 3.  
EEMD Decomposition Results in the Biskra Region. 
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Figure 4.  
EEMD Decomposition Results in Adrar Region. 
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Figure 5. 
EEMD Decomposition Results in Tamanrasset Region. 

 

  

 
 

  

  

  
Figure 6. 
EEMD Decomposition Results in Tindouf Region. 
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These results of EEMD decomposition give a deep insight into the dynamics of solar radiation in 
the studied regions. This would not only enhance the accuracy of the future predictions but also be very 
important to get valuable insights into the underlying mechanisms controlling solar radiation 
variations, including the impacts of local climatic conditions, seasonal cycles, and specific geographical 
features. This approach facilitates the development of more robust models, which are tailored 
to include the characteristics of each region and thereby increase their applicability in such fields as 
solar energy and environmental management. 
 

  

Biskra Adrar 

  
Tamanrasset Tindouf 

Figure 7. 
Observed vs. Predicted Global Irradiation Using the EEMD-GA-LSTM Approach in the Regions of Biskra, Adrar, 
Tamanrasset, and Tindouf. 

 
Figure 7 presents a comparison between the observed and predicted solar radiation values obtained 

using the EEMD-GA-LSTM method in the four analyzed regions: Biskra, Adrar, Tamanrasset, and 
Tindouf. This figure provides a visual assessment of the model’s prediction accuracy by contrasting the 
predicted values with the actual data. 

Biskra: The predicted and observed values are very close to each other, indicating high accuracy of 
the model in this region. The prediction graphs and actual observations almost coincide with each other; 
therefore, the EEMD-GA-LSTM model is capable of successful solar radiation fluctuation capture. 
These results confirm the previously determined performance indicators (RMSE, MAE, and R²), which 
highlighted the model's robustness in Biskra. 
In the regions of Adrar, Tamanrasset, and Tindouf, observed and expected values are in good 
agreement. Slight differences appear, however, at places that can be explained by more variability in 
climatic conditions; even so, the accuracy of predictions is quite high, and the model keeps fitting well to 
data coming from these regions. 
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Biskra Adrar 

  
Tamanrasset Tindouf 
Figure 8. 
Predicted Irradiation Using the EEMD-GA-LSTM Approach vs. Actual Irradiation in the Regions of Biskra, Adrar, 
Tamanrasset, and Tindouf. 

 
Figure 8 represents the correlation between the predicted and actual values of solar radiation based 

on the EEMD-GA-LSTM approach for the regions of Biskra, Adrar, Tamanrasset, and Tindouf. This 
kind of graphical representation allows one to evaluate the model's accuracy by checking the extent of 
correspondence between the predictions and the actual true values. Ideally, the perfect model would 
have data points shown in the graph falling exactly on the regression line with a slope of 1, meaning a 
perfect match of the realized and predicted values. 

Biskra: In this area, most of the data points are located close to the optimal regression line, which 
means that the EEMD-GA-LSTM model gives an optimal estimation for solar radiation values with 
high accuracy. Data points in this area scatter strongly along the diagonal, showing that the differences 
between observed and predicted values are relatively small. This fact also confirms the model's good 
performance in this area, confirmed by the above figures. 

In the regions of Adrar, Tamanrasset, and Tindouf, most data points are on or close to the 
regression line, although some deviate further, indicating prediction errors for some cases. However, the 
relation between observed and predicted values is still strong, showing that the model keeps working 
well but with a little decrease compared to Biskra. 
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Table 2. 
Statistical indicators result. 

 Biskra Adrar Tamanrasset Tindouf 
RMSE % 1.554 1.478 1.246 1.423 
MAE % 1.074 0.985 0.828 0.786 
R² 0.986 0.964 0.976 0.972 

 
Table 3. 
A comparison of the performance of the presented models with results from various studies. 

Ref. model location R 
[15] ANN-GA Adrar 0.9962 
 ANN-PSO Adrar 0.9929 
 ANFIS-GA Adrar 0.9210 
 ANFIS-PSO Adrar 0.9523 
 ANN-GA Tamanrasset 0.9887 
 ANN-PSO Tamanrasset 0.9987 
 ANFIS-GA Tamanrasset 0.8425 
 ANFIS-PSO Tamanrasset 0.9877 
 ANN-GA Tindouf 0.9998 
 ANN-PSO Tindouf 0.9999 
 ANFIS-GA Tindouf 0.9866 
 ANFIS-PSO Tindouf 0.9986 
This study EEMD-GA-LSTM Biskra-Adrar-Tamanrasset -Tindouf 0.964 - 0.986 

 
The calculated evaluation index (R) is applied to evaluate the predictive performance of the studied 

methodologies. The results obtained in the present study show a comparative effectiveness with other 
methods regarding the accuracy and forecasting ability. Moreover, this model does not require a large 
variation of data and gives good results even with small data. As a result, it is particularly suited to 
regions where the meteorological databases are not very large because it can function with very minimal 
data. 
 
5. Conclusion 

In summary, the proposed EEMD-GA-LSTM model was an efficient way to conduct solar radiation 
prediction in these four regions of Biskra, Tamanrasset, Adrar, and Tindouf. The performance of the 
model, evaluated using the calculated assessment index (R), is of high accuracy and reliability, which is 
comparable to other methodologies with respect to its precision and forecasting capabilities. Notably, 
the model performed well even with limited data, which underlines its robustness in handling regions 
with a lack of meteorological information. Most notably, the model performed almost perfectly for 
Biskra when validating the observed and predicted values against each other. This results in minor 
divergences for Adrar, Tamanrasset, and Tindouf, justified by the higher variability of the 
meteorological condition of these locations. However, it remained highly predictable with a very high 
degree of accuracy. 

This therefore qualifies the EEMD-GA-LSTM model for the most suitable in regions with limited 
meteorological infrastructure since the performance was with limited data. This characteristic is 
essential for applications in remote or data-scarce areas, where reliable solar radiation estimates are 
critical for energy planning and other applications. Overall, the results confirm the model’s potential as 
a powerful tool for solar radiation estimation, with broad applicability in regions with limited access to 
detailed meteorological data. 
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