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Abstract: This study aims to uncover the multifractal characteristics and complex interactions among 
six Islamic stock markets in the pacific Asia region, enhancing understanding of their dynamics. 
Employing Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), this research analyzes a 
dataset covering the period from January 1, 2011, to August 1, 2024, with approximately 3315 
observations. In the preliminary analysis, the application of the DCCA Cross-Correlation Coefficient 
method revealed that the cross-correlations are persistent and exhibit long-term stability across most 
index pairs. Utilizing core components of the MF-DCCA method, such as Generalized Hurst 
Exponents, Rényi Exponents, and the Hölder Singularity Spectrum, further confirmed that the index 
pairs exhibit long-range persistent cross-correlations and multifractal behavior. Surrogate and shuffling 
transformations showed that the observed multifractality is influenced by both long-term cross-
correlations and heavy-tailed distributions. The findings have important implications for investors, 
policymakers, and financial analysts concerned with portfolio diversification, risk management, and the 
efficiency of Islamic financial markets in this economically vital region. Understanding the 
interconnectedness of these markets can aid in developing more effective investment strategies and 
regulatory frameworks. This study contributes original insights into the dynamics of Islamic stock 
markets in the Pacific Asia region, offering a nuanced perspective on their complex behaviors and 
interactions through the lens of multifractality. 
Keywords: Cross-correlation, Generalized hurst exponents, Hölder singularity spectrum, Multifractal, Rényi exponents. 
JEL Classification: C10; C22; C58; C63; G10; G15. 

 
1. Introduction  

In today's highly interconnected global financial landscape, grasping the complex interactions 
between various markets is essential. Conventional correlation methods, usually based in linear models, 
often fall short in capturing the intricacies of financial systems, especially when dealing with non-linear 
behaviors, non-stationary processes, and multiple scaling properties. As a result, the analysis of 
multifractal cross-correlations has gained prominence, providing a more detailed understanding of 
market relationships across different time horizons. 

Multifractality in financial markets arises from diverse scaling behaviors over varying time frames, 
revealing intricate dynamics like long-range dependencies and fat-tailed distributions. Unlike traditional 
monofractal models, which rely on a uniform scaling exponent, multifractal analysis introduces a range 
of scaling exponents, offering deeper insights into market behaviors such as efficiency variations and 
patterns of volatility clustering. When utilized in cross-correlation studies, this method unveils the 
hidden complexities of relationships between financial indices, which may not be apparent through more 
conventional analytical techniques. 
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In an increasingly globalized financial environment, markets are highly interdependent, and 
disturbances in one can propagate to others, creating unpredictable consequences. Analyzing the 
multifractal nature of these cross-correlations allows researchers and investors to better comprehend 
these intricate connections, leading to more strategic decisions in both risk management and investment 
planning. Furthermore, Multifractal cross-correlation analysis enhances portfolio diversification by 
revealing fluctuations in asset correlations that traditional methods often miss, allowing for more 
resilient portfolios. It also improves risk management by uncovering non-linear dependencies between 
assets, offering deeper insights into joint risks during volatile market conditions. Additionally, this 
approach helps identify market inefficiencies and potential arbitrage opportunities, making it valuable 
for investors and regulators aiming to manage systemic risks. 

Several studies employed Multifractal Detrended Cross-Correlation Analysis MF-DCCA to 
investigate the multifractal properties of cross-correlations between assets across various financial 
markets. This study aims to fill a crucial gap in the literature by applying MF-DCCA to Islamic stock 
markets in the Pacific Asia region. By focusing on these markets, the research provides a more 
comprehensive understanding of their dynamic interactions and contributes to the broader field of 
multifractal analysis. Islamic stock markets, shaped by Shariah principles, exhibit unique risk profiles 
and behaviors that traditional methods may miss. MF-DCCA can reveal intricate interactions and 
inefficiencies, offering deeper insights into market dynamics, efficiency, and stability. 

The MF-DCCA method is an advanced technique that extends traditional financial time series 
analysis by incorporating multifractality - a feature that reflects diverse scaling behaviors across 
different time scales. This approach enables a nuanced investigation of cross-correlation patterns 
between time series, capturing both transient fluctuations and enduring dependencies. 

Multifractality, characterized by the presence of multiple scaling exponents within a time series, 
reveals the intricate structure of its fluctuations. The foundational concept of Detrended Fluctuation 
Analysis (DFA), introduced by Peng, et al. [1] was designed to detect long-range correlations in non-
stationary time series. Kantelhardt, et al. [2] subsequently extended this framework with Multifractal 
Detrended Fluctuation Analysis (MF-DFA), which allows for the examination of multifractal properties 
over a range of scales. 

To explore cross-correlations between two time series, Podobnik and Stanley [3] introduced 
Detrended Cross-Correlation Analysis (DCCA), an extension of DFA. Zhou [4] further developed this 
concept into Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), combining DCCA and 
MF-DFA. This integrated methodology provides a comprehensive analysis of the multifractal 
characteristics of cross-correlations, enhancing the understanding of the complex interactions between 
financial time series. 

The article is structured as follows: Section 2 reviews existing literature on cross-correlation 
multifractality specifically within financial markets. Section 3 outlines the data and methodology used in 
the study. Section 4 presents and discusses the empirical results. Finally, Section 5 offers conclusion, 
implications, and recommendations based on the findings. 

 
2. Literature Review 

The application of multifractal analysis in understanding cross-correlations between financial 
markets has been increasingly recognized for its ability to capture complex, long-term dependencies 
that traditional methods often overlook. A significant body of research has employed Multifractal 
Detrended Cross-Correlation Analysis (MF-DCCA) to explore the dynamic relationships between 
various financial markets. 

Studies have shown that multifractal cross-correlations are prevalent across both developed and 
emerging markets. For instance, the examination of stock markets in the MENA region (Morocco, 
Tunisia, Egypt, and Jordan) revealed significant multifractal cross-correlations, highlighting the 
interdependence between these markets [5]. Similarly, research on the Chinese Renminbi (RMB) 
markets, comparing onshore and offshore markets, found strong short-term correlations with the 
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British Pound and long-term cross-correlations with the Malaysian Ringgit, further emphasizing the 
global reach and persistence of these relationships [6]. 

The multifractal behavior of cross-correlations has also been observed in the context of major 
financial hubs, such as Hong Kong and Shanghai. For example, the relationship between the Hang Seng 
China Enterprises Index and RMB exchange markets revealed that onshore RMB markets exhibit 
stronger multifractality than offshore markets, suggesting that domestic factors may play a larger role 
in market dynamics [7]. Other studies on the Shanghai-Hong Kong Stock Connect also highlighted 
that cross-correlations between these two markets became more persistent and stronger post-
liberalization, underscoring the impact of financial reforms on market integration [8]. 

Further evidence of multifractality in financial market relationships is found in the volatility 
interactions between Mainland China, the US, and Hong Kong stock markets. These studies indicated 
that significant market events, such as fluctuations in the Hang Seng Index, can have substantial ripple 
effects across the region, with the strongest cross-market conductivity observed between Hong Kong 
and Mainland China stock markets [9]. The identification of long-range correlations, particularly in 
times of large fluctuations, underscores the importance of understanding multifractality when 
evaluating market stability. 

Moreover, research on market behavior during economic crises has demonstrated how cross-
correlations intensify in response to financial shocks. For example, a study on the Shanghai Stock 
Exchange Composite and the S&P 500 indices found that the relationship between these markets 
became significantly stronger during the financial crisis, with heightened multifractality and volatility 
reflecting increased market risk [10]. This highlights how extreme market events, such as economic 
crises, can lead to more pronounced and persistent cross-correlations, further challenging traditional 
market assumptions. 

The multifractal approach has also provided critical insights into the dynamic relationships between 
exchange rates and stock market liquidity. For instance, in the case of the RMB exchange index and 
stock market liquidity in Shanghai and Shenzhen, the study found that cross-correlations exhibited 
strong positive persistence, especially during periods of tightening monetary policy [11]. This 
multifractality challenges the traditional efficient market hypothesis, demonstrating the complex, non-
linear nature of market interactions and the need for more sophisticated models to capture these 
dynamics. 

Recent studies on the RMB exchange rate reform and its impact on cross-correlations between 
different RMB markets further illustrate the evolving nature of market interdependence. The reform led 
to a decrease in the persistence and degree of multifractality, highlighting the role of policy changes in 
reshaping market relationships [12]. Similarly, the analysis of soybean futures and spot prices in China 
revealed a strong, persistent multifractal cross-correlation, illustrating how commodity markets also 
exhibit long-range dependencies, further extending the application of multifractal analysis to broader 
asset classes [13]. 

The increasing relevance of multifractal analysis extends to more recent financial instruments, such 
as green bonds. Studies have shown that green bonds, like traditional financial assets, exhibit significant 
multifractal characteristics, indicating that multifractal analysis can be a valuable tool for understanding 
the interactions within emerging financial markets [14]. 

In summary, the literature highlights the widespread applicability of multifractal methods in 
capturing the complex, long-term dependencies between financial markets. These studies provide a 
nuanced understanding of market interconnections, particularly in the context of financial liberalization, 
policy changes, and market crises. The findings underscore the need for advanced analytical techniques, 
such as MF-DCCA, to monitor and assess market stability, risk, and investor behavior in an 
increasingly interconnected global financial system. 
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3. Methodology 
3.1. Data 

The dataset for this study comprises daily closing prices from Islamic indices across six stock 
markets in the Asia-Pacific region: China, India, Indonesia, Pakistan, Malaysia, and Thailand. These 
indices are designed in accordance with Islamic finance principles, excluding financial activities that are 
not Sharia-compliant. The indices include: 

• The FTSE Shariah China which is designed to measure the performance of Shariah-compliant 
companies listed in China. It is a part of the FTSE Shariah Global Equity Index Series.  

• The Nifty 500 Shariah Index is an Islamic equity index derived from the broader Nifty 500 Index, 
which tracks the performance of the top 500 companies listed on the National Stock Exchange of 
India (NSE) based on market capitalization. 

• The Jakarta Islamic Index, which is a stock market index established on the Indonesia Stock 
Exchange (IDX).  

• The Karachi Meezan 30 is a stock market index that tracks the performance of the top 30 Shariah-
compliant companies listed on the Pakistan Stock Exchange (PSX).  

• The FTSE Bursa Malaysia EMAS Shariah Index is a benchmark index that tracks the 
performance of Shariah-compliant companies listed on Bursa Malaysia, the Malaysian stock 
exchange. It is part of the broader FTSE Bursa Malaysia EMAS Index, which includes large and 
mid-cap companies. 

• The FTSE SET Shariah is designed to track the performance of Shariah-compliant companies 
listed on the Stock Exchange of Thailand (SET). 

• In the following, we will denote the six Islamic indices as China, India, Jakarta, Karachi, Malaysia 
and Thailand. The data span from 01/01/2011 to 01/08/2024, comprising nearly 3315 
observations. All data were downloaded from the website www.investing.com.  

The index prices were then converted into logarithmic returns  

𝑟𝑡 = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
) = 𝑙𝑛(𝑃𝑡) − 𝑙𝑛(𝑃𝑡−1), where 𝑃𝑡 denotes the index daily price and 𝑙𝑛 corresponds to the 

natural logarithm. 
 
3.2. Method 
3.2.1. Multifractal Detrended Cross-Correlation Analysis 

In this section, we introduce the Multifractal Detrended Cross-Correlation Analysis (MF-DCCA).  

Consider two time series 𝑥 = (𝑥(𝑘))
1≤𝑘≤𝑁

 and 𝑦 = (𝑦(𝑘))
1≤𝑘≤𝑁

,  for 1 ≤ 𝑘 ≤ 𝑁, where 𝑁 is the 

length of the series. It is assumed that these series have compact supports, meaning that 𝑥(𝑘) = 0 and 

𝑦(𝑘) = 0  for only a negligible fraction of the values 𝑘. 

Step 1: We determine the profiles 𝑋 = (𝑋(𝑖))
1≤𝑖≤𝑁

 and 𝑌 = (𝑌(𝑖))
1≤𝑖≤𝑁

 of the series 𝑥  and  𝑦   defined 

by : 

𝑋(𝑖) = ∑ (𝑥(𝑘) − �̅�)𝑁
𝑘=1                                 𝑌(𝑖) = ∑ (𝑦(𝑘) − �̅�)𝑁

𝑘=1  (1) 

where �̅� and �̅� are the means of the series 𝑋  and 𝑌. 

Step 2:  For a given time scale 𝑠, we divide the profiles 𝑋  and 𝑌 into 𝑁𝑆 = 𝐼𝑛𝑡(𝑁 𝑠⁄ ) non-

overlapping segments of the same length s, where 𝐼𝑛𝑡(. ) represents the function that gives the integer 

part of a real number. Based on the recommendations of Peng, et al. [1] 5 ≤ 𝑠 ≤ 𝑁/4 is traditionally 

selected. Since 𝑁 is generally not a multiple of 𝑠, a short part at the end of the profiles may be neglected. 
To incorporate all the ignored parts of the series, the same procedure is repeated starting from the end 

of the profile. Thus, we obtain 2𝑁𝑆 segments. For 1 ≤ 𝑖 ≤ 𝑠, we have two segmentations: 𝑋((𝑣 − 1)𝑠 +

i) for 1 ≤ 𝑣 ≤ 𝑁𝑆 and 𝑋((𝑁 − 𝑣 − 𝑁𝑆)𝑠 + i) for 𝑁𝑆 + 1 ≤ 𝑣 ≤ 2𝑁𝑆. 

https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/Indonesia_Stock_Exchange
https://en.wikipedia.org/wiki/Indonesia_Stock_Exchange
http://www.investing.com/
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Step 3: In each segment, we use the Ordinary Least Squares (OLS) method to properly fit data with a 

local trend. We denote by 𝑝𝑋,𝑣
𝑚 (𝑖) and 𝑝𝑌,𝑣

𝑚 (𝑖) the fitting polynomials of respectively the profile 𝑋 and 

the profile 𝑌 for the 𝑣-th segment. For 1 ≤ 𝑣 ≤ 2𝑁𝑠: 

𝑝𝑋,𝑣
𝑚 (𝑖) = 𝛼0

𝑣 + 𝛼1
𝑣 . 𝑖 + ⋯ + 𝛼𝑚

𝑣 . 𝑖𝑚 (2) 

𝑝𝑌,𝑣
𝑚 (𝑖) = 𝛽0

𝑣 + 𝛽1
𝑣 . 𝑖 + ⋯ + 𝛽𝑚

𝑣 . 𝑖𝑚 (3) 

In the empirical study, the order 𝑚 of the fitting polynomial can be linear, quadratic, cubic, or even 

of a higher order. Choosing an appropriate value of 𝑚 can avoid overfitting the series. 

Step 3: After determining the fitting polynomial 𝑝𝑋,𝑣
𝑚 (𝑖) and 𝑝𝑌,𝑣

𝑚 (𝑖), we calculate the detrended 

covariances 𝑓𝑋,𝑌
2 (𝑣, 𝑠) for all time scales 𝑠 and for every segment 1 ≤ 𝑣 ≤ 2𝑁𝑠. 

▪ The covariance 𝑓𝑋,𝑌
2 (𝑣, 𝑠) is defined by: 

𝑓𝑋𝑌
2 (𝑣, 𝑠) =

1

𝑠
∑|𝑋((𝑣 − 1)𝑠 + 𝑖) − 𝑝𝑋,𝑣

𝑚 (𝑖) |.

𝑠

𝑖=1

|𝑌((𝑣 − 1)𝑠 + 𝑖) − 𝑝𝑌,𝑣
𝑚 (𝑖)| (4) 

for 1 ≤ 𝑣 ≤ 𝑁𝑆, and: 

𝑓𝑋𝑌
2 (𝑣, 𝑠) =

1

𝑠
∑|𝑋((𝑁 − 𝑣 − 𝑁𝑆)𝑠 + 𝑖) − 𝑝𝑋,𝑣

𝑚 (𝑖) |.

𝑠

𝑖=1

|𝑌((𝑁 − 𝑣 − 𝑁𝑆)𝑠 + 𝑖) − 𝑝𝑌,𝑣
𝑚 (𝑖)| (5) 

for 𝑁𝑆 + 1 ≤ 𝑣 ≤ 2𝑁𝑆. 

Step 4: By averaging the covariances over all segments, we obtain the fluctuation functions 𝐹𝑞
𝑋𝑌(𝑠) 

of order 𝑞 defined by: 

𝐹𝑞
𝑋𝑌(𝑠) = [

1

2𝑁𝑆
∑ (𝑓𝑋𝑌

2 (𝑣, 𝑠))

𝑞

2

2𝑁𝑆

𝑣=1

]

1

𝑞

 (6) 

for 𝑞 ≠ 0, and: 

𝐹0
𝑋𝑌(𝑠) = 𝑒𝑥𝑝 [

1

4𝑁𝑆
∑ 𝑙𝑛 (𝑓𝑋𝑌

2 (𝑣, 𝑠))

2𝑁𝑆

v=1

] (7) 

for 𝑞 = 0. 
The purpose of the MF-DCCA procedure is primarily to determine the behavior of the fluctuation 

functions 𝐹𝑞
𝑋𝑌(𝑠) as a function of the time scale 𝑠 for various values of 𝑞. To this end, steps 2 through 4 

must be repeated for different time scales 𝑠. 

Step 5: We analyze the multi-scale behavior of the fluctuation functions 𝐹𝑞
𝑋𝑌(𝑠) by estimating the slope 

of the log-log plots of 𝐹𝑞
𝑋𝑌(𝑠) versus 𝑠 for different values of 𝑞. If the analyzed time series 𝑋 and 𝑌 

exhibits long-range cross-correlation according to a power-law, such as fractal properties, the 

fluctuation function 𝐹𝑞
𝑋𝑌(𝑠) will behave, for sufficiently large values of 𝑠, according to the following 

power-law scaling law: 

𝐹𝑞
𝑋𝑌(𝑠)~𝑠𝐻𝑋𝑌(𝑞) (8) 

or 

𝑙𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)) = 𝑙𝑜𝑔(𝑠𝐻𝑋𝑌(𝑞)) + 𝑙𝑜𝑔(𝐶) (9) 

where 𝐻𝑋𝑌(𝑞) is called the generalized Hurst exponent, which is the power-law cross-correlation of 

the two series 𝑋 and 𝑌. 

When 𝐻𝑋𝑌(𝑞) depend on 𝑞, the cross-correlation of the two-time series is multifractal, otherwise it 

is monofractal. To estimate the values of 𝐻𝑋𝑌(𝑞) for different values of 𝑞, we perform a semi-

logarithmic regression of the time series 𝐻𝑋𝑌(𝑞) on the time series 𝐹𝑞
𝑋𝑌(𝑠). For positive 𝑞, 𝐻𝑋𝑌(𝑞) 
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describes the scaling behavior of intervals with large fluctuations. On the contrary, for negative 𝑞, 

𝐻𝑋𝑌(𝑞) describes the scaling behavior of segments with wavelet fluctuations. 

𝐻𝑋𝑌(𝑞) is a decreasing function and to measure the degree of multifractality between the two series, 

we can use the variation Δ𝐻𝑋𝑌 between the minimum and maximum values as defined below: 

Δ𝐻𝑋𝑌 = 𝐻𝑋𝑌−𝑀𝑎𝑥 − 𝐻𝑋𝑌−𝑀𝑖𝑛 = 𝐻𝑋𝑌(𝑞𝑚𝑖𝑛) − 𝐻𝑋𝑌(𝑞𝑚𝑎𝑥) (10) 

The larger Δ𝐻𝑋𝑌 is, the stronger the degree of multifractality will be. 

For positive values of 𝑞, the average fluctuation function 𝐹𝑞
𝑋𝑌(𝑠) is dominated by segments 𝑣 with 

large covariances 𝑓𝑋𝑌
2 (𝑣, 𝑠). Thus, for 𝑞 > 0, the generalized Hurst exponents 𝐻𝑋𝑌(𝑞)  describe the 

scaling properties of large fluctuations. In contrast, for 𝑞 < 0, the exponents 𝐻𝑋𝑌(𝑞)  describe the 
scaling properties of small fluctuations. 

It is well known that the generalized Hurst exponent 𝐻𝑋𝑌(𝑞) method is directly related to the 

multifractal scaling exponent 𝜏𝑋𝑌(𝑞), commonly known as the Rényi exponent: 

𝜏𝑋𝑌(𝑞) = 𝑞. 𝐻𝑋𝑌(𝑞) − 1 (11) 

If the Rényi exponent 𝜏𝑋𝑌(𝑞) increase nonlinearly with 𝑞, the cross-correlation of the two series is 

multifractal. Otherwise, if the Rényi exponent 𝜏𝑋𝑌(𝑞) is a linear function of 𝑞, then the cross-correlation 
is monofractal. 

Another interesting way to characterize the multifractality of the time series cross-correlations, is to 

use the Hölder spectrum or the singularity spectrum 𝑓𝑋𝑌(𝛼𝑋𝑌)  of the Hölder exponent 𝛼𝑋𝑌. It is well 

known that the singularity spectrum 𝑓𝑋𝑌(𝛼𝑋𝑌)  is related to the Rényi exponent 𝜏𝑋𝑌(𝑞) through the 
Legendre transform: 

{
𝛼𝑋𝑌 = 𝜏𝑋𝑌

′ (𝑞)                          

𝑓𝑋𝑌(𝛼𝑋𝑌) = 𝑞. 𝛼𝑋𝑌 − 𝜏𝑋𝑌(𝑞)
 (12) 

where 𝜏𝑋𝑌
′ (𝑞) is the derivative of the function 𝜏𝑋𝑌(𝑞). 

When the cross-correlation between the two series is multifractal, then the singularity spectrum 

𝑓𝑋𝑌(𝛼𝑋𝑌) present a concave bell-shaped curve. 
The richness of the multifractality can be determined by the width of the spectrum defined by: 

∆𝛼𝑋𝑌 = 𝛼𝑋𝑌−𝑚𝑎𝑥 − 𝛼𝑋𝑌−𝑚𝑖𝑛 (13) 
Thus, the wider the spectrum, the richer the multifractal behavior of the cross-correlation of the 

analyzed time series.  

We can easily deduce the relationship between the generalized Hurst exponent ℎ(𝑞) and the 

singularity spectrum 𝑓𝑋𝑌(𝛼𝑋𝑌) : 

{
𝛼𝑋𝑌 = 𝐻𝑋𝑌(𝑞) + 𝑞. 𝐻𝑋𝑌

′ (𝑞)              

𝑓𝑋𝑌(𝛼𝑋𝑌) = 𝑞. (𝛼𝑋𝑌 − 𝐻𝑋𝑌(𝑞)) + 1
 (14) 

 
3.2.2. DCCA Cross-Correlation Coefficient 

To assess quantitively the cross-correlations between two non-stationary series, Zebende [15] 
proposed a DCCA cross-correlation coefficient. This method is based on the DCCA method of Podobnik 
and Stanley [3] and the DFA method [1]. In contrast to the original DCCA cross-correlation 
coefficient method, which uses non-overlapping segments, we will apply a version that uses overlapping 
segments, similar to the MF-DCCA method. Using the notations from section 3.2.1, the method is 
described below. 

The covariance 𝑓𝑋𝑌
2 (𝑣, 𝑠) is defined in (8) and (9). The covariances 𝑓𝑋

2(𝑣, 𝑠), 𝑓𝑌
2(𝑣, 𝑠) are defined by: 

𝑓𝑋
2(𝑣, 𝑠) =

1

𝑠
∑(𝑋((𝑣 − 1)𝑠 + 𝑖) − 𝑝𝑋,𝑣

𝑚 (𝑖) )
2

𝑠

𝑖=1

 (15) 
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𝑓𝑌
2(𝑣, 𝑠) =

1

𝑠
∑(𝑌((𝑣 − 1)𝑠 + 𝑖) − 𝑝𝑌,𝑣

𝑚 (𝑖) )
2

𝑠

𝑖=1

 (16) 

for 1 ≤ 𝑣 ≤ 𝑁𝑠, and 

𝑓𝑋
2(𝑣, 𝑠) =

1

𝑠
∑ (𝑋 (((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑖)) − 𝑝𝑋,𝑣

𝑚 (𝑖) )
2

𝑠

𝑖=1

 (17) 

𝑓𝑌
2(𝑣, 𝑠) =

1

𝑠
∑ (𝑌 (((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑖)) − 𝑝𝑌,𝑣

𝑚 (𝑖) )
2

𝑠

𝑖=1

 (18) 

for 𝑁𝑠 + 1 ≤ 𝑣 ≤ 2𝑁𝑠. 
By averaging the covariances over all segments, we obtain the DFA-variance fluctuation functions 

𝐹𝐷𝐹𝐴−𝑋
2 (𝑠) and 𝐹𝐷𝐹𝐴−𝑌

2 (𝑠), and the DCCA-covariance fluctuation function 𝐹𝐷𝐶𝐶𝐴
2 (𝑠) defined by: 

𝐹𝐷𝐹𝐴−𝑋
2 (𝑠) =

1

2𝑁𝑠
∑ 𝑓𝑋

2(𝑣, 𝑠)

2𝑁𝑠

𝑣=1

 (19) 

𝐹𝐷𝐹𝐴−𝑌
2 (𝑠) =

1

2𝑁𝑠
∑ 𝑓𝑌

2(𝑣, 𝑠)

2𝑁𝑠

𝑣=1

 (20) 

𝐹𝐷𝐶𝐶𝐴
2 (𝑠) =

1

2𝑁𝑠
∑ 𝑓𝑋𝑌

2 (𝑣, 𝑠)

2𝑁𝑠

𝑣=1

 (21) 

The DCCA cross-correlation coefficient 𝜌𝐷𝐶𝐶𝐴(𝑠) is defined by: 

𝜌𝐷𝐶𝐶𝐴(𝑠) =
𝐹𝐷𝐶𝐶𝐴

2 (𝑠)

√𝐹𝐷𝐹𝐴−𝑋
2 (𝑠) × √𝐹𝐷𝐹𝐴−𝑌

2 (𝑠)
 (22) 

The cross-correlation coefficient 𝜌𝐷𝐶𝐶𝐴(𝑠) is an effective measure with properties similar to those of 
the standard correlation coefficient. It is a dimensionless quantity that ranges from -1 to 1. When 

𝜌𝐷𝐶𝐶𝐴(𝑠) = 0, there is no cross-correlation between the two series. A value of −1 < 𝜌𝐷𝐶𝐶𝐴(𝑠) < 0 

indicates an anti-persistent cross-correlation, while 0 < 𝜌𝐷𝐶𝐶𝐴(𝑠) ≤ 1 suggests a persistent cross-

correlation between the two series. If 𝜌𝐷𝐶𝐶𝐴(𝑠) = −1, the two series are perfectly anti-persistent cross-

correlated. Conversely, if 𝜌𝐷𝐶𝐶𝐴(𝑠) = 1, the two series are perfectly persistent cross-correlated. 
 
3.2.3. Sources of Cross-Correlation Multifractality 

Kantelhardt, et al. [2] identified two primary sources of multifractality in the cross-correlation of 
bivariate time series: long-term temporal correlations and heavy-tailed distributions. To assess the 
contribution of each source to the overall cross-correlation multifractality, we apply two 
transformations to the original return series: Shuffling (random permutation) and surrogation (phase 
randomization). 

The shuffling technique maintains the distribution of the data's moments but removes any long-
term correlations. After permutation, the data retain their statistical distribution but lack temporal 
correlations or memory. The surrogation technique, on the other hand, isolates the effect of long-term 
correlations on multifractality. This method involves randomly altering the temporal phases of the data, 
disrupting long-term correlations while preserving the overall fluctuation behavior. Several techniques 
for surrogation are discussed in the literature: 

• Inverse Fast Fourier Transform (IFFT) [16]. 

• Iterated Algorithm (iAAFT) [17]. 

• Statically Transformed Autoregressive Process (STAP) [18]. 
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4. Empirical Results 
4.1. Test for Non-Stationarity 

We applied the Augmented Dickey-Fuller (ADF) test to both the daily price series and the 
logarithmic return series of the six Pacific Asia Islamic indices. Table 1 shows the results. 
 
Table 1. 
ADF test for prices and log-returns of the six Pacific Asia Islamic indices. 

 
t-statistic 

China India Indonesia Pakistan Malaysia Thailand 
ADF test statistics for prices -2.159 0.269 -2.995 -1.208 -2.780 -3.154 
ADF test statistics for returns -56.211 -64.822 -58.080 -51.849 -37.498 -38.973 
Test critical values Level 1%: -3.961;         Level 5%: -3.411;          Level 10%: -3.127 

 
We observe that all the ADF test statistics for the daily prices of the six Islamic indices exceed the 

critical values at the 1%, 5%, and 10% significance levels. Therefore, we fail to reject the null hypothesis 
of a unit root, indicating that the daily price series of the six Islamic indices are generated by non-
stationary processes. It is also noteworthy that all the ADF test statistics for the logarithmic returns of 
the six Islamic indices are below the critical values at the 1%, 5%, and 10% significance levels. 
Therefore, we reject the null hypothesis of a unit root, indicating that the daily logarithmic returns 
series of the six Islamic indices are generated by a stationary process. 
 
4.2. DCCA Cross-Correlation Coefficient 

In this section, the DCCA cross-correlation coefficient is applied to quantify the cross-correlation 
between the six Pacific Asia Islamic indices. 

Figure 1 shows the plots of the DCCA cross-correlation coefficient 𝜌𝐷𝐶𝐶𝐴(𝑠) as a function of the 

variable 𝑠 for the 15 pairs of Pacific Asia Islamic indices. 
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Figure 1. 

DCCA cross-correlation coefficient 𝜌𝐷𝐶𝐶𝐴(𝑠) vs. 𝑠 for all pairs of indices, 𝑠 ∈ 𝑆 = [20: 10: 1500]. 

 
We can observe that all pairs of the six Pacific Asia Islamic indices show a DCCA cross-correlation 

with 0 < 𝜌𝐷𝐶𝐶𝐴(𝑠) < 1, indicating persistent cross-correlation. This suggests that these indices do not 
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behave independently; rather, their movements are interlinked, with past movements in one index 
having a lasting effect on the others. This persistent relationship implies that the indices are influenced 
by similar macroeconomic forces, investor behavior, or regional events that affect Islamic financial 
markets in the Pacific Asia region. Factors such as shared geopolitical conditions, trade relationships, or 
economic policies may contribute to similar market responses across these indices. Importantly, since 
the DCCA method removes long-term trends, the observed cross-correlation reflects short- to medium-
term fluctuations in the indices, rather than being driven by broader economic trends like growth or 
inflation. 

 
4.3. Application of MF-DCCA  

In this section, the MF-DCCA technique is applied to analyze the multifractal cross-correlation of 
the six Pacific Asia Islamic indices. 

• Generalized Hurst Exponents 𝐻𝑋𝑌(𝑞)   

Figure 2 shows the plots of the generalized Hurst functions 𝐻𝑋𝑌(𝑞) as function of the variable 𝑞 ∈
[−45: 5: −5, −4.1: 0.1: −0.1,0.1: 0.1: 4.1,5: 5: 45] for all the pairs of Pacific Islamic indices. 
 

 
Figure 2. 

Generalized Hurst exponents 𝐻𝑋𝑌(𝑞) for all pairs of Pacific Islamic indices. 

 

As shown in the previous figure, as 𝑞 increases from -45 to 45, the generalized Hurst exponent 

𝐻𝑋𝑌(𝑞) decreases non-linearly for all pairs of indices. This indicates that the cross-correlations between 
each pair of indices exhibits multifractal nature.  
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We observed also that for 𝑞 < 0,  𝐻𝑋𝑌(𝑞) > 0.5, whereas for 𝑞 > 0, 𝐻𝑋𝑌(𝑞) < 0.5. This indicates a 
multifractal structure in the bivariate time series with different scaling behaviors for small and large 

fluctuations. 𝐻𝑋𝑌(𝑞) > 0.5 for 𝑞 < 0 indicates persistence in the smaller fluctuations, meaning that 
small changes in the series are likely to continue in the same direction. For example, small positive 
returns are likely to be followed by further small positive returns, showing trend-following behavior at 
smaller scales. This persistence suggests that the bivariate time series has long-range correlations in its 
smaller movements, and it may be more predictable at this level. This could suggest inefficiency, as 
small fluctuations exhibit memory, potentially allowing for short-term arbitrage or trading strategies 

based on these small movements. On the contrary, 𝐻𝑋𝑌(𝑞) < 0.5 for 𝑞 > 0 indicates anti-persistence in 
the larger fluctuations, meaning that large changes in one direction are likely to be followed by a 
reversal or opposite movement. For example, a large positive return is more likely to be followed by a 
negative return, and vice versa. This anti-persistent behavior at large scales suggests that the time 
series tends to correct itself after significant movements. This could imply overreaction to big news or 
shocks, leading to a reversion in prices. Large movements are less predictable, and the market may be 
more efficient at correcting extreme events. 

This multifractality implies that the underlying process driving the time series is complex, with 
varying dynamics depending on the magnitude of the fluctuations. This could indicate that different 
types of traders (e.g., short-term vs. long-term traders) might be influencing the market differently, 
leading to diverse scaling behaviors across different time horizons or fluctuation sizes. 

The degree of multifractality of the cross-correlations could be measured by the difference between 

the smallest and largest values of 𝐻𝑋𝑌(𝑞): 

Δ𝐻𝑋𝑌 = 𝐻𝑋𝑌−𝑀𝑎𝑥 − 𝐻𝑋𝑌−𝑀𝑖𝑛 = 𝐻𝑋𝑌(𝑞𝑚𝑖𝑛) − 𝐻𝑋𝑌(𝑞𝑚𝑎𝑥) (23) 
The table below present the degree of multifractality for the 15 pairs of indices in decreasing order 

of  Δ𝐻𝑋𝑌. 
 
Table 2. 
Degrees of multifractality of the 15 pairs cross-correlations based on the generalized Hurst exponent in decreasing order of  

Δ𝐻𝑋𝑌. 

Rank Pairs of indices 𝚫𝑯𝑿𝒀 
1 Malaysia vs Thailand 0.683 
2 Jakarta vs Thailand 0.622 
3 Jakarta vs Malaysia 0.607 
4 Karachi vs Thailand 0.576 
5 India vs Jakarta 0.530 
6 India vs Thailand 0.529 
7 Jakarta vs Karachi 0.493 
8 India vs Malaysia 0.466 
9 Karachi vs Malaysia 0.457 
10 China vs Thailand 0.428 
11 China vs Malaysia 0.419 
12 China vs Jakarta 0.419 
13 India vs Karachi 0.404 
14 China vs India 0.367 
15 China vs Karachi 0.337 

 
We observed that all the cross-correlations between each pair of indices display multifractal 

behavior, as Δ𝐻𝑋𝑌 = 0  signifies that the bivariate time series demonstrate monofractal behavior.  
 

• Rényi Exponent 𝜏𝑋𝑌(𝑞) 

Figure 3 shows the plots of the Rényi Exponent 𝜏𝑋𝑌(𝑞) as a function of the variable 𝑞 ∈
[−45: 5: −5, −4.1: 0.1: −0.1,0.1: 0.1: 4.1,5: 5: 45] for the 15 pairs of Islamic indices. 
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Figure 3. 

Rényi exponents 𝜏𝑋𝑌(𝑞) for all pairs of indices. 

 

As shown in the previous figure, the Rényi Exponent 𝜏𝑋𝑌(𝑞)  increases non-linearly as 𝑞 increases 
from -45 to 45 for all pairs of indices. This indicates that the 15 pairs of index returns exhibit cross-
correlation with multifractal features.  
 

• Hölder Singularity Spectrum 𝑓𝑋𝑌(𝛼)   
Another interesting way to characterize the multifractality of the cross-correlations of the 15 pairs 

of indices is to use the Hölder spectrum 𝑓𝑋𝑌(𝛼). 

Figure 4 shows the plots of the singularity spectra 𝑓𝑋𝑌(𝛼) for the 15 pairs of indices. 
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Figure 4. 

Hölder Singularity Spectrum 𝑓𝑋𝑌(𝛼) for all pairs of indices. 

 
We can observe in this figure that for 15 pairs of index returns, the curves of the singularity 

spectrum functions 𝑓𝑋𝑌(𝛼) have an inverted parabolic shapes. This indicates that the cross-correlations 
of the 15 pairs of indices exhibit multifractal nature.  

The degree of multifractality can be measured by calculating the width of the spectrum, given by: 

∆𝛼𝑋𝑌 = 𝛼𝑋𝑌−𝑚𝑎𝑥 − 𝛼𝑋𝑌−𝑚𝑖𝑛 (24) 
The table below present the degree of multifractality for the 15 pairs based on the generalized the 

singularity spectrum in decreasing order of  ∆𝛼𝑋𝑌. 
 
Table 3. 

Degrees of multifractality based on the singularity spectrum for the15 pairs of indices in decreasing order of  ∆𝛼𝑋𝑌. 

Rank Pairs of indices ∆𝜶𝑿𝒀 
1 Malaysia vs Thailand 0,732 
2 Jakarta vs Thailand 0,669 
3 Jakarta vs Malaysia 0,655 
4 Karachi vs Thailand 0,623 
5 India vs Jakarta 0,576 
6 India vs Thailand 0,575 
7 Jakarta vs Karachi 0,537 
8 India vs Malaysia 0,513 
9 Karachi vs Malaysia 0,504 
10 China vs Thailand 0,472 
11 China vs Malaysia 0,462 
12 China vs Jakarta 0,462 
13 India vs Karachi 0,449 
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We observed that all the cross-correlations between each pair of indices display multifractal 

behavior, as ∆𝛼𝑋𝑌 = 0  signifies that the bivariate time series demonstrate monofractal behavior. 
In conclusion, the analysis, which includes the evaluation of generalized Hurst exponents, Rényi 

exponents, and singularity spectrum functions, confirms the presence of multifractal cross-correlations 
among the Islamic stock markets in the Pacific Asia region. These multifractal cross-correlations 
suggest that the interdependence between these markets is nonlinear and varies across different time 
scales. Specifically, the relationship between the markets may differ at short, medium, and long-term 
horizons. For example, short-term co-movements may be driven by factors such as regional news or 
investor sentiment, while at longer time scales, macroeconomic conditions or global events could play a 
more dominant role in shaping the correlations. 
 
4.4. Source of Multifractality for the Cross-Correlations  

As previously noted, there are two different sources of multifractality, long-term temporal cross-
correlations and the heavy tails distributions. To determine how each source contributes to the overall 
cross-correlations multifractality, two transformations are applied on the original geometric return 
series: the shuffling and the surrogation. 

In this study, two shuffling techniques were used, namely “randperm” and “randi”. For phase 
surrogation, the Inverse Fast Fourier Transform (IFFT) method [16] is applied. 

Figure 5 and Figure 6 compare the curves of the generalized Hurst exponent 𝐻𝑋𝑌(𝑞) and the curves 

of the singularity spectrum 𝑓𝑋𝑌(𝛼) for the 15 original pairs of index returns series with those of the 
surrogate and the shuffled series. 

 

14 China vs India 0,413 
15 China vs Karachi 0,383 
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Figure 5. 

Generalized Hurst exponent 𝐻𝑋𝑌(𝑞) vs. 𝑞  for all the pairs of series of original, surrogate and shuffled. 
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Figure 6. 

Singularity spectrum 𝑓𝑋𝑌(𝛼) vs. 𝛼 for all the original, surrogate and shuffled pairs of indices. 
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Figure 5 and Figure 6 show that the application of shuffling and surrogate transformations has 
reduced the degree of multifractality in the original series. 

To precisely measure how much multifractality has been reduced, the values of ∆𝐻𝑋𝑌 = 𝐻𝑋𝑌−𝑚𝑎𝑥 −
𝐻𝑋𝑌−𝑚𝑖𝑛 and ∆𝛼𝑋𝑌 = 𝛼𝑋𝑌−𝑚𝑎𝑥 − 𝛼𝑋𝑌−𝑚𝑖𝑛 are calculated for the 15 pairs of indices.  

The MF-DCCA program is ran 100 times for each pair, and each time we obtained different results 
for the surrogate series and the two shuffled series, the results for the original series remained 
consistent. This variability is due to the algorithms generating the surrogate and shuffled series using 
random permutations.  

However, in all 100 simulations, the ∆𝐻𝑋𝑌 and ∆𝛼𝑋𝑌 of the original series are consistently greater 

than the ∆𝐻𝑋𝑌 and ∆𝛼𝑋𝑌 of the surrogate series and the two shuffled series. Table 4 presents the results. 
 

Table 4. 

Degrees of multifractality of original, surrogate and shuffled series based ∆𝐻𝑋𝑌 and ∆𝛼𝑋𝑌. 
 Original Surrogate Shuffled-randperm Shuffled-randi 

Pairs  ∆𝑯𝑿𝒀 ∆𝜶𝑿𝒀 ∆𝑯𝑿𝒀 ∆𝜶𝑿𝒀 ∆𝑯𝑿𝒀 ∆𝜶𝑿𝒀 ∆𝑯𝑿𝒀 ∆𝜶𝑿𝒀 
China vs India 0.367 0.413 0.166 0.206 0.313 0.358 0.287 0.205 
China vs Jakarta 0.418 0.462 0.148 0.188 0.260 0.309 0.188 0.142 
China vs Karachi 0.337 0.383 0.175 0.217 0.150 0.189 0.170 0.122 
China vs Malaysia 0.419 0.462 0.224 0.268 0.173 0.215 0.219 0.173 
China vs Thailand 0.428 0.472 0.186 0.227 0.182 0.226 0.180 0.131 
India vs Jakarta 0.530 0.575 0.278 0.320 0.241 0.281 0.243 0.194 
India vs Karachi 0.404 0.449 0.309 0.351 0.258 0.302 0.191 0.137 
India vs Malaysia 0.466 0.513 0.249 0.290 0.331 0.372 0.223 0.175 
India vs Thailand 0.529 0.576 0.315 0.359 0.291 0.334 0.266 0.219 
Jakarta vs Karachi 0.493 0.537 0.260 0.305 0.229 0.271 0.219 0.157 
Jakarta vs Malaysia 0.607 0.655 0.297 0.346 0.227 0.272 0.258 0.192 
Jakarta vs Thailand 0.622 0.669 0.209 0.250 0.156 0.197 0.266 0.197 
Karachi vs Malaysia 0.457 0.504 0.217 0.259 0.200 0.241 0.294 0.211 
Karachi vs Thailand 0.575 0.623 0.227 0.269 0.196 0.237 0.201 0.130 
Malaysia vs Thailand 0.683 0.732 0.284 0.330 0.309 0.353 0.179 0.138 

 

The results indicate that ∆𝐻𝑋𝑌−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒 > ∆𝐻𝑋𝑌−𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒, ∆𝛼𝑋𝑌−𝑜𝑟𝑔𝑖𝑛𝑎𝑙𝑒 > ∆𝛼𝑋𝑌−𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒, 

∆𝐻𝑋𝑌−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒 > ∆𝐻𝑋𝑌−𝑆ℎ𝑢𝑓𝑓𝑙𝑒𝑑 and ∆𝛼𝑋𝑌−𝑜𝑟𝑔𝑖𝑛𝑎𝑙𝑒 > ∆ℎ𝑋𝑌−𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑 for all 15 pairs of index returns. 
This indicates that the multifractality of the cross-correlations has been reduced by both the surrogate 
and shuffled transformations. We conclude that both long-term cross-correlations and heavy-tailed 
distributions play a significant role in the multifractal behavior of the cross-correlations between the six 
indices. The presence of long-term cross-correlations indicates a complex, interconnected market 
structure where shocks and market behaviors persist over time. This creates increased systemic risk, 
challenges traditional approaches to risk management and forecasting, and necessitates more dynamic 
and multifaceted strategies in portfolio management, regulation, and asset pricing. Understanding and 
effectively managing these long-term correlations is essential for investors, regulators, and 
policymakers striving to maintain stability and predictability in these interconnected markets. 
Additionally, the presence of heavy-tailed distributions suggests that extreme market events occur more 
frequently than conventional models predict. These events have significant implications for risk 
management, asset pricing, portfolio diversification, and overall financial stability. To mitigate the risks 
associated with these extreme events, investors and policymakers must adopt more advanced models 
and strategies that account for these outlier events and better manage the heightened likelihood of 
large-scale disruptions in the market. 
 
4.5. Discussion 

In comparing the results of this study with previous literature, we observe a number of consistent 
findings as well as some unique insights. 
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Similar to previous studies, this research highlights the presence of multifractal behavior in financial 
markets, specifically in the context of cross-correlations among six Islamic stock markets in the Pacific 
Asia region. Like the study by El Alaoui and Benbachir [5] on the MENA region, which identified 
significant multifractal cross-correlations, this study also demonstrates long-range persistent cross-
correlations among the Pacific Asia Islamic indices. This suggests that markets in this region are 
similarly interconnected, with market movements in one country potentially influencing others, a 
finding in line with the observations made in earlier studies. 

Further, our study supports the work of Xinsheng, et al. [6] who found long-term cross-
correlations between the Chinese Renminbi (RMB) markets and other currencies, specifically 
highlighting the persistence of these relationships. The MF-DCCA method employed in our study 
revealed that, like the cross-correlations in the RMB markets, the Pacific Asia Islamic indices exhibit 
not only long-term correlations but also multifractal dynamics, signifying the persistent and complex 
interactions between these markets. 

Additionally, our results resonate with the findings of Cao, et al. [9] who observed strong cross-
market conductivity between Mainland China and Hong Kong, particularly during market fluctuations. 
Our analysis also indicated that cross-correlations among the six Pacific Asia Islamic stock markets are 
robust and long-lasting, even when considering various time scales. This points to the broader regional 
integration and interconnectedness of these markets, similar to what has been observed in studies of the 
Shanghai-Hong Kong Stock Connect [7] where post-liberalization cross-correlations between the two 
markets became more persistent. 

Our study further builds on the work of Yanjun and Cheng [10] and Wei, et al. [11] who 
highlighted how financial crises and economic events can amplify the intensity of cross-correlations and 
multifractality. While this study did not focus explicitly on crisis periods, the findings suggest that the 
interconnectedness of these markets could be amplified under conditions of economic shocks or financial 
instability. As observed by Yanjun and Cheng [10] the degree of multifractality in market relationships 
often intensifies during crises, further reinforcing the argument that multifractal behavior plays a 
significant role in understanding market dynamics during extreme market events. 

Moreover, the findings of this study align with the evolving application of multifractal analysis to 
broader asset classes, as seen in the work of Jia, et al. [13] on commodity markets and Acikgoz, et al. 
[14] on green bonds. Just as commodity markets such as soybean futures exhibit long-range 
dependencies, our study shows that the Islamic stock markets in Pacific Asia display similar multifractal 
characteristics. This indicates that the method of MF-DCCA can effectively capture the complexities of 
market interdependencies not only in traditional asset classes but also in emerging financial instruments 
and markets. 

This study contributes to the growing body of literature on multifractality and cross-correlations in 
financial markets. While similar results have been observed in studies of other regions and asset classes, 
this research adds new insights by focusing on the Pacific Asia Islamic stock markets, highlighting the 
role of both long-term cross-correlations and heavy-tailed distributions in the cross-correlation 
multifractal nature of these markets. This research reinforces the importance of incorporating advanced, 
multifractal-based models in portfolio management, risk assessment, and financial market regulation, 
especially in interconnected markets such as those in the Pacific Asia region. 
 
5. Conclusion  

This study provides a detailed investigation of cross-correlations among six Pacific Asia Islamic 
stock markets - China, India, Indonesia, Pakistan, Malaysia, and Thailand - employing the Multifractal 
Detrended Cross-Correlation Analysis (MF-DCCA) method. The dataset includes daily closing prices of 
Pacific Asia Islamic indices, covering the period from January 1, 2011, to August 1, 2024, with 
approximately 3315 observations. 

As a preliminary analysis, the application of the DCCA Cross-Correlation Coefficient method 
highlighted that the cross-correlations are not only persistent but also exhibit long-term stability across 
most index pairs. 
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Utilizing core components of the MF-DCCA method, such as generalized Hurst exponents, Rényi 
exponents, and Hölder singularity spectrum, further confirmed that the index pairs display long-range 
persistent cross-correlations and multifractal behavior. These findings indicate that the markets are 
deeply interconnected, with multifractal dynamics influencing their interactions. 

Moreover, the investigation into the sources of multifractality through surrogation and shuffling 
transformations revealed that both long-term cross-correlations and heavy-tailed distributions play 
significant roles in the multifractal nature of the observed cross-correlations. 

This study provides a detailed investigation of the cross-correlations among six Pacific Asia Islamic 
stock markets, revealing important practical implications for investors, policymakers, and financial 
market regulators. The presence of long-range cross-correlations and multifractal behavior indicates 
that these markets are deeply interconnected, meaning that market movements in one country could 
have persistent effects on others. For investors, this interdependence highlights the need for dynamic 
and adaptive portfolio strategies. Traditional diversification approaches, which assume market 
independence, may not be effective, and investors should incorporate cross-correlation and multifractal 
analyses into their decision-making processes to improve risk management and portfolio efficiency. 
Policymakers and regulators in the region must recognize the systemic risks posed by the 
interconnectedness of these markets. Financial stocks in one market could easily spread across the 
region, affecting overall market stability. By understanding these long-term correlations, regulators can 
better monitor and mitigate risks, ensuring that financial crises in one country do not have amplified 
effects across others. Moreover, the findings emphasize the importance of advanced, multifractal-based 
models for monitoring market stability, as traditional models may fail to capture the full scope of market 
interdependence and extreme events. 

The interconnected nature of these markets also opens the door for financial innovation, such as the 
development of regional investment products or instruments that consider cross-market dynamics. Such 
financial products would need to account for the multifractal and cross-correlation behaviors observed 
to enhance investor returns and minimize risk exposure. Additionally, geopolitical or macroeconomic 
events, such as policy changes or economic crises, could have ripple effects across the entire region, 
making it crucial for financial institutions to understand these correlations to better predict market 
reactions and respond effectively to such events. 

In summary, the study underscores the importance of incorporating multifractal and cross-
correlation analyses into financial strategies and regulatory frameworks. By recognizing the complex, 
long-term interdependencies among these markets, stakeholders can better manage risks, improve 
market stability, and enhance the effectiveness of investment strategies in the Pacific Asia Islamic stock 
markets. 
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