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Abstract: This study analyzes the significant difficulties and solutions for ensuring the security of 
developing and deploying contemporary software applications in the current fast-paced technological 
landscape. It examines the escalating hazards linked to expedited software delivery cycles via agile and 
DevOps methodologies, emphasizing critical domains such as static code analysis, CI/CD pipeline 
security, container image scanning, and container platform security. This research consolidates findings 
from existing studies and practical case scenarios, assessing the efficacy of SonarQube, Clair, Trivy, and 
Kube-bench in detecting vulnerabilities, improving operational efficiency, and guaranteeing adherence 
to industry standards. Case studies, such as Skyscanner's implementation of SonarQube and DAZN's 
utilization of Checkmarx, underscore the concrete advantages of incorporating sophisticated security 
protocols. The results underscore the significance of multi-tiered security approaches and highlight 
prospects for utilizing artificial intelligence to improve vulnerability identification and real-time 
surveillance. This paper offers practical recommendations to assist organizations in tackling current 
security issues and anticipating future threats. 
Keywords: Application security, Container image scanning, Container platform security, Continuous Integration/Continuous 
Delivery, DevSecOps, vulnerability detection, Software Development Lifecycle, Static Code Analysis,  

 
1. Introduction  

The development and delivery of modern software applications have become increasingly complex. 
As organizations adopt agile and DevOps methodologies to accelerate delivery cycles, they face 
heightened security challenges across all stages of the Software Development Lifecycle (SDLC). The 
need to detect vulnerabilities, secure software supply chains, and protect runtime environments has 
become highly important. The complexity of contemporary applications and an ever-expanding attack 
surface highlight the importance of integrating robust security measures seamlessly into development 
and operational workflows. High-profile incidents, such as the SolarWinds supply chain attack and the 
CodeCov breach, have further illuminated the risks inherent in insecure pipelines and dependencies, 
prompting a call for more rigorous approaches to application security. 

This paper examines critical areas in securing the development and delivery of modern applications, 
focusing on Static Code Analysis (SCA), Continuous Integration/Continuous Delivery (CI/CD) pipeline 
security, container image scanning, and container platform security. The discussion synthesizes recent 
research and case study findings, presenting a comprehensive view of tools and methodologies to address 
vulnerabilities at each application lifecycle stage. By exploring advancements such as machine learning-
enhanced SCA tools, automated security scanning in CI/CD pipelines, and runtime monitoring tools for 
container orchestration platforms like Kubernetes, the paper highlights the critical interplay between 
technology, process, and governance in achieving robust security. This work contributes to the field by 
providing an in-depth analysis of current best practices, tools, and real-world implementations in 
application security. It evaluates state-of-the-art solutions, such as SonarQube, Clair, Trivy, and Kube-
bench, which are instrumental in mitigating risks and ensuring compliance. Furthermore, this paper 
identifies gaps in existing practices. It outlines opportunities for future research, such as leveraging 
artificial intelligence for proactive vulnerability detection and implementing real-time anomaly detection 
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in dynamic environments. The insights presented here aim to guide developers, security professionals, 
and organizations in adopting a proactive approach to securing the software lifecycle. 

The rest of this paper is organized as follows. The next section reviews foundational and recent work 
that contextualizes the challenges and advancements in application security. This is followed by 
analyzing key security practices, including Static Code Analysis, CI/CD pipeline security, and 
containerized environment protection. The discussion concludes with a forward-looking perspective on 
future research opportunities and a summary of critical takeaways. 
 
2. Related Work 

The increasing complexity of software systems has necessitated advancements in techniques for 
identifying vulnerabilities and ensuring security throughout the Software Development Lifecycle. Static 
Code Analysis is a prominent approach for identifying vulnerabilities within non-executing source code. 
Despite their limitations, recent studies emphasize the utility of SCA tools in detecting security flaws. 
For instance, Ruiz, et al. [1] highlight the transformative role of artificial intelligence in enhancing static 
code analysis, paving the way for more sophisticated tools. Similarly, Lipp, et al. [2] show that 
combining results from multiple analyzers can reduce false negatives, although vulnerabilities remain 
undetected in real-world applications. The importance of SCA tools is further validated by Alqaradaghi 
and Kozsik [3] who note that no single tool can comprehensively detect vulnerabilities, emphasizing the 
need for integration and tool diversity in software testing. 

The security implications of CI/CD pipelines have gained significant attention due to their critical 
role in modern DevOps workflows. As Pan [4] detail, CI/CD pipelines are susceptible to various attack 
vectors, such as malicious code injection and outdated dependencies, leading to severe consequences. 
Paule, et al. [5] identify 22 vulnerabilities in industry pipelines, highlighting the need for enhanced 
threat modeling. Ho-Dac and Vo [6] propose integrating open-source security tools into pipelines, 
aligning with the "shift-left" security philosophy emphasizing early vulnerability detection. Meanwhile, 
Marandi, et al. [7] highlight the importance of automating security scanning using dynamic and static 
analysis tools to mitigate risks in DevSecOps environments. 

Dakic, et al. [8] highlight that because modern application development has redefined how teams 
develop their solutions, CI/CD tools need advanced privileges; they have to be able to access code 
repositories, etc., creating a big attack surface. Furthermore, Dakic, et al. [9] also note that, without any 
extra configuration, only a limited number of messages pass through the audit system, mainly 
authentication/authorization and SELinux messages. This creates a more extensive set of problems, as 
auditing is a fundamental aspect of security that must be adequately implemented and monitored for 
application security to be high enough. There are also problems with vulnerabilities in system 
architecture, configurations, and operation practices that need to be addressed to safeguard sensitive data 
[10]. 

Container platform security has also emerged as a focal area, with platforms like Docker and 
Kubernetes at the forefront. Bhardwaj, et al. [11] stress the need for automated vulnerability detection 
and compliance enforcement in containerized ecosystems. Shevchuk, et al. [12] explore Kubernetes-
specific vulnerabilities, advocating for best practices to secure CI/CD processes. Afifah, et al. [13] 
propose using code obfuscation techniques within CI/CD pipelines to safeguard against unauthorized 
access, demonstrating the growing intersection of security and automation in containerized workflows. 

Dynamic security testing tools integrated into CI/CD pipelines have shown promise in addressing 
runtime vulnerabilities. Rangnau, et al. [14] present a case study integrating dynamic testing techniques, 
revealing challenges and opportunities in the DevSecOps paradigm. Additionally, Ponaka [15] illustrates 
the effectiveness of security gates in preventing the deployment of critical vulnerabilities, advocating for 
automated checks throughout the SDLC. 

Recent advancements in threat modeling and policy enforcement have strengthened CI/CD security 
frameworks. Nikolov and Aleksieva-Petrova [16] propose a Jenkins-based framework for embedding 
threat modeling into pipelines. Morales and Yasar [17] emphasize cultural and technical barriers to 
implementing secure pipelines in regulated environments. These studies highlight the necessity of a 
holistic approach combining technical tools, governance, and cultural shifts. Recent research shows the 
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role of advanced tools and methodologies in mitigating CI/CD and container vulnerabilities. Singh [18], 
Bajpai and Lewis [19] discuss best practices for secure CI/CD implementations, emphasizing the 
importance of collaboration between development and operations teams. Meanwhile, Vassallo, et al. [20] 
highlight the potential of automated linters to detect misconfigurations in CI/CD pipelines, 
demonstrating the utility of semantic analysis tools. 
 
3. Static Code Analysis 

Static Code Analysis, also called Source Code Analysis, is an integral part of the Code Review 
process, often categorized under white-box testing [21]. It is typically conducted during the Security 
Development Lifecycle (SDL) implementation phase. This method uses Static Code Analysis tools to 
identify potential vulnerabilities in non-running (static) source code by employing techniques such as 
Taint Analysis and Data Flow Analysis. Beyond enhancing application security, static code analysis also 
improves the overall quality and performance of the code [2]. This analysis can be performed manually 
or automatically, with each approach offering distinct advantages. 

Manual analysis involves developers reviewing the source code to detect vulnerabilities that 
automated tools might overlook [1]. This method heavily relies on the developer’s expertise and ability 
to recognize potential security issues by examining the code. However, it can be inefficient for analyzing 
large codebases. On the other hand, automatic static code analysis leverages specialized tools to scan the 
entire codebase for known vulnerabilities. These tools use sophisticated techniques, including Taint 
Analysis and Data Flow Analysis, to identify potential risks efficiently [22]. 
 
3.1. Data Flow Analysis 

Data Flow Analysis is a critical technique in static code analysis that tracks data movement through 
software from input points to output points [3]. This process uses a control flow graph, an abstract 
representation of the program or procedure. In the graph, each node represents a basic block, and 
directed edges illustrate the control flow jumps between blocks. Blocks without incoming edges are 
designated as entry blocks, while those without outgoing edges are exit blocks. For instance, Figure 1 
illustrates a simple Control Flow Graph, where “NODE 1” is the entry block, and “NODE 6” is the exit 
block. 

 

 
Figure 1.  
Example Control Flow Graph where NODE 1 represents the entry block, and 
NODE 6 represents the exit block. 
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This approach helps uncover vulnerabilities caused by improper data validation, storage, or handling, 
such as buffer overflows or insecure data processing [23]. By tracing data movements, developers can 
locate points where sensitive information might be exposed to unauthorized access or modifications. 
 
3.2. Taint Analysis 

Taint Analysis tracks potentially harmful (tainted) data flow through an application [24]. It 
identifies input sources susceptible to manipulation, such as form fields, URL parameters, or HTTP 
headers. The analysis then monitors how this data propagates within the application, identifying cases 
where it reaches sensitive processing points without proper sanitization or validation. This helps 
prevent attacks like SQL injection, cross-site scripting (XSS), and other injection-based vulnerabilities 
[25]. 
 
3.3. Increasing Application Vulnerabilities and Available Tools 

The paper by Efimov, et al. [25] explicitly mentions the count of vulnerabilities rising in early 2023. 
Specifically, it states that information obtained from the CVE vulnerability database reported 7,015 
identified vulnerabilities in the first quarter of 2023 [26]. Various automatic static code analysis tools are 
available, including popular options like SonarQube, Checkmarx, and Micro Focus Fortify Static Code 
Analyzer. These tools streamline the detection of vulnerabilities, improve code quality, and align with 
security best practices. 

For example, Skyscanner, a global travel marketplace catering to over 100 million users monthly, 
adopted SonarQube to maintain consistent development practices [27]. This tool helped Skyscanner 
achieve immediate success by enhancing code quality, facilitating developer communication, and ensuring 
timely delivery across time zones. Similarly, DAZN, an international sports streaming service, utilized 
Checkmarx SAST and Codebashing solutions to secure its codebase [28]. By integrating CxSAST and 
CxSCA, DAZN’s developers and security teams prioritized critical open-source vulnerabilities, saved 
time, and enhanced their application security testing strategies. 
 
3.4. Tailoring Solutions to Organizational Needs 

While many tools exist, there is no universal solution. Organizations must evaluate and select tools 
aligning with their requirements, development workflows, and security objectives. This tailored 
approach ensures maximum efficacy in vulnerability detection and code quality improvements. 
 
4. Container Image Scanning 

Container image scanning is critical for ensuring the security and integrity of containerized 
applications [29]. A container image represents a packaged application and all its dependencies, 
encapsulating everything necessary to run the application in a consistent and predictable environment. 
These images are executable software bundles designed to operate independently, with specific and well-
defined assumptions about the runtime environment. 

Container images are constructed in a layered architecture, beginning with a base image, often a 
minimal operating system such as Alpine Linux, Ubuntu, or Red Hat Linux [30]. This base layer 
provides the foundational environment, while additional layers are added for specific changes, 
modifications, or enhancements. These extra layers commonly include software libraries, binaries, 
application code, configuration files, and environment variables. The layered approach simplifies the 
image creation process and enhances efficiency. Each layer is cached independently, meaning only the 
modified layers must be rebuilt and redeployed when updates are made to the application. This feature 
optimizes storage and accelerates deployment, as unchanged layers can be reused across multiple builds 
or versions. However, once a container image is built, it is crucial to ensure that it does not introduce 
security vulnerabilities or compliance risks into the deployment environment. Container image scanning 
safeguards by analyzing the image's contents for known vulnerabilities. These vulnerabilities may include 
outdated software libraries, misconfigured components, or other issues that could compromise the 
application's security. Tools such as Clair and Trivy have become popular choices for this task [31]. 
These tools automate the vulnerability detection process and provide actionable insights for remediation. 
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They scan the image against extensive vulnerability databases, flagging any components with known 
security issues. 

By integrating container image scanning into the development and deployment pipeline, 
organizations can significantly reduce the attack surface and mitigate security risks before they reach 
production [8]. This approach strengthens applications' security posture and ensures compliance with 
organizational and industry-specific security standards. 
 
5. Pipeline Security 

A “pipeline” refers to a series of structured steps, commonly called pipeline phases, required to 
deliver software from development to production [18]. These phases typically include building, testing, 
and deploying the software, though more complex pipelines may include additional steps, such as static 
code analysis, infrastructure provisioning, and monitoring. These core phases often illustrate an 
example of a simple CI/CD pipeline, demonstrating how code transitions seamlessly from commit to 
production. 

CI/CD pipelines automate the manual intervention historically involved in software development 
and deployment. By integrating automation into the build, test, and deployment phases and 
infrastructure provisioning, CI/CD pipelines enable development teams to implement changes 
automatically tested and prepared for deployment [7]. This automation fosters faster delivery cycles, 
improved collaboration, and more reliable production systems. However, their security is paramount as 
CI/CD pipelines form the backbone of modern DevOps practices. The security of the deployed code is 
inherently tied to the security of the CI/CD pipeline. Vulnerabilities can arise from various sources, 
such as incomplete or improperly configured test cases, third-party dependencies, or malicious actors 
compromising the pipeline. CI/CD security measures are designed to address these risks, ensuring the 
pipeline's integrity and the software it produces. 

A reminder of the importance of CI/CD security came in December 2020 with the SolarWinds 
supply chain attack [4]. This sophisticated breach targeted SolarWinds' Orion platform, widely used for 
network management, affecting up to 18,000 organizations, including government agencies and major 
corporations. Threat actors infiltrated SolarWinds' CI/CD pipeline, compromising the core processes 
where code is tested, packaged, containerized, and signed. The attackers introduced “SunSpot” malware, 
which operated with high privileges and scanned for Orion builds to modify. This attack highlighted the 
vulnerabilities in CI/CD processes and raised alarm across the tech industry about securing supply 
chains and trusted software tools. 

Another significant breach occurred in 2021 with CodeCov, a popular code coverage tool used by 
over 29,000 customers worldwide [32]. In this incident, malicious actors compromised a script provided 
by CodeCov, a tool developers routinely used to assess code coverage. The altered script was designed 
to harvest sensitive data, such as credentials and secrets, from affected CI/CD environments. Every 
time a developer downloaded the compromised script, it triggered malicious activity, transmitting 
critical data to the attackers’ servers. This breach underscored the risks inherent in third-party 
dependencies and the importance of securing CI/CD environments against such vulnerabilities. 

The configuration of CI/CD pipelines must account for their specific applications, which often 
involve sensitive operations. For example, when CI/CD is used to build software packages, it may 
require access to external resources such as Docker images or external repositories. Similarly, pipelines 
supporting Infrastructure as Code (IaC) often need credentials for automated deployments. In these 
scenarios, securely managing sensitive information is critical. Misconfigured CI/CD environments can 
lead to significant security breaches, emphasizing the importance of secure configurations tailored to 
their specific use cases. 

To secure CI/CD processes effectively, organizations must invest time and resources into securing 
all pipeline components [19]. This includes implementing change management practices, establishing 
governance frameworks, and ensuring personnel are appropriately educated about the tools and 
technologies. Secure configurations are not automatic; they require deliberate planning and a thorough 
understanding of the underlying technologies. Organizations must assess their configuration and 
potential vulnerabilities before using any tool for security-sensitive operations like code deployment, 
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ensuring it aligns with their security requirements and operational needs. This proactive approach is 
essential to mitigate risks and maintain the integrity of the CI/CD pipeline. 
 
6. Container Platform Security 

Container platform security ensures containerized applications' safe and efficient operation. 
Containers deployed on platforms like Docker and Kubernetes offer scalable and streamlined application 
management [33]. Kubernetes is a powerful option for users who prefer to customize their environment 
to specific needs [34]. While container runtime security has progressed, it is crucial to ensure that 
application code stays securely inside its container [35]. These platforms depend on container runtime, 
a software component responsible for executing containers. Popular container runtimes include 
containerd, CRI-O, Docker Engine, and Mirantis Container Runtime. Securing the underlying container 
platforms is critical to protecting applications and infrastructure from vulnerabilities. Despite their 
apparent benefits, containers need help with security and resource isolation [36]. 
 
6.1. Docker 

Platform security on Docker focuses on securely configuring the Docker Daemon. This includes 
minimizing privileges by using user namespaces to map container users to non-root users on the host 
system [37]. Communication between the Docker client and Daemon should be encrypted using TLS, 
safeguarding against interception or tampering. Tools like Docker Bench for Security automate 
verifying Docker's security configuration and running checks based on the CIS Docker Benchmark. By 
addressing these recommendations, organizations can ensure that Docker deployments meet established 
security best practices. 

 
6.2. Kubernetes 

Kubernetes, a widely used container orchestration platform, requires comprehensive security 
measures for its various components. As Kubernetes is entirely API-driven, the primary line of defense 
lies in controlling access to the API [38]. Access control mechanisms should define who can interact 
with the cluster and what actions they can perform. TLS encryption is mandatory for all API 
communications within the cluster, ensuring that data exchanges remain secure. Kubernetes offers 
native security enhancements, such as automated policy enforcement, identity management, and 
monitoring capabilities, which organizations can leverage to improve governance, simplify operations, 
and enhance compliance. 

Network security is particularly complex in Kubernetes environments due to dynamic 
configurations involving ports, IP addresses, and network attributes. Kubernetes natively provides 
network policies that define rules for pod-to-pod communication, controlling how workloads interact at 
the network level. However, network policies alone are insufficient to address all network security 
challenges. External tools are often required to secure other aspects of Kubernetes networking. 
Solutions like Calico and Istio extend network security capabilities, providing granular segmentation 
and encrypted service-to-service communication [39]. 

Resource management also plays a critical role in securing container platforms. By default, 
containers in Kubernetes run without limitations on compute resources, which could lead to 
performance degradation or denial-of-service conditions if a single container monopolizes resources. 
Kubernetes allows administrators to configure resource quotas and limits for CPU, memory, and 
storage, ensuring fair allocation and protecting against resource exhaustion. These quotas also help 
enforce best practices for efficient resource utilization across the cluster. 

Privilege management is another essential aspect of container security. Containers with elevated 
privileges can access host resources, potentially leading to security breaches. Kubernetes can be 
configured to restrict privileged container usage and enforce policies that limit container capabilities, 
thereby reducing the attack surface. Similarly, disabling unnecessary kernel modules on Kubernetes 
nodes helps minimize vulnerabilities by restricting the functionality available to potential attackers. 

The placement of pods within a cluster also impacts security. Kubernetes allows administrators to 
use node selectors, taints, and tolerations to assign sensitive workloads to dedicated nodes with stricter 
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security configurations. Affinity and anti-affinity rules further enhance resilience by distributing 
workloads across multiple nodes, reducing the risk of single points of failure. 

Securing Kubernetes clusters requires specialized tools to identify vulnerabilities, enforce policies, 
and monitor activity [40]. Kube-bench automates security checks based on the CIS Kubernetes 
Benchmark, ensuring compliance with best practices. Falco provides real-time monitoring by analyzing 
system calls within containers to detect anomalous behavior indicative of a breach. Open Policy Agent 
(OPA) enforces cluster-wide security policies at the API level, managing admission controls and 
ensuring only compliant configurations are deployed. Tools like Calico and Istio extend security to the 
network layer, providing segmentation and encrypted communications. Meanwhile, Kubescape scans 
clusters against NSA and CISA guidelines, identifying misconfigurations and vulnerabilities and 
ensuring clusters remain secure. 

Each tool addresses specific aspects of Kubernetes security, from compliance and policy enforcement 
to network protection and runtime monitoring. Integrating these tools into a cohesive security strategy 
helps organizations establish a robust defense against potential threats. 
 
7. Future Works 

As software systems and their security requirements continue to grow in complexity, numerous 
opportunities remain to improve and extend the current state of research and practices in software 
security. Future efforts should focus on advancing tools and methodologies to address the limitations 
and gaps highlighted in this work. 

One promising direction is the enhancement of Static Code Analysis through integrating machine 
learning and artificial intelligence techniques. Current SCA tools often struggle with false positives and 
negatives, and advanced AI models could improve their accuracy and predictive capabilities. 
Additionally, further exploration into hybrid approaches, combining static and dynamic analysis 
methods, may provide a more comprehensive solution for identifying vulnerabilities across diverse 
software systems. In the CI/CD pipeline security domain, future studies should investigate better 
methods for securing supply chains against sophisticated attacks, such as those seen in the SolarWinds 
and CodeCov incidents. Research into automated threat modeling within pipelines could enable earlier 
detection of vulnerabilities and improve resilience against emerging threats. Furthermore, developing 
standardized frameworks for CI/CD security best practices could help organizations adopt consistent 
and effective measures, particularly for integrating third-party tools and dependencies. The focus should 
shift toward real-time scanning and monitoring capabilities for container image scanning and platform 
security. Existing tools, such as Clair and Trivy, are effective at pre-deployment scanning, but the rise 
of ephemeral containerized environments necessitates solutions that can continuously assess 
vulnerabilities during runtime. Enhanced orchestration security for Kubernetes, including better 
network policies and more sophisticated runtime anomaly detection, could provide greater assurance 
against container-based attacks. 

Finally, there is a need for greater emphasis on interdisciplinary research, incorporating insights 
from human factors and organizational behavior into the design and implementation of secure 
development practices. As security is as much a cultural challenge as a technical one, future works 
should investigate how to foster a security-first mindset across development and operations teams. This 
includes developing better training programs and integrating governance models that balance 
innovation with security. 
 
8. Conclusion 

The increasing complexity of modern software systems and the evolving threat landscape 
necessitate a proactive approach to security throughout the Software Development Lifecycle. This paper 
has explored several critical aspects of software security, including Static Code Analysis, container 
image scanning, CI/CD pipeline security, and container platform security. Together, these practices 
form a comprehensive framework for identifying and mitigating vulnerabilities, ensuring the integrity 
of applications, and safeguarding infrastructure. 
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Static Code Analysis remains a foundational tool for identifying vulnerabilities in non-executing 
source code. While current tools offer great insights, challenges such as false positives and limitations in 
coverage highlight the need for enhanced techniques, such as the integration of machine learning. 
Similarly, container image scanning has become indispensable for securing containerized applications. 
By leveraging tools like Clair and Trivy, organizations can detect and remediate vulnerabilities in their 
container images before they reach production environments, reducing their overall attack surface. 
CI/CD pipelines, an essential component of modern DevOps practices, represent both a critical enabler 
of rapid software delivery and a significant vector for potential security breaches. High-profile attacks, 
such as the SolarWinds and CodeCov incidents, highlight the importance of securing every component 
of these pipelines. From integrating automated security checks to implementing robust governance 
frameworks, organizations must ensure that CI/CD pipelines remain a strength rather than a liability. 

Finally, securing container platforms like Docker and Kubernetes is vital for maintaining 
application and infrastructure integrity. Privilege management, network policy enforcement, and real-
time monitoring are essential to mitigating risks in dynamic and distributed environments. Tools like 
Kube-bench, Falco, and Open Policy Agent provide organizations with the means to enforce compliance 
and detect threats, ensuring robust container orchestration security. Despite significant advancements 
in software security practices and tools, the ever-changing nature of vulnerabilities and attack vectors 
demands continued caution and innovation. As highlighted in this paper, integrating security into every 
stage of the software lifecycle, combined with tailored solutions and ongoing research, is essential for 
addressing current challenges and preparing for future threats.  
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