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Abstract: This paper introduces a novel numerical method for solving one-dimensional nonlinear time-
fractional diffusion equations (1DNTFDEs), addressing computational challenges in modeling 
nonlinearity and fractional dynamics. The proposed method integrates the Half-sweep Kaudd Successive 
Over-Relaxation (HSKSOR) technique with a Caputo-based nonlocal arithmetic-mean discretization 
scheme. The Caputo fractional derivative is leveraged to model time-fractional dynamics, while the half-
sweep Caputo-based nonlocal arithmetic-mean scheme efficiently handles nonlinear terms, transforming 
the nonlinear system into a linear one solved iteratively using HSKSOR. Numerical experiments on 
three benchmark examples demonstrate significant reductions in iteration counts and computational 
time. The HSKSOR method outperforms traditional iterative techniques such as Full-Sweep Gauss-
Seidel (FSGS) and Full-Sweep Kaudd Successive Over-Relaxation (FSKSOR) methods, achieving 
superior computational efficiency without sacrificing accuracy. The proposed method provides an 
efficient and scalable computational framework for solving complex time-fractional models, offering 
high accuracy and substantial computational cost reductions. This advancement enhances the 
theoretical framework of nonlocal discretization and offers a powerful tool for applications in physics, 
engineering, and applied mathematics, where modeling fractional dynamics is critical. 
Keywords: Caputo Nonlocal Finite Difference Scheme, Fractional Calculus, Iterative Solvers, Half-sweep KSOR Method,  
One-Dimensional Nonlinear Time-Fractional Diffusion Equations. 

 
1. Introduction  

One-dimensional nonlinear time-fractional diffusion equations (1DNTDEs) have become an 
essential tool for modeling complex physical phenomena, particularly in anomalous diffusion [1]. 
Unlike classical diffusion, governed by integer-order derivatives, anomalous diffusion captures 
nonlocal dynamics and memory effects through fractional derivatives. These models are applied in 
diverse fields such as fractional kinetics [1] viscoelastic material analysis [2] fluid mechanics [3, 
4] and image processing [5] where processes deviate from standard diffusion [1, 2]. Fractional 
differential equations (FDEs) are crucial for describing these anomalous transport phenomena, 
significantly extending traditional integer-order models [6, 7]. Key contributions from researchers 
such as Wang and Ren [8]; Wu, et al. [9]; Sunarto, et al. [10] and Sunarto, et al. [11] have 
advanced our understanding of fractional derivatives, particularly in their ability to model memory 
effects and long-range interactions in complex systems. This progress has sparked growing 
interest in time-fractional diffusion equations (TFDEs), which effectively simulate the dynamics of 
such systems.  

Recent researchers have increasingly focused on the computational approach for solving both 
linear and nonlinear FDEs, especially TFDEs, due to their ability to model non-classical behaviors 
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in real-world systems Podlubny [12]. Fractional operators, such as the Caputo derivative, are 
instrumental in understanding complex mechanical and physical processes, including non-
Markovian random walks and long-term memory effects [13]. However, analytical solutions to 
FDEs are often difficult to obtain, with only a few solvable using special functions such as the 
Mittag-Leffler function [14] the H-function [15] and the Wright function [16]. As a result, a 
range of numerical methods has been developed to overcome the challenges associated with solving 
fractional-order systems. Among the approaches gaining significant attention in the literature are 
the reduced spline (RS) method based on proper orthogonal decomposition (POD) [17, 18] the 
Crank-Nicholson finite element strategy [19, 20] and innovative approaches like the fractional 
finite differences [21] localized radial basis functions (RBFs) [22] and fractional differential 
quadrature (FDQ) [23]. 

The main numerical challenge of TFPDEs is solving a large and sparse system of linear 
equations (SLEs). Traditional methods, such as the Gauss-Seidel (GS) iterative technique, often 
exhibit slow convergence, making them less efficient for complex systems. Recently, the Kaudd 
Successive Over-Relaxation (KSOR) method has shown promise as a more efficient alternative, 
particularly for accelerating convergence in large linear systems derived from the discretization of 
FDEs [24, 25]. Despite significant research on iterative techniques for integer-order equations, 
their application to FDEs remains underexplored [26, 27]. While many studies have employed 
implicit schemes [28, 29] and the Caputo fractional derivative for solving TFPDEs, most have 
focused on linear problems, leaving a gap in the exploration of efficient iterative methods for 
NTFDEs. Additionally, most studies address the discretization of fractional derivatives using finite 
difference (FD) schemes, which generate large linear systems requiring effective solution 
techniques. The KSOR method, a variant of the SOR method, offers potential improvements in 
convergence speed due to its adaptive over-relaxation parameter. However, limited research has 
investigated its application to NTFDEs, particularly in comparison to traditional methods like GS 
[30, 31]. 

This paper aims to evaluate the performance of the HSKSOR method, which employs half-
sweep iteration, for solving 1DNTFDEs using the Caputo fractional derivative. A half-sweep 
Caputo-based nonlocal arithmetic-mean discretization (NAMD) scheme is utilized to transform the 
nonlinear system into an equivalent linear system, which is then solved using the HSKSOR 
method. This study benchmarks HSKSOR against the Full-Sweep GS (FSGS) and Full-Sweep 
KSOR (FSKSOR) methods in terms of iteration counts, computational time, and accuracy, with a 
specific focus on the nonlocal and nonlinear properties of the NTFDEs. By conducting this 
comparison, the paper demonstrates the advantages of HSKSOR over FSKSOR and FSGS in 
solving large and sparse systems from the discretization of 1DNTFDEs, contributing to the 
development of more advanced numerical methods for FDEs.  

The paper is organized as follows: Section 2 presents the formulation of the 1DNTFDEs, 
including the governing equations, boundary conditions, and the discretization process using the 
Caputo fractional derivative. Section 3 presents the numerical methods, mainly the application of 
the HSKSOR and FSGS techniques to solve the resulting linear systems arising from the 
discretization of the NTFDEs. Section 4 provides the results and discussion, comparing the 
performance of the HSKSOR, FSKSOR and FSGS methods in terms of iteration counts, 
computational time, and accuracy. Finally, Section 5 concludes with a summary of the key findings 
and offers directions for future research. 
 
2. Fundamental of Fractional Calculus Concepts 

To initiate the derivation of the HSKSOR iterative method, it is essential to introduce the 
fundamental concepts of fractional differential equations. A general form of 1DNTFDEs can be 
expressed as: 
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In Eq. (1), 𝑢(𝑥, 𝑡) represents the unknown function, 𝛾 denotes the diffusion coefficient, and 

𝑢(1 − 𝑢) defines the nonlinear term, with the fractional-order time derivative α constrained to   

0 < α ≤ 1. The spatial domain is defined by 𝑥 ∈ [𝜌0, 𝜌1] and 0 ≤ t ≤ T. Before introducing the 
proposed Caputo-based NAMD for Problem (1), it is essential to review the various approaches 
available for defining fractional calculus [26, 27]. 

Definition 1. The Fractional Integral operator Rieman-Liouville with order positive α is 
formulated as follows [28]: 

  ( )
( )
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  Definition 2. The Caputo fractional partial derivative with order α is formulated as follows [28]: 
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With 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, 𝑥 > 0. In Equations (2) and (3), where 𝛤(𝛼) is the gamma function 

( ) 1 .

0

t xx e dx


− − =   

(4) 
 

The Caputo derivative is advantageous because it reduces to the classical first derivative when 

𝛼 = 1, and it facilitates the use of standard boundary and initial conditions. The memory effect 
captured by the Caputo derivative makes it suitable for modeling TFDEs, where the current state 
of the system depends on its entire history.  

To solve the NTFDEs in Eq. (1), we employ numerical methods utilizing the Caputo 
derivative, incorporating Dirichlet boundary conditions, and considering the nonlocal fractional 
derivative operator. This approximation is categorized as unconditionally stable. For Problem (1), 

the solution is confined to a finite spatial domain 0 ≤ 𝑥 ≤ 𝛾, with 0 < 𝛼 < 1, where 𝛼 represents 
the order of the spatial fractional derivative.  

Let us consider the following initial and boundary conditions for Problem (1): 

( ) ( ) ( ) ( ), , , , 00 0 1 1u t g t u t g t t T = =    (5) 
 

with initial condition 

( ) ( )  ,0 , ,0 1u x f x x  =   (6) 

where 𝑔0(𝑡) and 𝑔1(𝑡) are predefined functions that represent the fixed boundary values of 𝑢. 
Using the discretized approximation of the NTFDEs in Eq. (1), we apply Caputo fractional partial 

derivative of order 𝛼 as follows:  
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3. Caputo-Based Nonlocal Arithmetic-Mean Approximation 

In this section, we present the proposed approach for solving NTFDE using the Caputo-based 
NAMD scheme combined with the HSKSOR technique. The method offeres an efficient numerical 
framework for solving large-scale nonlinear systems by reducing computational complexity while 
maintaining accuracy.  

Based on Eq. (7), the formulation of Caputo fractional partial derivative for the first-order 
approximation is given by Murio [34]: 
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We also have the following expressions: 
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   − −= − −  
(10) 
 

The first step in discretizing Problem (1) is to partition the solution domain uniformly. Let 𝑚 

and 𝑛 represent positive integers such that the grid sizes in space and time for the finite-difference 

scheme are given by ℎ =  𝛿𝑥 =  𝛾/𝑚 and 𝑘 = 𝛿𝑡 = 𝑇 /𝑛, respectively. Using these values, we 

construct a uniform grid across the solution domain. Spatial grid points in the interval [0, 𝛾] are 

defined as 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, . . . , 𝑚, while the time grid points in [0, 𝑇] are expressed as 𝑡𝑗  =

 𝑗𝑘, 𝑗 =  0, 1, 2, . . . , 𝑛. The function 𝑈(𝑥, 𝑡) at each grid point is written as 𝑈𝑖,𝑗 =  𝑈(𝑥𝑖 , 𝑡𝑗), serving 
as the basis for the numerical approximation. The distribution of the interior node points across the 
finite grid is depicted in Figure 1.  

 
 

(a) Full-sweep case 

 
 

(b) Half-sweep case 
Figure 1. 
Distribution of the uniform mesh size for full- and half-sweep cases 

 
By applying Eq. (8) along with the implicit finite difference discretization scheme, the Caputo 

implicit finite difference approximation at the grid point 𝑥𝑖 , 𝑡𝑗 = (𝑖ℎ, 𝑗𝑘) for Problem (1) is 
expressed as: 
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For 𝑖 = 2,4 … , 𝑚 − 2, the approximation achieves first-order accuracy in time and second-
order accuracy in space, as shown in Eq. (11). To further develop the Caputo-based NAMD for 
Eq. (1), several half-sweep Caputo NAMD methods are considered, as discussed in Li, et al. [31] 
and Wang and Wang [32].  
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The Caputo-based nonlocal arithmetic-mean scheme from Eq. (13) is employed to transform 
the corresponding nonlinear Caputo-based nonlocal arithmetic-mean approximation equation into 
a system of linear equations (SLEs). To achieve this, we define intermediate variables and apply the 
Caputo-based nonlocal arithmetic-mean linearization derived from Eq. (13), leading to: 
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This result is then applied to Eq. (11): 
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The approximation equation can be adapted based on the chosen time level. For example, when 

𝑛 ≥ 2, the structure of the equation adjusts to account for higher time levels, as shown below:  
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By simplifying Eq. (17) for 𝑛 = 1, the approximation equation can be expressed as: 

, ,1 ,0 0 2,1 1 0 2,1U U a U p U a Uk i i i i i  − = − +− +   (18) 
 

The approximate Eq. (18) can be rewritten as: 
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Finally, by reordering the terms, the approximation equation is rewrittem in matrix form as follows:   
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4. Formulation of Half-Sweep Kaudd Successive Over-Relaxation (HSKSOR) 

The linear system described by Eq. (20) involves a coefficient matrix that is large-scale and sparse, 
which presents a well-known challenge in numerical differential equations solutions. As outlined in 
Section 1, numerous researchers, such as Alibubin, et al. [33]; Murio [34]; Young [18] and Sabdin, et 
al. [35] have explored various iterative methods to address such systems. In this study, we employ the 
HSKSOR iterative method, which is well-regarded for its effectiveness and reduced the computational 
complexity in solving linear systems.  

To implement the HSKSOR method, it is essential to reformulate the original linear system in Eq. 
(20) into a suitable diagonal form, thereby enabling the efficient application of the iterative scheme. This 
transformation is critical to fully harnessing the computational advantages of the HSKSOR method, 
particularly in terms of enhanced convergence rate and performance when dealing with large-scale and 
sparse matrices. The HSKSOR method is derived by decomposing the coefficient matrix A in Eq. (20) as 
follows: 

A D L V= + +  (21) 
 In this equation, D, L, and V represent the diagonal, lower triangular, and upper triangular 
matrices, respectively. This decomposition allows for the development of general iterative methods. 
Both the FSKSOR and the HSKSOR methods can be formulated in matrix form based on this 
decomposition, as explained in previous studies [33, 36]. 

( ) ( ) ( ) ( ) ( )
1 11 * * * * * *1 1

k
U D L D V D L f jj      

− −+    = − − + + − −   
   

 

(22) 
 

In Eq. (22), 𝑢𝑗
(𝑘+1)

  represents the unknown vector at (𝑘 + 1) − 𝑡ℎ iteration, where j refers to the 

grid index. The relaxation parameter  𝜔, with its typical range 𝜔 ∈ (−2,0), plays a key role in 

determining the convergence behavior of the iterative method. The value of 𝜔 influences the rate at 
which the solution coverges to the result, with the optimal choice ensuring faster convergence. 
Algorithm 1 provides the details for implementing the HSKSOR method. 
 
Algorithm 1: HSKSOR 

• Initialize 𝑈
~𝑗

(𝑘)
= 0 and convergence tolerance 𝜀 = 10−10 

• Determine the optimal relaxation parameter 𝜔 

• For 𝑖 = 2,4 … , 𝑚 − 2, Use Eq. (23) to update unknowns at each grid point.  

• Perform the convergence test. If the convergence criterion i.e., ‖𝑈
~

(𝑘+1) − 𝑈
~

(𝑘)‖ ≤ 𝜀 =

10−10is satisfied, proceed to step (v). Otherwise, repeat the step (iii). 

• Do direct calculation for the remaining node points. 

• Showcase the numerical results. 
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5. Numerical Experiment 
This section presents numerical experiments designed to evaluate the performance of the 

HSKSOR method in solving a linear system derived from the Caputo-based NAMD. The 
experiments, performed across varying mesh sizes, assessed the methods’s computational efficiency. 
Key performance metrics, including iteration count (K), computational time (t), maximum error, 
and L2-norm error, were used to benhcmark the proposed method against FSKSOR and FSGS. The 
results demonstrate the superior efficiency of the HSKSOR method in handling the nonlocal and 
nonlinear characteristics of NTFDEs. All computations were implemented in C, with error norms 
computed following methodologies from Alibubin, et al. [37] and Rahman, et al. [30].  
Example 1: 
We consider the following NTFDE with Caputo time-fractioanl derivatives and nonlinear terms 
[29]:  

( ) ( )
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where 𝐴 = 1 and the boundary conditions are stated in fractional terms 
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and the initial condition for 𝑢(𝑥, 0) is derived from the exact solution: 
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The exact solution for the Eq. (23) is given by: 

1
( , )

2
5

661

u x t

x
t

e

=

 
− 
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(26) 
 

Example 2: [38] 
We consider the following NTFDE with Caputo time-fractional derivatives and nonlinear terms:  

( ) ( )
( )

2, ,
6 1 , 0 1, 0 1, 0

2

u x t u x t
u u x t T

t x


 



 
= + −      

 
 

 (27) 
 

where 𝛾 is a diffusion coefficient and 𝜆 = 1 represents the reaction term coefficient and the 
boundary conditions are stated in fractional terms 

( ) ( )
1 1

(0, ) , (1, ) ,
2 2

5 1 51 1

u t u t

t te e

= =

− −+ +

 
(28) 
 

and the initial condition for 𝑢(𝑥, 0) is derived from the exact solution: 
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The exact solution for the Eq. (27) is given by: 
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Example 3: [30] 
NTFDE characterized by the following equation:  

( ) ( )
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1 , 0 1, 0 1, 0
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u x t u x t
u u x t T
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where 𝛾 is a diffusion coefficient, 𝜆 = 1 represents the reaction term, and 𝛽 = 2
3⁄  is the initial 

value constant. The boundary conditions can be inferred from the exact solution of Eq. (31). By 

evaluating the boundaries𝑥 = 0 and 𝑥 = 1, we find that the solution remains independent of 𝑥. 
Therefore, no explicit boundary conditions are required for this problem.  
The initial condition is defined as: 

2
( ,0)

3
u x = =  

(32) 
 

The exact solution for Eq. (32) is given by: 

2
( , ) ,

31

te
u x t

te




 
= =

− +
 

(33) 
 

Tables 1 to 9 present the complete numerical experiment for equations (23), (27) and (31), achieved 
through the application of the FSGS, FSKSOR and HSKSOR iterative methods. The experiments were 
conducted across a range of mesh sizes (m = 512, 1024, 2048, 4096, and 8192), providing a detailed 
evaluation of the comparative effectiveness of these techniques.  

 
6. Discussion  

The numerical results presented in Tables 1 to 3 offer a comprehensive comparison of the FSGS, 

FSKSOR, and HSKSOR methods for solving NTFDEs with fractional orders α=0.333,0.666, and 
0.999. These results, evaluated at various mesh sizes (M=512, 1024,2048,4096, and 8192), reveal 
significant differences in terms of computational performance and accuracy across the methods. A 
key finding is the superior computational efficiency of the HSKSOR method, particularly for large-scale 
problems. The iteration counts (K) and computational times (t) for FSGS grow exponentially with 

increasing mesh size. For example, at M=8192 and α=0.333 (Table 1), FSGS required 24,114,142 
iterations, taking 82,862.28 seconds, whereas HSKSOR required only 10,871 iterations and 127.76 

seconds. Similarly, in Table 2 (α=0.333), HSKSOR completed the computation in 133.59 seconds with 
11,250 iterations, while FSGS needed 24,637,082 iterations and over 84,000 seconds.  

These results underscore that HSKSOR significantly reduces computational cost compared to both 
FSGS and FSKSOR. The method’s key advantage lies in updating only half of the grid points per 
iteration, effectively reducing the iteration count and computational time without compromising 
accuracy, also see Figures. 2 to 4. These figures confirm that despite the computational efficiency gains 
provided by HSKSOR, the accuracy metrics remain consistent across the various fractional orders and 
mesh sizes, further demonstrating the robustness of the method. This makes HSKSOR particularly 
well-suited for large-scale, high-resolution fractional diffusion problems.  

The effect of the fractional order α on computational performance is also evident. Lower values of α 

(e.g., α=0.333) correspond to stronger memory effects and thus require more iterations and 
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computational time. As α approaches 1, the problem becomes closer to a classical diffusion equation, 
reducing the iteration count. For instance, at M=8192, FSGS required 24,114,142 iterations for 

α=0.333 but only 741,257 iterations α=0.999 (see in Table 1). Similarly, HSKSOR required 10,871 

iterations for M=8192 when α=0.333 but only 2,690 iterations for α=0.999. This demonstrates 
HSKSOR’s efficiency across a range of fractional orders, highlighting its robustness in solving 
NTFDEs, regardless of memory effects or diffusion behavior. Additionally, we computed the percentage 
decrease obtained with the FSKSOR and HSKSOR methods compared to those from the FSGS method, 
reaching up to 99%, as shown in Table 4-6. These results clearly show that the HSKSOR method, based 
on the Caputo-based NAMD scheme, is the most effective approach for problem (1) out of the three 
methods. 
 
7. Conclusion 

This study highlights the successful application of the HSKSOR iterative method to efficiently 
solve a linear system derived from the Caputo-based nonlocal arithmetic-mean approximation 
equation. Numerical experiments, summarized in Tables 1 to 3, clearly demonstrate the method’s 
computational advantages over both FSGS and FSKSOR, while ensuring accuracy. HSKSOR 
significantly reduces iteration counts by 99.8% to 99.9% compared to FSGS, depending on the mesh 

size and fractional order. For example, at M=8192 and α=0.333, iteration count reductions exceeded 
99.95%. When compared to FSKSOR, iteration count reductions ranged between 45% to 51%, 
reflecting HSKSOR’s ability to nearly halve the computational steps with no loss in accuracy. 
Similarly, in terms of computational time, HSKSOR proved highly efficient.  Time reductions of 
99.8% and 99.9% were achieved relative to FSGS. For instance, computational time dropped from 

82,862.28 seconds (FSGS) to 127.76 seconds at M=8192 and α=0.333, a reduction of 99.85%. When 
compared to FSKSOR, time reductions ranged from 67% to 75%, further comfirming HSKSOR’s 
efficiency. Importantly, these significant gains in efficiency did not come at the cost of accuracy.  
 

 
Figure 2. 
Iteration count and computation time (seconds) plotted against M of two different approach based on three alpha values for 
Example 1. 
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Table 1. 

The computed numerical result for Example 1 at 𝛼 = 0.333, 0.666 and 0.999. 

M Method 
𝜶 = 𝟎. 𝟑𝟑𝟑 𝜶 = 𝟎. 𝟔𝟔𝟔 𝜶 = 𝟎. 𝟗𝟗𝟗 

 K  t Max. E L2. E  K t Max. E L2. E  K t Max. E L2. E 

512 

FSGS 159001 186.89 1.6899e-2 1.2372e-2 30631 42.61 1.0597e-2 7.7651e-3 4220 5.1500 4.0014e-5 2.9478e-5 
FSKSOR 1400 4.4000 1.6901e-2 1.2373e-2 524 1.8999 1.0599e-2 7.7666e-3 335 0.5699 4.1779e-5 3.0745e-5 

HSKSOR 702 0.5899 1.6855e-2 1.2339e-2 270 0.2500 1.0446e-2 7.6541e-3 171 0.3300 3.6599e-4 1.7873e-4 

1024 

FSGS 564746 1670.09 1.6892e-2 1.2367e-2 110487 525.92 1.0591e-2 7.7604e-3 15400 36.49 3.4572e-5 2.5555e-5 

FSKSOR 2782 21.9799 1.6901e-2 1.2373e-2 1026 6.3199 1.0600e-2 7.7666e-3 656 4.0500 4.1742e-5 3.0717e-5 
HSKSOR 1400 2.3099 1.6855e-2 1.2339e-2 524 0.9199 1.0446e-2 7.6539e-3 335 0.6299 3.6605e-4 2.5279e-4 

2048 

FSGS 1973904 10396.34 1.6863e-2 1.2347e-2 393817 2314.57 1.0565e-2 7.6539e-3 55762 262.80 1.2772e-5 9.7891e-6 

FSKSOR 5495 60.3999 1.6901e-2 1.2373e-2 2152 23.7200 1.0599e-2 7.7666e-3 1286 14.4700 4.1649e-5 3.0649e-5 
HSKSOR 2782 16.1299 1.6855e-2 1.2339e-2 1026 3.4499 1.0446e-2 7.7666e-3 656 2.2500 3.6605e-4 2.5280e-4 

4096 

FSGS 6899203 34717.02 1.6835e-2 1.2323e-2 1403713 7185.97 1.0523e-2 7.7261e-3 199761 2102.79 7.4995e-5 5.3732e-5 

FSKSOR 10872 231.8199 1.6901e-2 1.2373e-2 4221 89.5699 1.0600e-2 7.7667e-3 2518 55.7500 4.1469e-5 3.0519e-5 
HSKSOR 5495 58.1299 1.6855e-2 1.2339e-2 2152 14.5800 1.0446e-2 7.6539e-3 1286 8.7199 3.6612e-4 2.5287e-4 

8192 

FSGS 24114142 82862.28 1.6832e-2 1.2278e-2 30631 42.61 1.0486e-2 7.6157e-3 705935 14915.22 4.2607e-4 3.0859e-4 
FSKSOR 22196 511.1800 1.6901e-2 1.2373e-2 524 1.8999 1.0600e-2 7.7667e-3 4929 120.44 4.0877e-5 3.0096e-5 

HSKSOR 10871 127.7599 1.6855e-2 1.2339e-2 270 0.2500 1.0446e-2 7.6539e-3 2518 35.7099 3.6626e-4 2.5299e-4 

 
Table 2. 

The computed numerical result for Example 2 at α=0.333,0.666 and 0.999. 

M Method 
𝜶 = 𝟎. 𝟑𝟑𝟑 𝜶 = 𝟎. 𝟔𝟔𝟔 𝜶 = 𝟎. 𝟗𝟗𝟗 

 K  t Max. E L2. E  K t Max. E L2. E  K t Max. E L2. E 

512 

FSGS 174517 425.64 1.3047e-1 9.5039e-2 31746 55.89 8.1039e-2 5.9083e-2 4278 7.75 4.1287e-4 3.0292e-4 

FSKSOR 1446 2.2299 1.3048e-1 9.5041e-2 539 0.8999 8.1042e-2 5.9090e-2 333 0.5100 4.1471e-4 3.0424e-4 

HSKSOR 724 0.5900 1.3045e-1 9.5021e-2 278 0.2799 8.0928e-2 5.9008e-2 170 0.1600 1.7599e-4 1.2684e-4 

1024 

FSGS 622780 1935.86 1.3047e-1 9.5033e-2 114798 551.79 8.1032e-2 5.9083e-2 15640 46.83 4.0724e-4 2.9886e-4 

FSKSOR 2874 8.5999 1.3048e-1 9.5041e-2 1038 3.3299 8.1042e-2 5.9090e-2 652 3.9500 4.1468e-4 3.0422e-4 

HSKSOR 1446 2.2200 1.3045e-1 9.5017e-2 539 0.9599 8.0924e-2 5.9005e-2 333 0.5500 1.7606e-4 1.2711e-4 

2048 

FSGS 2189862 14451.59 1.3043e-1 9.5010e-2 410449 2864.44 8.1000e-2 5.9061e-2 56743 99.42 3.8475e-4 2.8259e-4 

FSKSOR 5704 35.6599 1.3048e-1 9.5041e-2 2062 12.9799 8.1042e-2 5.9090e-2 1278 13.7300 4.1457e-4 3.0414e-4 

HSKSOR 2875 8.5900 1.3044e-1 9.5016e-2 1038 3.5399 8.0923e-2 5.9004e-2 652 2.0099 1.7603e-4 1.2715e-4 

4096 

FSGS 6996581 35710.75 1.3037e-1 9.4845e-2 1446737 8148.05 8.0878e-2 5.8974e-2 203775 2162.71 2.9574e-4 2.1784e-4 

FSKSOR 11250 140.4299 1.3048e-1 9.5041e-2 4193 50.8600 8.1042e-2 5.9090e-2 2503 79.3100 4.1436e-4 3.0398e-4 

HSKSOR 5704 34.7800 1.3044e-1 9.5016e-2 2063 13.6300 8.0923e-2 5.9004e-2 1278 7.6999 1.7591e-4 1.2709e-4 

8192 
FSGS 24637082 84184.52 1.3015e-1 9.4601e-2 5136775 45826.47 8.0652e-2 5.8762e-2 722380 16253.43 1.8953e-4 1.7853e-4 

FSKSOR 22264 523.3400 1.3048e-1 9.5041e-2 8194 191.3600 8.1042e-2 5.9090e-3 4906 204.2399 4.1366e-4 3.0347e-4 
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HSKSOR 11250 133.5900 1.3044e-1 9.5016e-2 4193 50.1800 8.0923e-2 5.9004e-3 2503 31.2099 1.7563e-4 1.2691e-4 

 
Table 3. 

The computed numerical result for Example 3 at α=0.333,0.666 and 0.999. 

M Method 
𝜶 = 𝟎. 𝟑𝟑𝟑 𝜶 = 𝟎. 𝟔𝟔𝟔 𝜶 = 𝟎. 𝟗𝟗𝟗 

 K  t Max. E L2. E  K t Max. E L2. E  K t Max. E L2. E 

512 
FSGS 166339 195.11 1.7026e-2 1.2502e-2 32817 38.59 1.0862e-2 7.9709e-3 4510 5.35 3.0790e-5 2.6575e-5 

FSKSOR 1482 2.2199 1.7028e-2 1.2504e-2 575 0.8999 1.0864e-2 7.9767e-3 357 0.5800 3.7895e-5 2.7825e-5 
HSKSOR 745 0.5899 1.6863e-2 1.2382e-3 294 0.2600 1.0318e-2 7.5783e-3 182 0.5800 1.5090e-3 7.4178e-4 

1024 
FSGS 597191 1407.43 1.7019e-2 1.2497e-2 119309 281.68 1.0856e-2 7.9709e-3 16554 39.29 3.0790e-5 2.2711e-5 

FSKSOR 2943 8.5500 1.7028e-2 1.2504e-2 1126 3.3600 1.0864e-2 7.9767e-3 699 2.1100 3.7864e-5 2.7800e-5 
HSKSOR 1482 2.2099 1.6862e-2 1.2381e-2 586 0.9099 1.0317e-2 7.5778e-3 357 0.5800 1.5091e-3 1.0491e-3 

2048 
FSGS 2116129 10971.26 1.6993e-2 1.2479e-2 429452 2054.15 1.0831e-2 7.9536e-3 60351 286.78 9.1442e-6 7.0955e-6 

FSKSOR 5841 35.1800 1.7028e-2 1.2504e-2 2250 13.4500 1.0864e-2 7.9767e-3 1372 8.0599 3.7792e-5 2.7744e-5 
HSKSOR 2943 8.6300 1.6862e-2 1.2381e-2 699 2.1500 1.5091e-3 1.0491e-3 699 2.1500 1.5091e-3 1.0491e-3 

4096 
FSGS 6875341 34877.02 1.6843e-2 1.2347e-2 1461457 10185.97 1.0796e-2 7.9351e-3 218015 2299.14 7.8293e-5 5.6244e-5 

FSKSOR 11612 136.7799 1.7028e-2 1.2504e-2 4476 55.6199 1.0864e-2 7.9767e-3 2690 33.3800 3.7605e-5 2.7605e-5 
HSKSOR 5841 38.8099 1.6862e-2 1.2381e-2 2250 13.8799 1.0317e-2 7.5777e-3 1372 8.0000 1.5092e-3 1.0491e-3 

8192 
FSGS 24585345 85662.31 1.6782e-2 1.2256e-2 1587123 43885.71 1.0751e-2 7.9063e-3 741257 17915.22 4.2625e-4 3.0945e-4 

FSKSOR 22910 532.1899 1.7028e-2 1.2503e-2 9257 216.3700 1.0864e-2 7.9767e-3 5272 125.2300 3.7193e-5 2.7302e-5 
HSKSOR 11612 144.7900 1.6862e-2 1.2381e-2 4476 62.1699 1.0317e-2 7.5776e-3 2690 35.9000 1.5093e-3 1.0493e-3 
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Figure 4 . 
Iteration count and computation time (seconds) plotted against M of two different approach based on three alpha values for 
Example 3 

 
The method-maintained error rates comparable to or better than those achieved by FSGS and 

FSKSOR across all test cases, as verified by both maximum error and L2-norm error assessments. 
This confirms that HSKSOR offers an optimal balance of computational efficiency and accuracy, 
making it particularly suited for handling large-scale systems and lower fractional orders. Looking 
ahead, the scalability and versatility of HSKSOR suggests promising avenues for future research. 
Extending this method to two-dimensional problems and exploring its application in parallel 
computing environments could further expand its utility, particularly for complex real-world 
simulations.  
 
Table 4. 
Reduction % of K and t between FSKSOR and HSKSOR compared to FSGS for Example 1. 

M Method 
α = 0.333 α = 0.666 α = 0.999 

K t K t K t 

512 
FSKSOR 99.12% 97.65% 98.29% 95.54% 92.06% 88.93% 
HSKSOR 99.56% 99.68% 99.12% 99.41% 95.95% 93.59% 

1024 
FSKSOR 99.51% 98.68% 99.07% 98.79% 95.74% 88.90% 
HSKSOR 99.75% 99.86% 99.53% 99.83% 97.82% 98.27% 

2048 
FSKSOR 99.72% 99.42% 99.45% 98.98% 97.69% 94.49% 
HSKSOR 99.86% 99.84% 99.74% 99.85% 98.82% 99.14% 

4096 
FSKSOR 99.84% 99.33% 99.69% 98.75% 98.74% 97.35% 
HSKSOR 99.92% 99.83% 99.85% 99.80% 99.36% 99.59% 

8192 FSKSOR 99.91% 99.38% 99.84% 99.05% 99.30% 99.19% 
HSKSOR 99.95% 99.85% 99.91% 99.87% 99.64% 99.76% 
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Table 5. 
Reduction % of K and t between FSKSOR and HSKSOR compared to FSGS for Example 2 

M Method 
α = 0.333 α = 0.666 α = 0.999 

K t K t K t 

512 
FSKSOR 99.17% 99.48% 98.30% 98.39% 92.22% 93.42% 

HSKSOR 99.59% 99.86% 99.12% 99.50% 96.03% 97.94% 

1024 
FSKSOR 99.54% 99.56% 99.09% 99.40% 95.83% 91.57% 

HSKSOR 99.77% 99.89% 99.53% 99.83% 97.88% 98.83% 

2048 
FSKSOR 99.74% 99.75% 99.50% 99.55% 97.75% 86.19% 

HSKSOR 99.87% 99.94% 99.75% 99.88% 98.85% 97.98% 

4096 
FSKSOR 99.84% 99.61% 99.71% 99.38% 98.77% 96.33% 

HSKSOR 99.92% 99.90% 99.85% 99.83% 99.37% 99.64% 

8192 FSKSOR 99.91% 99.38% 99.84% 99.58% 99.32% 98.74% 

HSKSOR 99.95% 99.84% 99.92% 99.89% 99.65% 99.81% 

 
Table 6. 
Reduction % of K and t between FSKSOR and HSKSOR compared to FSGS for Example 3. 

M Method 
α = 0.333 α = 0.666 α = 0.999 

K t K t K t 

512 
FSKSOR 99.11% 98.86% 98.25% 97.67% 92.08% 89.16% 
HSKSOR 99.55% 99.69% 99.10% 99.33% 95.96% 89.16% 

1024 
FSKSOR 99.50% 99.39% 99.06% 98.81% 95.78% 94.63% 
HSKSOR 99.75% 99.84% 99.51% 99.68% 97.84% 98.52% 

2048 
FSKSOR 99.72% 99.68% 99.48% 99.35% 97.73% 97.19% 
HSKSOR 99.86% 99.92% 99.84% 99.89% 98.84% 99.25% 

4096 
FSKSOR 99.83% 99.61% 99.70% 99.45% 98.77% 98.55% 

HSKSOR 99.92% 99.89% 99.85% 99.86% 99.37% 99.65% 
8192 FSKSOR 99.91% 99.38% 99.98% 99.51% 99.30% 99.30% 

HSKSOR 99.95% 99.83% 99.99% 99.86% 99.64% 99.80% 
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