
Edelweiss Applied Science and Technology
ISSN: 2576-8484
Vol. 9, No. 1, 1243-1261
2025
Publisher: Learning Gate
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

© 2025 by the authors; licensee Learning Gate
History: Received: 4 December 2024; Revised: 9 January 2025; Accepted: 17 January 2025; Published: 22 January 2025
* Correspondence: zlatan.moric@algebra.hr

The role of container security in application development

Zlatan Morić1*, Jasmin Redžepagić2, Ivan Bencarić3, Vedran Dakić4

1,2,3Algebra University, Department of cybersecurity and operating systems, Croatia; zlatan.moric@algebra.hr (Z.M.)
jasmin.redzepagic@algebra.hr (J.R.) ibencar@algebra.hr (I.B.).
4Algebra University, Croatia; vedran.dakic@algebra.hr (V.D.).

Abstract: This paper explores the importance of container security in modern ap-plication
development, particularly in environments using microservices architectures and DevOps practices.
Containers, by providing lightweight and portable virtualization, have transformed application
deployment, enabling rapid and consistent transitions across development, testing, and production
stages. However, their architecture and ease of use introduced unique vulnerabilities. This paper
investigates the implications of these security concerns and outlines best practices to mitigate them.
Examining containerization fundamentals, the paper identifies core vulnerabilities, including
misconfigurations, runtime attacks, and orchestration layer risks. Techniques like namespace isolation,
resource allocation controls, and security tools are evaluated for their effectiveness in hardening con-
tainerized environments. Advanced methods, such as role-based access control, vulnerability scanning,
and secrets management, are emphasized for securing CI/CD pipelines. The findings underscore the
necessity of integrating robust security measures throughout the container lifecycle to protect sensitive
data and maintain application integrity. By adopting a comprehensive container security strategy,
organizations can balance the scalability and agility of containers and maintain the reliability and safety
of their deployment infrastructure.

Keywords: Containers, Docker, Kubernetes, Microservices, Pipelines, Security.

1. Introduction

This paper examines the essential function of container security in contemporary application
development, highlighting its importance in microservices designs and DevOps methodologies. It
thoroughly analyzes containerization basics, highlighting critical vulnerabilities like misconfigurations,
runtime assaults, and orchestration layer hazards. It recommends robust security measures,
encompassing namespace separation, resource allocation rules, and adopting sophisticated techniques
such as role-based access control, vulnerability assessment, and secrets management. The results
emphasize the necessity of incorporating stringent security measures throughout the container lifecycle
to maintain application integrity and protect sensitive information.
This paper has two main contributions to the field:

• It comprehensively examines fundamental vulnerabilities in containerized settings and their
consequences for contemporary application deployment;

• It delineates a thorough framework for enterprises to reconcile containers' scalability and agility
with their infrastructure's reliability and safety, thereby solving a significant deficiency in container
security research.

The rest of this paper is organized as follows. Section 2 presents the literature review related to the
research field, followed by the section about the fundamentals of containerization and its role in modern
application development. Section 4 delves into specific container security challenges, exploring

https://orcid.org/0000-0002-5566-1581
https://orcid.org/0009-0004-7184-0987
https://orcid.org/0000-0001-8638-6044

1244

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

vulnerabilities and mitigation strategies. Section 5 discusses the broader threat landscape, including
image vulnerabilities, runtime attacks, and orchestration layer risks. Sections 6 and 7 detail the essential
components of container security, such as runtime, image, and host security. Section 8 highlights
security best practices for container development and deployment, focusing on automation and shift-left
strategies. Finally, sections 9 and 10 discuss emerging trends in container security, such as zero-trust
architectures and AI-driven threat detection, setting the stage for future research and development in
the field, as well as the paper's conclusions.

2. Related Works
Containers are a light and portable form of virtualization that can package an application and all its

dependencies in the form of an "image," which allows them to run consistently across different
computing environments [1]. In contrast to standard virtual machines, which require separate
operating system instances for each application, containers share the host operating system kernel but
isolate application processes, creating a much more resource-efficient model [2]. Technologies like
Docker can build, deploy, and manage these containers [3] and their images, while orchestration
platforms like Kubernetes [4] automate containerized applications' deployment, scaling, and
management over many machines organized in clusters.

Due to their efficiency, scalability, and flexibility, containers have become popular in application
development, especially in environments that follow DevOps and CI/CD principles. Containers can
provide faster software delivery by ensuring consistent behavior from development through production.
Additionally, they reduce infrastructure costs and enhance application portability, making them ideal for
modern, microservice-based architecture.

The popularity of containers has paralleled the rise of DevOps [5] a development approach
emphasizing collaboration, automation, and continuous improvement between software development
and IT operations.

Containers play a significant role in DevOps by providing rapid but consistent deployments. At the
same time, they enable Continuous Integration and Continuous Deployment (CI/CD) pipelines, which
are a critical part of DevOps. With containers, applications and all the requirements that form their
dependencies can be bundled into isolated, portable units, ensuring they function uniformly across
development, testing, and production environments. This consistency minimizes the "it works on my
machine" problem, streamlines testing, and can accelerate delivery. Additionally, container
orchestration platforms like Kubernetes automate tasks such as scaling and managing deployments,
allowing teams to handle complex applications more quickly than when using traditional approaches.

Figure 1.
CI/CD pipeline (from Red Hat [6].

This automation fits perfectly with DevOps principles, providing efficiency and supporting agile

methodologies where frequent, reliable software updates are critical. As a result, containers have become
an indispensable part of a modern DevOps process, allowing organizations to innovate faster while
maintaining high standards of quality and reliability.

As with all new technologies, containers also raise various security concerns that must be addressed
[6]. Their security plays a critical role because while offering powerful benefits like scalability and

1245

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

consistency, containers also introduce unique vulnerabilities that can compromise application integrity
and data protection. Containers share the host operating system kernel, which can increase the risk of
"breakout" attacks—where malicious processes in a container access or exploit the host or other
containers [7].

In modern application development, where microservices architectures are common, a single
vulnerability in one container can expose the entire system to risks. Additionally, the extensive use of
third-party container images from public repositories can present supply chain vulnerabilities. As
containerized environments are often deployed rapidly through automated CI/CD pipelines [8]
security needs to be integrated into every stage of development to detect vulnerabilities early, enforce
configuration best practices, and minimize potential attack surfaces.

Robust container security measures are essential to protecting sensitive data, maintaining trust, and
ensuring the stability and reliability of applications in production.

3. Containerization and Application Development
Containers package an application with all its dependencies, such as libraries, binaries, and

configuration files, into a single, self-contained unit that can run consistently across various
environments. This approach eliminates the need for an individual operating system instance for each
application, as is required with virtual machines (VMs), making containers significantly lighter and
more efficient. Containers achieve this isolation through kernel features like namespaces and control
groups (cgroups) [1].

Figure 2.
Virtual Machines and Containers.

Namespaces provide process isolation by limiting what each container can see and access within the

system, including its file system, network, process IDs, and user environments.
Control groups, on the other hand, regulate resource allocation, such as CPU, memory, and disk

I/O, ensuring that each container remains within predefined resource limits, avoiding interference with
other containers or the host. This lightweight isolation allows multiple containers to run on the same
host OS without the overhead of running separate guest OS instances, as with VMs.

1246

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

Figure 3.
Namespaces and Cgroups.

At runtime, each container operates as an independent process on the host, sharing its OS kernel

but with its own isolated user space, making it portable and consistent across different environments.
Tools like Docker enable developers to define container configurations in a Dockerfile [9] specifying
the base image, application code, dependencies, and required configuration. This Dockerfile is built into
an image, a read-only template for creating containers. Images are portable and can be stored and
shared through container registries, such as Docker Inc [10] allowing easy replication across teams and
environments.

Orchestration platforms like The Kubernetes Authors [4] Enable the management of containers at
scale by handling the deployment, scaling, and monitoring of containerized applications across multiple
nodes, making it easier for IT teams to maintain consistency and high availability across large-scale
environments. This approach to containerization has redefined application deployment by enabling
rapid, consistent, and efficient transitions from development to production, even in complex, distributed
systems.

3.1. Benefits of Containers

Containers significantly increase efficiency in modern software development by minimizing
overhead and resource usage compared to traditional virtualization. Since containers share the host
kernel, they eliminate the need for separate OS instances and drastically reduce the RAM, CPU, and
storage footprint. This lightweight nature translates to faster startup times, benefiting CI/CD pipelines.
Additionally, containers are often ephemeral, meaning they can be instantiated, scaled, and destroyed
rapidly based on demand. This allows for more responsive resource allocation, improved server
utilization, and cost-effective operation. From a scaling perspective, containers can be replicated or
scaled horizontally as application loads fluctuate, making it simple to manage many container instances
using container orchestration systems like The Kubernetes Authors [11]. Because these orchestrators
handle load balancing, auto-scaling, and failover, containers can efficiently maintain high availability
and performance even under unpredictable usage patterns.

Moreover, portability is a key strength that makes containers extremely important in microservices
architectures. By bundling the application and its dependencies into a self-contained image, teams can
run these images in development, testing, or production environments without worrying about version
conflicts or missing libraries. This approach enables agile, modular design, enabling microservices to be
independently developed, deployed, and updated. Each microservice container can be scaled or rolled

1247

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

back without disrupting the rest of the system, supporting faster release cycles and continuous
improvement. Orchestration platforms further streamline the communication between services, load-
balancing traffic, and managing network policies.

3.2. New Attack Surfaces

Despite their many benefits, containers introduce a range of new attack surfaces and vulnerabilities
that developers and operations teams must address. One key concern is that containers share the
underlying host OS kernel, potentially enabling a “container breakout” attack [12] if an exploit allows
malicious processes to escalate privileges and affect the host. Because multiple containers may share the
same kernel, a breach in one container could provide the door for lateral movement across other
containers or the host if proper isolation controls aren’t in place. Furthermore, container images often
pull in libraries and dependencies from public repositories, which might contain vulnerabilities or
malicious code; without thorough scanning and verification, organizations risk introducing security
gaps directly into their production environments. Misconfigurations such as running containers with
overly permissive privileges or allowing unnecessary system calls further widen the attack surface,
giving adversaries more pathways to exploit.

Figure 4.
Kubernetes cluster components (from The Kubernetes Authors [13].

Another challenge is that container orchestration platforms, like Kubernetes, bring additional

complexity and, therefore, more potential points of failure (Figure 4). Exposed application programming
interfaces (APIs), insecure access controls, and misapplied Role-Based Access Control (RBAC)
configurations can all lead to unauthorized control over the containerized environment [6]. Attackers
can exploit these weaknesses by launching denial-of-service attacks, intercepting network traffic, or
enabling backdoors inside containers.

Additionally, the ephemeral nature of containers means that logs and other forensic evidence might
not persist, complicating incident detection and response efforts. As a result, organizations using
containers must adopt a complete security strategy—including secure image creation, continuous

1248

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

vulnerability scanning, robust runtime security policies, and strong governance over orchestration
platforms—to mitigate the unique risks associated with container-based deployments [14].

4. Container Security

When comparing container-based security with the security of traditional monolithic applications,
one of the most essential differences lies in resource and OS isolation. In traditional environments,
mainly when using virtual machines, each VM typically runs its operating system instance, creating a
relatively clear boundary for security controls. This helps compartmentalize attacks since a breach in
one virtual machine does not necessarily lead to compromise in another. Monolithic applications, which
often run on these dedicated servers or VMs, generally have fewer moving parts, simplifying security
monitoring and patch management. However, they may also suffer from larger attack surfaces at the
application level since all functionality is bundled together in a single, often complex process. Scaling
and updating these monolithic systems can be problematic, which can, in turn, delay security patches or
updates, leaving known vulnerabilities unpatched for more extended periods.

On the other hand, containers share the host OS kernel while isolating applications at the process
level using features like namespaces and cgroups. This approach makes containerized environments
lighter and more scalable, creating new security challenges. If an attacker exploits the kernel or a
container breakout vulnerability, they can potentially pivot to other containers or escalate privileges on
the host. Additionally, the microservices-based architecture that containers commonly support involves
numerous interconnected services, each potentially running in multiple containers, which increases the
overall number of network endpoints and communication paths. These factors expand the security
surface area and complicate monitoring. Developers must implement robust isolation settings (like
SELinux Red Hat [15] and AppArmor [16]) and follow best practices such as running containers in
non-root or “rootless” modes, regularly scanning images for known vulnerabilities, and automating
patching. This more modular ecosystem also means quicker patching and rolling upgrades are possible,
but only if proper DevSecOps [17] practices are in place to handle the rapid generation of container
versions.

Container security architecture is built around process-level isolation and resource management,
leveraging Linux kernel features such as namespaces and cgroups. Namespaces isolate core systems, like
process IDs, network stacks, and user IDs—so each container perceives a dedicated view of the
operating environment. For example, the PID namespace ensures a container only sees its processes,
while the network namespace provides a private network stack. cgroups, however, manage how much
CPU, memory, and disk I/O each container can use, preventing one container’s resource-intensive
activity from starving others or the host. Namespaces and cgroups enforce firm boundaries between
containers, effectively limiting the damage a compromised container can inflict. However, because
containers share the host OS kernel, this model still demands kernel patching and tight configuration of
kernel security mechanisms to mitigate the risk of container breakout attacks.

Additionally, container images are typically minimalistic, containing only the libraries and
dependencies necessary for the application to run, which helps reduce the overall attack surface. You
limit the number of potential entry points for malicious activity by omitting unneeded packages or tools.
To maintain security, these images should be built from trusted base images and regularly scanned for
known vulnerabilities—particularly when pulling from public registries. Implementing a “secure build”
process in the CI/CD pipeline, combined with techniques like image signing, can further ensure the
integrity and security of container images.

5. Container Threat Landscape
The container threat landscape has markedly expanded due to the increasing popularity of

containerized systems in contemporary software development and deployment. Containers provide
efficiency and mobility but also present distinct security problems that businesses must confront. The

1249

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

transient and fluid characteristics of containers increase the assault surface, necessitating a thorough
comprehension of possible threats. Primary areas of concern encompass image vulnerabilities, wherein
insecure or obsolete container images pose hazards; runtime attacks, which target active containers
during execution; and breakout assaults, which allow attackers to breach the container barrier and get
access to the host system. Moreover, the orchestrator layer—overseeing containerized workloads—
presents dangers such as privilege escalation and misconfiguration. Supply chain attacks, which focus on
dependencies and third-party components, underscore the interconnectedness of container ecosystems.
Ultimately, networking hazards highlight the necessity of safeguarding container-to-container and
external communications. The varied threat landscape requires proactive measures to protect
containerized settings.

5.1. Image Vulnerabilities

Container image vulnerabilities arise when the base images or included libraries and packages
contain unpatched flaws, outdated components, or malicious code. Because containers package the entire
application stack—including dependencies and configurations—any vulnerability in these components
can become an entry point for attackers. Many teams source their base images from public registries,
which might not always be thoroughly vetted, increasing the risk of incorporating hidden security flaws
into production environments. Additionally, developers may unintentionally introduce weak
configurations (e.g., unnecessary ports, default credentials), further widening the attack surface. Regular
image scanning, using reliable sources for base images, and adhering to best practices such as signing
and verifying images can help mitigate these risks.

5.2. Runtime Attacks

Container runtime attacks refer to exploits that occur once a container is actively running, taking
advantage of vulnerabilities in the application code, misconfigurations, or the underlying container
infrastructure. Attackers might escalate privileges through the container’s runtime environment, for
example, by abusing excessive privileges (running as root) or weak security policies, such as
unconfigured Seccomp (Secure Computing Mode) [18] AppArmor, or SELinux. In some cases,
attackers leverage vulnerabilities to perform container escapes—gaining access to the host machine’s
resources or neighboring containers. The ephemeral nature of containers can also complicate detection,
as logs and forensic data may disappear when a container is stopped or replaced.

Robust runtime security relies on best practices such as applying the principle of least privilege,
continuously monitoring container behavior, strictly enforcing security profiles, and maintaining clear
logs even after container termination.

5.3. Breakout Attacks

Container breakout attacks [12] occur when an attacker exploits vulnerabilities within a container
or the underlying host to escape the container’s isolation and access host-level resources or other
containers. Because containers rely on shared kernel features (like namespaces and cgroups) rather than
full-blown virtualization, a vulnerability in the kernel or container runtime configurations (e.g.,
privileged containers) can open a path for these attacks. Misconfigurations—such as running containers
with the --privileged flag or granting unnecessary system calls—can further increase the risk of a
successful breakout. Once inside the host environment, attackers can move laterally, escalate privileges,
and potentially compromise other containers or system services.

Mitigations typically include running containers with the least privilege necessary, restricting
system calls using Seccomp or AppArmor, keeping the host and kernel fully patched, and regularly
auditing container security policies. Ensuring proper monitoring and logging is also crucial, as
container breakouts may go unnoticed without robust observability and incident response processes.

1250

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

5.4. Orchestration Layer Risks
Container orchestration platforms like Kubernetes introduce additional security complexities and

risks beyond standalone container deployments. Misconfigurations of critical components—like
Kubernetes’ API server or the etcd key-value store—can lead to unauthorized access or data exposure.
If RBAC is misconfigured, attackers can escalate privileges to run malicious containers or intercept
network traffic between services. Additionally, the distributed nature of container orchestration means
that multiple nodes, services, and networking components must be adequately secured, including
kubelets, ingress controllers, and network policies. Attackers may exploit unsecured API endpoints to
manipulate configurations or deploy rogue workloads.

To minimize risks in the orchestration layer, it is critical to ensure secure and encrypted
communication among all cluster components, apply least-privilege access controls, keep clusters
patched, and actively monitor cluster events.

5.5. Supply Chain Attacks

Container supply chain risks arise from the complex network of dependencies and sources
organizations rely on when building container images. Modern development often involves pulling base
images and third-party libraries from public registries, where malicious actors might upload
compromised or spoofed images to exploit unsuspecting users. Insecure or unverified downloads can
introduce backdoors or malicious code directly into production environments. Additionally,
vulnerabilities or misconfigurations within the DevOps toolchain—such as insecure CI/CD pipelines—
can be leveraged to inject harmful components into otherwise legitimate images.

Organizations should mitigate these risks by scanning images for known vulnerabilities, employing
image signing and verification, and restricting downloads to trusted registries or private repositories.
Integrating security controls and verifying integrity at every stage of the pipeline—from development
to production—ensures that only approved and secure assets make their way into containerized
applications.

5.6. Networking Risks

Container networking risks arise from the complex, often ephemeral nature of containers
communicating internally and externally. In many orchestration environments, network plugins
automatically assign IPs and manage routes, which can create hidden pathways for attackers to exploit
if misconfigured or left unsecured. Containers frequently share virtual bridges or overlays, increasing
the risk of lateral movement once an adversary gains a foothold in the network. Additionally, traffic
between containers may not be encrypted by default, allowing for potential eavesdropping or
interception of sensitive data. Microservices architectures can further complicate network security by
introducing numerous endpoints and routes for each service, making it harder to maintain consistent
policies.

To mitigate these risks, engineers should implement strict network segmentation, restrict
unnecessary service exposure, employ mutual TLS [19] where possible, and utilize network policies or
firewalls that enforce least-privilege access between containerized workloads.

6. Components of Container Security
Container security is essential for protecting contemporary application environments and

guaranteeing the confidentiality, integrity, and availability of containerized workloads. Securing all
components inside the container ecosystem is critical for lowering risks, as containers insulate
applications from the underlying infrastructure. A holistic strategy for container security encompasses
various layers. Image security guarantees container images are devoid of vulnerabilities and adhere to
best practices before deployment. Runtime security emphasizes surveillance and safeguarding containers
during operation, identifying irregularities, and thwarting illegal activities. Network security protects

1251

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

communication between containers and external systems, implementing controls to inhibit lateral
movement. Secrets management secures sensitive information within containers, such as API keys and
credentials. Finally, host security guarantees that the foundational architecture is fortified against
potential vulnerabilities that could jeopardize the ecosystem. By addressing these elements, businesses
may establish strong defenses for containerized environments.

6.1. Image Security

Container image security relies heavily on regular scanning to detect known vulnerabilities in
libraries, dependencies, and configurations. Tools like Clair or Trivy can integrate into CI/CD
pipelines, automatically scanning images at a build or before deployment and flagging security issues
such as outdated packages, CVEs, or misconfigurations.

By integrating these scanners early and often in the development lifecycle, teams can detect and fix
vulnerabilities before they make it to production. Many scanning tools offer detailed remediation
guidance, helping engineers resolve issues quickly. Beyond scanning, it is essential to ensure that
images are rebuilt against patched dependencies and are not inherited from outdated or untrusted base
images.

Verifying image authenticity is an equally important aspect of container image security, typically via
image signing. Image signing ensures that only trusted images—signed by a recognized entity—can be
pulled and run, preventing attackers from injecting malicious images into repositories or tricking users
into deploying counterfeit images. Implementing a policy enforcement layer to reject unsigned or
untrusted images strengthens this approach. One additional major strategy is to use minimal base
images, which include only the essential components needed for the application to run. This practice
reduces the overall attack surface by eliminating unnecessary packages and libraries that could contain
hidden vulnerabilities.

Figure 5.
Vulnerability scanning as a part of Docker Hub (from Docker Inc [10]).

Cloud image repositories like Docker Hub and Quay often provide integrated image scanning and

signing features to enhance container security. Docker Hub, for instance, offers vulnerability scanning

1252

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

(powered by tools such as Snyk [20]) that checks images for known CVEs while supporting Docker
Content Trust for image signing to ensure authenticity. Conversely, Quay can integrate with Clair [21]
for vulnerability scanning and supports image signing mechanisms.

6.2. Runtime Security

Container runtime security begins with minimizing privileges allocated to each container, ensuring
that only the necessary rights are granted for the application to function. For example, when using
Docker, containers can be run as a non-root user by specifying the --user flag or by defining a user
directive in Dockerfile (e.g., USER 1000). This practice prevents attackers from having unrestricted
root access if they manage to compromise the container. Another best practice is to drop unnecessary
Linux capabilities, which by default can grant privileges beyond what is needed, further reducing the
attack surface. Avoiding the --privileged flag except, in particular, controlled scenarios is also crucial, as
privileged containers can effectively operate with host-level permissions, making them a prime target
for malicious actors.

Additionally, Linux kernel security modules are essential in restricting container actions at runtime.
Docker Inc [18] allows the filtering of system calls, blocking or limiting those containerized
applications that should not be invoked. AppArmor [16] and SELinux [15] provide mandatory access
control (MAC) frameworks that tightly define what processes can access, from file paths to network
interfaces. Enforcing such policies can contain the damage of a breach and prevent unauthorized actions
inside the container.

Beyond Docker, alternative runtimes like Podman [22] or CRI-O [23] are often touted for security
benefits. Podman, for instance, supports rootless containers by default, letting containers run with user-
level privileges rather than root-level, thereby reducing the impact of a potential compromise. CRI-O,
purpose-built for Kubernetes, also integrates well with these security modules, providing a streamlined,
minimalistic runtime that can be easier to harden than more general-purpose container engines.

6.3. Network Security

Container network security fundamentally relies on network segmentation to limit each container’s
exposure and control traffic flow between services. By creating logically isolated networks or using
technologies like Kubernetes Network Policies [24] operators can define which containers can
communicate with one another, effectively locking down routes that should remain inaccessible. This
segmentation approach reduces lateral movement risks—if one container is compromised, the attacker’s
ability to target other containers is contained by strict access controls. Additionally, network
segmentation can be implemented at multiple layers, such as isolating microservices within their
namespaces or subnets, ensuring that only the minimum required connections are permitted for regular
operation.

An essential addition to segmentation is encrypting communications between containerized
services. When network traffic traverses potentially untrusted environments—like the public internet
or even a shared internal network—encryption safeguards sensitive data and credentials from
interception or tampering. Implementing mutual TLS [19] is particularly effective, as it encrypts data
in transit and ensures strong authentication between client and server containers. In Kubernetes
environments, service meshes like Istio or Linkerd can automate this process by injecting sidecar
proxies that handle certificate management and traffic encryption without requiring changes in
application code.

6.4. Secrets Management

Secrets management is a critical aspect of containerized application security, as improperly stored or
handled credentials—such as API keys, passwords, and tokens—can serve as prime entry points for

1253

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

attackers. Storing secrets directly within container images or as plain-text environment variables makes
them easy to expose, whether through runtime logs, container registry leaks, or compromised images.

Instead, centralized solutions like HashiCorp Vault [13] should be used. Vault provides a secure,
encrypted store for sensitive data and dynamic secrets that expire after a set time. Vault’s integration
with container orchestration platforms allows secrets to be injected on-demand, ensuring that
applications only have access to the credentials they need for as long as they need them. This limits the
potential impact of a breach and makes it easier to rotate secrets or revoke compromised credentials
quickly.

In Kubernetes, the native approach to secrets management involves using Kubernetes Secrets [25]
which can be mounted as volumes or exposed as environment variables to running containers.
Kubernetes Secrets are base64-encoded objects, and while not inherently encrypted by default, they can
be protected with encryption at rest in the cluster’s etcd store if properly configured. RBAC policies can
further secure who can read or modify the secret objects within the cluster. Combining these built-in
capabilities with an external secrets manager (such as Vault) can add another layer of security and
flexibility, particularly in large-scale or multi-tenant environments. Ultimately, any effective secrets
management strategy should emphasize short-lived credentials, automated rotation, and secure storage
and retrieval mechanisms to minimize the exposure window if credentials are ever compromised.

6.5. Host Security

The security of a container host is vital because containers share the host operating system kernel.
If the host is compromised, attackers can access every container running on it. Consequently, keeping
the host operating system up to date with security patches, particularly kernel-level patches, is a top
priority. Many distributions offer live patching mechanisms (e.g., Canonical’s Livepatch for Ubuntu
[26]) that allow kernel updates without downtime, which is especially valuable in production
environments where high availability is essential. Access control measures, such as SSH hardening
(disabling root logins, using key-based authentication), implementing robust firewall rules, and
restricting which users or automation systems can modify container configurations reduce the
likelihood of unauthorized changes. Applying the principle of least privilege to host accounts, limiting
administrative rights, and routinely auditing login and sudo access fortify the container host.

In this context, operating systems like Fedora CoreOS [27] offer a strong foundation for securing
container hosts. Fedora CoreOS is a minimal, automatically updating, container-focused operating
system designed to provide a streamlined, secure base for running containerized workloads. By default,
it includes only the essential components needed to run containers, reducing the attack surface and
simplifying system administration. Automatic updates ensure that Fedora CoreOS frequently applies the
latest security patches, mitigating the risk of known vulnerabilities. Additionally, its immutable file
system approach limits unauthorized or accidental changes, further securing the underlying OS. When
combined with strict access control, running containers as non-root, and other best practices, Fedora
CoreOS and similar container-focused operating systems help organizations maintain a secure,
consistent, and easily managed environment for their container deployments.

7. Container Orchestration and Security
Kubernetes orchestrates containers by abstracting away individual hosts and grouping them into

clusters, then automating tasks like deployments, container scheduling, and scaling. While this process
streamlines operational workflows, it also adds complexity to security management because there are
multiple layers to consider—pods, services, nodes, and even cluster-level components such as the API
server, etcd, and controllers. Kubernetes dynamically assigns IP addresses and routes traffic between
containers, making the environment far more ephemeral and distributed than in a traditional monolithic
setup. This increases the potential attack surface, as each pod or service endpoint becomes a point that
must be secured. Additionally, misconfigurations in cluster components—like insecure Kubernetes API

1254

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

server settings, permissive network policies, or overly broad authentication tokens—can open the door
to unauthorized access.

7.1. Role-Based Access Controls

RBAC [28] in Kubernetes is a crucial security measure to mitigate these risks, enabling granular
control over what actions users and service accounts can perform on cluster resources. Administrators
define roles (or cluster-wide cluster roles) that specify permissions—such as listing pods or modifying
deployments—and then bind these roles to subjects (users, groups, or service accounts). This ensures a
least-privilege model so that each component or user only has the access necessary for its functions. For
instance, a CI/CD pipeline service account might have permission to create or update deployments in a
specific namespace but no right to view secrets or interact with other namespaces. By defining the roles,
Kubernetes operators reduce the risk of accidental or malicious misuse of privileged operations.

7.2. Pod Security Policies

Beyond RBAC, enforcing security policies at the pod level is vital for maintaining a robust security
posture. In newer Kubernetes releases, Pod Security Admission [29] (replacing the older Pod Security
Policies) allows administrators to define baseline pod requirements—such as disallowing privileged
containers, requiring a read-only root file system, or ensuring containers run as non-root users. For
example, a policy might forbid containers from escalating privileges or mounting sensitive host paths
containing the blast radius if an attacker compromises a container. Combining pod-level security
policies with network policies (to restrict pod-to-pod communication) and RBAC helps build a layered
defense strategy. For instance, a development namespace might enforce a more permissive policy to
allow debugging, whereas a production namespace enforces a strict policy with no privileged pods.

Pod Security Admission (PSA) in Kubernetes is the newer mechanism for enforcing pod security
constraints, replacing the older Pod Security Policies (PSPs). Unlike PSPs, which rely on cluster-wide
resources and could be cumbersome to configure, PSA defines standardized enforcement levels
(Privileged, Baseline, and Restricted) and uses namespace labels and built-in admission checks, making
it more straightforward and more consistent to apply security controls. For example, a “Restricted”
level may prohibit privilege escalation or running as root, while a “Baseline” level might allow minimal
privileges needed for typical applications. This declarative, namespace-based approach streamlines the
security posture across clusters by ensuring that pods deployed in each namespace cannot exceed the
defined security level. In addition, PSA integrates more seamlessly into the Kubernetes admission chain,
improving compatibility with other security features and providing a clear audit trail when pods are
denied or modified. The benefits include a more straightforward configuration model, reduced
complexity in administering pod security, and better alignment with modern best practices for
Kubernetes security.

7.3. Network Policies

In Kubernetes, network policies [24] define how pods can communicate with each other and
external endpoints, effectively implementing a firewall-like mechanism at the pod level. By default,
many Kubernetes setups allow all pods to talk to each other without restriction; network policies enable
administrators to lock this down and adopt a more fine-grained, zero-trust approach. For example, a
network policy might allow incoming traffic to a “backend” pod only from pods labeled “frontend,”
blocking all other traffic. Another policy could disallow egress from certain pods to external networks,
restricting a sensitive service’s internet access. This capability is critical for a robust Kubernetes
security posture, as it prevents lateral movement by attackers who may compromise one pod and
attempt to pivot to other pods or services. Network policies integrate seamlessly with the underlying
Container Network Interface (CNI) plugins (like Calico or Cilium [30]), which enforce these rules at the

1255

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

network layer. Network policies help IT professionals isolate workloads, enforce the least-privilege
communication, and reduce the attack surface in dynamic, multi-tenant Kubernetes clusters.

7.4. The Role of Service Meshes in Security

Service meshes like Istio [31] and Linkerd [32] enhance container security in Kubernetes clusters
by providing a transparent layer for managing and securing inter-service communication.

Figure 6.
The Istio service Mesh (from The Istio Authors [30]).

They work through sidecar proxies (e.g., Envoy or linkerd-proxy) injected into each pod,

automatically encrypting traffic and enforcing policies without requiring modification to the application
code. One core feature is mutual TLS (MLS), which ensures both ends of a connection authenticate each
other, and all data in transit is encrypted, significantly reducing the risk of eavesdropping or tampering.
Furthermore, service meshes enable fine-grained policy enforcement, allowing only specific services to
communicate or setting rate limits to mitigate Denial of Service (DoS) attacks. They also offer powerful
observability features by collecting metrics, logs, and traces at the proxy layer, giving IT professionals
deep insights into traffic flows, performance bottlenecks, and potential security issues. For example,
Istio’s policy engine allows custom authorization rules based on attributes like source, destination, and
request method. At the same time, Linkerd’s “automatic TLS” can secure inter-pod traffic even if
applications are not explicitly configured for TLS. By centralizing and automating these capabilities,
service meshes streamline the adoption of best practices and bolster the overall security posture of
containerized microservices environments.

1256

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

8. Security Best Practices in Container Development
Best practice methodologies for container development are crucial for constructing secure,

dependable, and efficient containerized applications. Containers facilitate development and deployment;
nonetheless, their dynamic characteristics require meticulous consideration of security and operating
measures. A crucial approach is shift-left security, which involves including security measures early in
the development process to detect and mitigate vulnerabilities before release. Automated testing and
scanning are similarly essential, facilitating ongoing surveillance of container images and configurations
for security vulnerabilities and compliance breaches. Consistent patch management ensures that base
images and dependencies remain current, mitigating exploitation risk. Furthermore, implementing
immutable infrastructure—where containers are substituted rather than altered—guarantees uniformity
reduces drift, and streamlines troubleshooting. By adhering to these guidelines, developers can
construct resilient, scalable, and secure containerized applications that conform to contemporary
DevOps procedures.

8.1. Shift-Left Security

Shift-left security [33] in container development emphasizes embedding security checks and
measures as early as possible in the software development lifecycle (SDLC) rather than forcing them on
at the end. This approach, often called DevSecOps, aims to detect and fix vulnerabilities before they
become production. For instance, developers can incorporate container image scanning (e.g., using Clair
[21]; Trivy [34] or Snyk [20]) directly into their CI/CD pipelines. When a developer commits code,
automated jobs run to check for known CVEs, outdated libraries, or insecure configurations in the
image. If any issues are found, the pipeline can automatically fail or notify the relevant team, prompting
quick remediation. This proactive strategy reduces the time and cost of patching vulnerabilities late in
the development cycle.

To implement shift-left security, IT professionals can define policy-as-code rules that govern
everything from allowed base images to required security tests. A CI/CD platform (e.g., Jenkins [35]
GitLab CI [36] GitHub Actions [37]) then enforces these rules at each stage of the build process. For
example, if an image fails a vulnerability scan or any dependencies are out of compliance, the pipeline
will stop, preventing the insecure container from progressing to later stages. Integration with container
registries also helps automate the promotion or rollback of images based on scan results. Moreover,
hooking into developer tools like IDE plugins or pre-commit hooks can catch basic misconfigurations
(e.g., API keys or passwords present in plain text) before they even hit the repository. Shift-left security
ensures containers remain secure, efficient, and compliant throughout their lifecycle by embedding
security controls at every step- from code commit to production deployment.

8.2. Automated Testing and Scanning

Automated testing and scanning for container security include three main parts: vulnerability
scanning, static analysis, and runtime monitoring. Vulnerability scanning tools (e.g., Trivy [34] and
Clair [21] or Anchore [38]) can be integrated into CI/CD pipelines to identify known CVEs or
outdated dependencies in container images as soon as they are built. Static analysis tools further
enhance this process by examining Dockerfiles, Kubernetes manifests, and other configuration files to
detect insecure defaults—such as running containers with root privileges, exposing unnecessary ports,
or storing secrets in plain text. These checks can be enforced automatically, preventing misconfigured
or vulnerable images from passing critical checks in the build pipeline.

Runtime monitoring provides continuous inspection of containers in staging or production
environments. Security-oriented agents or kernel modules, such as Falco [39] Sysdig [40] or even
Linux kernel security modules like AppArmor or SELinux, observe real-time container behavior. They
watch for anomalous patterns, such as suspicious system calls, privilege escalations, or unexpected

1257

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

network connections, that might indicate an ongoing compromise. For instance, Falco can be configured
to alert if a running container suddenly spawns a shell, which could indicate malicious activity.

8.3. Regular Patch Management

Regular patch management in containerized environments is a significant part of container security
because multiple software layers, including the base image, application dependencies, and the host
operating system, must all remain up to date to prevent known vulnerabilities from being exploited.
Containers often inherit layers from base images, meaning if the base image contains outdated libraries
or packages with security flaws, every image derived from it will inherit those vulnerabilities. For
example, if you use a popular base image from a public repository and a critical CVE is discovered in one
of its core libraries, all downstream images derived from that base image are suddenly at risk. To
address this, developers should implement automated scanning and rebuild processes in their CI/CD
pipelines. Additionally, setting up notifications for critical patches and incorporating “pull and rebuild”
policies can ensure that new, patched versions of base images are promptly adopted and even
automatically pushed to the testing environment.

8.4. Immutable Infrastructure

Immutable infrastructure in the context of containers refers to treating application environments as
disposable, pre-built artifacts rather than mutable systems that are updated in place. Instead of logging
into a server to apply patches or modify application configurations, the entire container image is rebuilt
with the necessary changes and redeployed. This practice eliminates “configuration drift” issues, where
small, manual changes lead to an inconsistent state over time. For example, suppose you discover a
vulnerability in a container image rather than patching it in place on a running container. In that case,
you rebuild the image (applying the patch), push it to a registry, and redeploy containers from that new,
updated image. This approach ensures that every application instance runs a known, validated
configuration, reducing the chance of unpredictable behavior and simplifying troubleshooting and
auditing.

From an operational standpoint, immutable deployments align well with DevOps and microservices
practices. Tools like Kubernetes make rolling updates straightforward: when a new container image
version is available, the orchestrator gradually replaces old pods with new ones, verifying health checks
along the way. This approach keeps environments consistent and simplifies rollback if something goes
wrong—revert to a previous container image version. For developers, it promotes reproducibility and
accelerates testing cycles because the same container image is used in development, and QA is the one
that runs in production. By combining infrastructure automation with immutable container images,
teams can maintain a predictable, resilient deployment pipeline where new features or security patches
are confidently rolled out without the risk of unpredictable, manual configuration changes.

9. Compliance and Regulations
Industries such as finance and healthcare operate under strict regulatory requirements (e.g., PCI

DSS for payment processing, HIPAA for healthcare data) that dictate rigorous security and auditing
requirements that apply similarly to containerized environments. In container deployments, compliance
often starts with standard hardening practices and documented security baselines (for example, CIS
Benchmarks for Docker [40] or Kubernetes [41]). Organizations can enforce these standards using
built-in Kubernetes admission controllers, Pod Security Admission levels, or third-party policy engines
(like OPA/Gatekeeper [42]), which ensures that only compliant and securely configured containers can
run. Additionally, encrypting data in transit (via mutual TLS) and at rest, employing strict network
segmentation, and regularly scanning container images can help organizations maintain compliance.
Tools like Falco or Kubescape [43] can provide real-time threat detection in line with governance rules,
generating alerts whenever suspicious activity is detected. By integrating these measures into a CI/CD

1258

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

pipeline, companies ensure that every container entering production meets the regulatory guidelines,
reducing the risk of costly violations and data breaches.

Logging, auditing, and monitoring for containerized applications differ partly due to containers'
ephemeral nature and microservices' distributed nature. Traditional logging might store data on the
same host as the application. Still, since containers can be spun up or down quickly, they can potentially
lose local logs unless shipped to a centralized logging system (e.g., Elasticsearch, Splunk, or a cloud-
based logging service). Furthermore, logs and monitoring data may need to be aggregated in a
container ecosystem from multiple pods, nodes, and services, necessitating a robust observability stack
(e.g., Prometheus, Grafana, or Datadog). This data becomes essential for incident response, as security
teams must be able to quickly reconstruct the timeline of events, track suspicious activity across
services, and contain the threat before it spreads laterally through the cluster.

Incident response for containers should include predefined playbooks that detail how to isolate
compromised pods (e.g., through Kubernetes Network Policies or by cordoning off nodes), rotate
credentials (like Kubernetes Secrets), and redeploy with patched or known-good images. Well-
orchestrated responses are essential for meeting regulatory demands in containerized environments.

10. Future Trends in Container Security
Zero-trust architecture in containerized environments extends the principle that no network

component or request—internal or external—should be automatically trusted. Traditionally, once
inside a trusted network perimeter, systems might communicate with minimal authentication or
encryption. In contrast, a zero-trust network requires continuous authentication, authorization, and
encryption for every interaction. In container ecosystems, all traffic between containers, microservices,
and external endpoints should be treated skeptically and only permitted if it passes strict validation
policies. For example, two services might communicate via mutual TLS to verify the other’s identity
before exchanging data. Strong role-based access controls are also applied to ensure that only the
correct containers or service accounts can initiate communication, aligning with the least privilege
principle. Zero-trust architecture in Azure is a perfect example of this approach [44] as it offers a
comprehensive framework for implementing the least-privilege tenets and automated responses to
incoming threats.

This concept is particularly relevant in container and microservices architectures, where multiple
lightweight services communicate frequently over dynamic, ephemeral networks. By implementing
zero-trust, organizations can create robust micro-segmentation: each service or container runs in an
isolated environment and only accepts traffic from authorized sources. Kubernetes Network Policies or
service mesh solutions (e.g., Istio, Linkerd) can enforce these rules, denying all other traffic by default.
For instance, a frontend service might only be permitted to speak to a backend service on a specific port,
and all traffic is encrypted and authenticated at the proxy layer. This level of control both limits the
blast radius of a potential breach and ensures regulatory compliance—every request or connection
attempt is logged, monitored, and verified.

Serverless computing abstracts away the notion of managing servers, focusing instead on running
code in response to events or HTTP requests. While some implementations of serverless (like AWS
Lambda [45] or Azure Functions [46]) appear not to involve containers to the end user, most
platforms under the hood use container-like environments or sandboxed runtimes to isolate individual
functions. This approach eliminates much of the infrastructure provisioning and patch management
responsibilities from developers; however, it also centralizes these tasks within the service provider’s
platform. From a security standpoint, organizations must carefully understand how the serverless
provider handles runtime isolation, updating of underlying container images or runtimes, and the data
flow between serverless functions and other resources. For example, a function with misconfigured
permissions in AWS Lambda could inadvertently grant attackers access to a broader set of resources if
its AWS Identity and Access Management (IAM) roles are overly permissive.

1259

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

Despite the convenience of being serverless, there are many security challenges. Functions are often
event-driven and short-lived, complicating logging and incident response, as forensics data might
vanish quickly. When functions run in containers (as in specific “serverless containers” offerings like
AWS Fargate [47] or Google Cloud Run [48]), organizations inherit many of the same concerns as
traditional container security, such as image vulnerabilities, runtime isolation, and network
segmentation—albeit managed or partially managed by the cloud provider. Implementing strict access
policies (e.g., the principle of least privilege), scanning container images for serverless deployments, and
adopting strong observability practices with centralized logging and real-time alerting can help
mitigate these new risks.

AI and machine learning (AI/ML) are increasingly playing a transformative role in container
security, allowing organizations to detect and prevent breaches by analyzing large datasets and
identifying patterns indicative of malicious behavior. Traditional security solutions rely heavily on
signature-based detection and known threat intelligence, which can adapt slowly to zero-day exploits or
new attack vectors. AI/ML-driven solutions, on the other hand, use anomaly detection algorithms or
behavior-based models to learn what “normal” looks like for containerized applications—such as
expected process trees, network flows, and resource usage. When deviations from these learned
baselines occur, the system can issue alerts, trigger automated responses, or quarantine suspicious
containers. Tools like Aqua Security [49] and Palo Alto Networks Prisma Cloud [50] increasingly
integrate AI-powered functionality, scanning container images more efficiently for hidden malware and
tracking behavior in real-time to spot irregularities that signature-based methods may miss. Depending
on the environment, tools like Microsoft Sentinel and Logic Apps might be used to improve container
security [50] if containers are running in Microsoft Azure.

Another use case of AI/ML in container security is predictive analytics that can prioritize and
remediate vulnerabilities. For example, when vulnerability scanners feed data into an AI model, the
system can cross-reference findings with exploit databases, code version histories, and system metadata
to assess the likelihood of exploiting vulnerability. This helps security and DevOps teams focus on the
most critical issues, improving response times and resource allocation. Moreover, AI can help correlate
multiple low-level indicators—such as elevated memory usage in one container, unexpected network
connections in another, and sudden spikes in CPU across a third—to detect a coordinated attack
campaign. By continuously learning from real-world container usage and threat data, AI-powered
solutions become increasingly “smarter” at spotting known and unknown threats while strengthening
an organization’s resilience against security breaches.

11. Conclusions
Container security is essential to modern application development, especially given the increasing

adoption of microservices architectures and DevOps practices. This paper highlights that containers
provide unparalleled portability, efficiency, and scalability, enabling rapid deployment and seamless
operation across varied environments. However, these advantages come with unique challenges,
including vulnerabilities associated with shared kernel architectures, runtime risks, and the
orchestration layer complexities. Addressing these risks requires a comprehensive strategy
incorporating robust security practices, such as regular vulnerability scanning, secure configuration,
runtime monitoring, and implementing access controls like RBAC. Adequate container security ensures
the integrity and reliability of applications and enhances trust in sensitive data management and
operational consistency.

Looking ahead, the evolution of container security will likely be shaped by advancements in
automation, AI-driven threat detection, and a shift toward zero-trust architectures. These trends aim to
proactively address vulnerabilities while streamlining the integration of security measures throughout
the development lifecycle. Furthermore, the emphasis on compliance, immutability, and innovative
technologies like service meshes underscores the need for organizations to remain ever-vigilant. By

1260

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

prioritizing security as a core element of container adoption, businesses can harness the full potential of
containerization while minimizing risks, ensuring their applications are resilient, secure, and future-
ready in a rapidly evolving technological landscape.

Transparency:
The authors confirm that the manuscript is an honest, accurate, and transparent account of the
study; that no vital features of the study have been omitted; and that any discrepancies from
the study as planned have been explained. This study followed all ethical practices during writing.

Copyright:
© 2025 by the authors. This open-access article is distributed under the terms and conditions of the
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

References
[1] S. Susnjara and I. Smalley, "What is containerization?," Retrieved:

https://www.ibm.com/think/topics/containerization. [Accessed 20 May 2024], 2024.
[2] IBM Cloud Team, "Containers versus virtual machines (VMs): What’s the difference?, IBM," Retrieved:

https://www.ibm.com/think/topics/containers-vs-vms. [Accessed 2021.
[3] Docker Inc, What is Docker? Docker Inc. https://docs.docker.com/get-started/docker-overview/, n.d.
[4] The Kubernetes Authors, "Overview," Retrieved: https://kubernetes.io/docs/concepts/overview/. [Accessed 2024.
[5] M. Michalowski, "Top 47 devops statistics 2025: Growth, benefits, and trends, Spacelift," Retrieved:

https://spacelift.io/blog/devops-statistics. [Accessed 2025.
[6] Red Hat, "Kubernetes adoption, security, and market trends report 2024, Red Hat," Retrieved:

https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-overview. [Accessed 2024.
[7] Check Point Software Technologies, "Top 7 container security issues," Retrieved:

https://www.checkpoint.com/cyber-hub/cloud-security/what-is-container-security/top-7-container-security-
issues/. [Accessed n.d.

[8] Red Hat, "What is a CI/CD pipeline?, Red Hat," Retrieved: https://www.redhat.com/en/topics/devops/what-cicd-
pipeline. [Accessed 2022.

[9] Docker Inc, "Dockerfile reference," Retrieved: https://docs.docker.com/reference/dockerfile/. [Accessed n.d.
[10] Docker Inc, "Docker Hub," Retrieved: https://hub.docker.com. [Accessed n.d.
[11] The Kubernetes Authors, "Autoscaling workloads," Retrieved:

https://kubernetes.io/docs/concepts/workloads/autoscaling/. [Accessed 2024.
[12] B. Ben-Michael and Y. Yaakov, "Container breakouts: Escape techniques in cloud environments, Palo Alto

Networks," Retrieved: https://unit42.paloaltonetworks.com/container-escape-techniques/. [Accessed 2024.
[13] The Kubernetes Authors, "Secrets," Retrieved: https://kubernetes.io/docs/concepts/configuration/secret/.

[Accessed 2024.
[14] A. Wallace and C. Baer, "Exploring container security: Performing forensics on your GKE environment, Google,"

Retrieved: https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-performing-forensics-
on-containers. [Accessed 2019.

[15] Red Hat, "Docker SELinux security policy," Retrieved:
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_gui
de/docker_selinux_security_policy. [Accessed n.d.

[16] AppArmor, "AppArmor Wiki," Retrieved: https://gitlab.com/apparmor/apparmor/-/wikis/home. [Accessed n.d.
[17] Microsoft, "What is DevSecOps?," Retrieved: https://www.microsoft.com/en-us/security/business/security-

101/what-is-devsecops. [Accessed n.d.
[18] Docker Inc, "Seccomp security profiles for Docker," Retrieved: https://docs.docker.com/engine/security/seccomp/.

[Accessed n.d.
[19] D. Warburton, "What is mTLS? F5," Retrieved: https://www.f5.com/labs/learning-center/what-is-mtls. [Accessed

2021.
[20] Snyk, "Snyk Container," Retrieved: https://snyk.io/product/container-vulnerability-management/. [Accessed n.d.
[21] Clair, "Clair is an open source project for the static analysis of vulnerabilities," Retrieved:

https://github.com/quay/clair. [Accessed n.d.
[22] Podman, Retrieved: https://podman.io. [Accessed n.d.
[23] CRI-O, "Lightweight container runtime for Kubernetes," Retrieved: https://cri-o.io. [Accessed n.d.

https://creativecommons.org/licenses/by/4.0/
https://www.ibm.com/think/topics/containerization
https://www.ibm.com/think/topics/containers-vs-vms
https://docs.docker.com/get-started/docker-overview/
https://kubernetes.io/docs/concepts/overview/
https://spacelift.io/blog/devops-statistics
https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-overview
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-container-security/top-7-container-security-issues/
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-container-security/top-7-container-security-issues/
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
https://docs.docker.com/reference/dockerfile/
https://hub.docker.com/
https://kubernetes.io/docs/concepts/workloads/autoscaling/
https://unit42.paloaltonetworks.com/container-escape-techniques/
https://kubernetes.io/docs/concepts/configuration/secret/
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-performing-forensics-on-containers
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-performing-forensics-on-containers
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://gitlab.com/apparmor/apparmor/-/wikis/home
https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops
https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops
https://docs.docker.com/engine/security/seccomp/
https://www.f5.com/labs/learning-center/what-is-mtls
https://snyk.io/product/container-vulnerability-management/
https://github.com/quay/clair
https://podman.io/
https://cri-o.io/

1261

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 1: 1243-1261, 2025
DOI: 10.55214/25768484.v9i1.4382
© 2025 by the authors; licensee Learning Gate

[24] HashiCorp, "Manage secrets and protect sensitive data with Vault," Retrieved: https://www.vaultproject.io.
[Accessed n.d.

[25] Canonical, "Linux kernel livepatch," Retrieved: https://ubuntu.com/security/livepatch/docs. [Accessed n.d.
[26] Fedora, "Fedora CoreOS documentation," Retrieved: https://docs.fedoraproject.org/en-US/fedora-coreos/.

[Accessed n.d.
[27] The Kubernetes Authors, "Using RBAC authorization," Retrieved: https://kubernetes.io/docs/reference/access-

authn-authz/rbac/. [Accessed 2024.
[28] The Kubernetes Authors, "Pod security admission," n.d. [Online]. Available:

https://kubernetes.io/docs/concepts/security/pod-security-admission/

[29] V. Dakić, J. Redžepagić, M. Bašić, and L. Žgrablić, "Performance and latency efficiency evaluation of kubernetes
container network interfaces for built-in and custom tuned profiles," Electronics, vol. 13, no. 19, p. 3972, 2024.

https://doi.org/10.3390/electronics13193972
[30] The Istio Authors, "The Istio service mesh," Retrieved: https://istio.io/latest/about/service-mesh/. [Accessed 2024.
[31] The Linkerd Authors, "The world's most advanced service mesh," Retrieved: https://linkerd.io. [Accessed 2025.
[32] M. Nair, "Implementing shift left security effectively, Snyk," Retrieved: https://snyk.io/articles/shift-left-security/.

[Accessed n.d.
[33] Aqua, "The all-in-one open source security scanner," Retrieved: https://trivy.dev/latest/. [Accessed n.d.
[34] Jenkins, "The leading open-source automation server," Retrieved: https://www.jenkins.io. [Accessed n.d.
[35] GitLab, "Get started with GitLab CI/CD," Retrieved: https://docs.gitlab.com/ee/ci/index.html. [Accessed n.d.
[36] GitHub Inc, "Automate your workflow from idea to production," Retrieved: https://github.com/features/actions.

[Accessed n.d.
[37] Anchore, "Developer-friendly scanning tools," Retrieved: https://anchore.com/opensource/. [Accessed n.d.
[38] Sysdig, "Detect security threats in real time," Retrieved: https://falco.org. [Accessed n.d.
[39] Sysdig, "The sysdig platform," Retrieved: https://sysdig.com/products/platform/. [Accessed n.d.
[40] Center for Internet Security, "CIS Docker benchmarks," Retrieved: https://www.cisecurity.org/benchmark/docker.

[Accessed n.d.
[41] Community, "A customizable cloud-native policy controller," Retrieved: https://open-policy-

agent.github.io/gatekeeper/website/. [Accessed n.d.
[42] The Kubescape Authors, "Comprehensive kubernetes security from development to runtime," Retrieved:

https://kubescape.io. [Accessed 2024.
[43] D. Vedran, M. Zlatan, K. Ana, and R. Damir, "Analysis of azure zero trust architecture implementation for mid-size

organizations," Journal of Cybersecurity and Privacy, vol. 5, no. 1, p. 2, 2025. https://doi.org/10.3390/jcp5010002
[44] Amazon, "Run code without thinking about servers or clusters," Retrieved: https://aws.amazon.com/lambda/.

[Accessed n.d.
[45] Microsoft, "Azure functions overview," Retrieved: https://learn.microsoft.com/en-us/azure/azure-

functions/functions-overview. [Accessed n.d.
[46] Amazon, "AWS Fargate," Retrieved: https://aws.amazon.com/fargate/. [Accessed n.d.
[47] Google, "Cloud run," Retrieved: https://cloud.google.com/run. [Accessed n.d.
[48] Aqua, "Unified cloud security," Retrieved: https://www.aquasec.com. [Accessed n.d.
[49] Palo Alto Networks, "Prisma cloud," Retrieved: https://www.paloaltonetworks.com/prisma/cloud. [Accessed n.d.

[50] V. Dakić, Z. Morić, A. Kapulica, and D. Regvart, "Leveraging microsoft sentinel and logic apps for automated cyber
threat response," Edelweiss Applied Science and Technology, vol. 8, no. 6, pp. 4319–4348, 2024.
https://doi.org/10.55214/25768484.v8i6.2933

https://www.vaultproject.io/
https://ubuntu.com/security/livepatch/docs
https://docs.fedoraproject.org/en-US/fedora-coreos/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://doi.org/10.3390/electronics13193972
https://istio.io/latest/about/service-mesh/
https://linkerd.io/
https://snyk.io/articles/shift-left-security/
https://trivy.dev/latest/
https://www.jenkins.io/
https://docs.gitlab.com/ee/ci/index.html
https://github.com/features/actions
https://anchore.com/opensource/
https://falco.org/
https://sysdig.com/products/platform/
https://www.cisecurity.org/benchmark/docker
https://open-policy-agent.github.io/gatekeeper/website/
https://open-policy-agent.github.io/gatekeeper/website/
https://kubescape.io/
https://doi.org/10.3390/jcp5010002
https://aws.amazon.com/lambda/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://aws.amazon.com/fargate/
https://cloud.google.com/run
https://www.aquasec.com/
https://www.paloaltonetworks.com/prisma/cloud
https://doi.org/10.55214/25768484.v8i6.2933

