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Abstract: The effectiveness of wireless communication systems exposed to radio propagation in their 
environment is shown by path loss, a key performance metric. For a long time, researchers have used 
the correlations they proposed to calculate route loss for waves moving across different environments 
with few operational factors. To swap out the log-normal shadowing model for route loss calculation on 
concrete surfaces, this study presents a new model based on weights of artificial neural networks. In the 
training phase, the neural network was provided the data of the physical separation between the 
transmitters and receivers of the wireless sensor nodes (d) and the radial angle of the reception node's 

position (Ϙ) as the target variable, path loss. Then, by utilizing the weights of the network, a novel PL 
prediction formula was developed. When tested across all ranges of experimental data, this formula 
outperforms the log-normal shadowing model, the FSPL model, and the Two-Ray model in predicting 
the average PL in concrete surfaces, with mean absolute deviation values of 0.51%, 4.1%, 40.58%, and 
28.79%, respectively. 
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1. Introduction  

This paper explains how attenuation, or the weakening of a radio signal, can impact the efficiency of 
wireless communication systems; in particular, how the farther away receivers are from the transmitter, 
the more attenuation the signals will experience. Physical impediments during signal transmission 
attenuate the signal, which in turn creates secondary signaling pathways, which can be characterized as 
deviation, reflection, or dispersion signals, and alters the receiving signal's intensity. Since most wireless 
service is conducted domestically and internationally, there is an immediate need for higher data speeds 
in both settings. For this reason, path loss (PL) models for WSN evaluation have been actively pursued 
by researchers. When it comes to wireless network applications, the model for determining the value of 
track losses is crucial for pinpointing the positions of wireless nodes. Factors like residential structures, 
trees, and other such features influence the accuracy of the nodes' positions [1-4].  
Furthermore, positioning applications for wireless sensor nodes help with the efficient distribution of 
nodes in wireless sensor networks, which improves battery life and guarantees uninterrupted 
communication. Two-Ray and Free Space Path Loss are two popular models for determining path loss, 
and they are applicable both indoors and outdoors. Both methods rely on assumptions, which might lead 
to erroneous outcomes when applied to certain scenarios. While the FSPL model presumes that the 
transmitter and receiver antennas are in direct line of sight (LOS), the Two-Ray model assumes that the 
Earth is flat and conductive, and that the distance between the transmitter and receiver is significantly 
greater than the height of the antennas' positions from [5-11].  
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In order to enhance the propagation of WSN nodes in various environments, the researchers have 
offered a number of experimental models. To illustrate the point, two studies were reported in Otero, et 
al. [12] that examined path loss models using received signal strength (RSSI) for WSNs deployed in 
sparse and tall grass environments. We found a path loss exponent (PLE) of 3.34 in a scattered 
environment and 2.55 in a long grass environment. Data collected from a WSN functioning in such a 
context was used to create the model shown by Eq. (1). the path loss at 1 meter, the path loss exponent, 
and the mean value of the standard deviations are 64.84 dB, 3.21 dB, and 2.19 dB, respectively, where d 

is the distance between the transmission and reception antennas and 𝑃𝐿(𝑑r) is the path loss.  

𝑃𝐿(𝑑) = 𝑃𝐿(𝑑𝑟) + 10𝛼 log (
𝑑

𝑑𝑟
) + 𝑋𝜎            (1) 

In a similar vein, Sabri, et al. [13] presented experimental and conventional models for WSN 
scattering in sandy and dense forest environments, with an average path loss (PL) of 3.42 and 4.02, 
respectively. The authors state that the absence of direct line-of-sight between the sending and 
receiving nodes is the main cause of the rise in PL. Another factor that contributes significantly to the 
formation of reflected waves is the flatness of the Earth [14].  

Using machine learning capabilities for communication has recently been a topic of research. In the 
field of wireless communications, deep learning has been employed to assess path losses, estimate 
channels, identify modulation, and code channels. Incorporating deep learning simplifies the radio 
propagation models needed to operate and install sophisticated wireless networks, such 5G networks, in 
diverse contexts [15-21]. 

After being trained on a massive dataset acquired over a year from a 2.4 GHz wireless sensor 
network, the path loss model given by Zhang, et al. [22] demonstrated excellent accuracy. The dataset 
included tests of the following machine learning candidate algorithms: Neural Networks, adaBoost, K-
Nearest-Neighbors, and Random forests. Of the models that were considered, Random Forest produced 
the least amount of inaccuracy. Many famous legal and experimental models were tested against this 
one, including Free Space, Level Earth, Weissberger, ITU-R, and COST235, to see how accurate it was. 
Consequently, the machine learning methods reduced average prediction errors by 37%, surpassing the 
performance of the experimental and legal models. 

When assessing the efficiency of a short-range communications network, channel metrics like 
package dropping and path loss are crucial. Numerous academics have taken an interest in this issue; for 
example, in Idogho and George [23] they offer a model that uses several layers of a neural network to 
determine these values. Highways, residential areas, and rural areas were among the many scenarios in 
which the suggested forecast model surpassed experimental models, according to the study. Also, when 
compared to the statistical model, the suggested model produced more accurate predictions. A study 
was published in Wu, et al. [24] that aimed to build linear track loss models for wireless sensing 
networks that operate in complicated environments. Three primary methods have been used to model 
track loss using machine learning: basic component-supported feature selection, divergence analysis 
based on the Gussian process, and synthetic neural network-based multidimensional regression (ANN). 
We have simplified the learning model and decreased the amount of data sets by using component-
supported feature selection. According to the results, the suggested path loss and shading models 
outperform the natural shade model and the more conventional linear track loss model in terms of 
accuracy and adaptability.  Using a variety of frequencies, another analytical work was published by 
Alrubaie, et al. [25] that utilized artificial intelligence to determine route loss in suburban and urban 
settings. A model was developed to forecast the amount of artificial neural network (ANN)-based track 
loss in a multi-wall environment. The model took into consideration frequency, distance, ground 
attenuation, and wall variables. The results demonstrated that the accuracy of the suggested model's 
prediction is determined by the distance between the transmission and reception nodes, which is the key 
factor determining signal attenuation. Further analysis revealed that the suggested ANN model 
achieved superior prediction accuracy when compared to the Two-Ray, CI PL, and Gaussian process 
models.  
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More study is required to understand how to harness AI skills to construct accurate and actionable 
models in varied situations, notwithstanding these studies. Using the parameters of artificial neural 
networks trained in a certain kind of setting, this study intends to create prediction models. In addition 
to being tiny, having straightforward programming, and not requiring neural networking software, this 
model is also feature-rich. Our source for this empirical data will be the work of Elmezughi, et al. [26] 
which focuses on lane loss in a concretized surface environment. An artificial neural network will 
examine and analyze the data in order to generate a prediction model using the weights of the network. 
It will also be compared to the free-space path loss model, the Tow-Ray model, and the normal-log 
model given by Elmezughi, et al. [26] in order to assess the novel model.  
 

2. Method  
2.1. Data Preparation 

The following succinctly summarizes the approach and technical specifications utilized by 
Elmezughi, et al. [26] for the collection of empirical data: 

• Using 1925 MHz frequency to conduct tests instead of 2.4 GHz to avoid interference within 
the 2.4 GHz ISM range. 

• The target environment is characterized by many concrete buildings. 

• The transmission knot was installed at a center with half-way trains (5, 10, 15, 20, 25, 30, 35, 
and 40 meters). 

• While the received signal intensity readings were taken on the perimeter of those circles in 16 
radial directions and at a separation angle of 22.5o.  

• The height of antennas with multi-directional radiation patterns to be 20 cm above the 
Earth's surface. 

• Total recorded data: 300 readings for 128 test points. 

• The large amount of data recorded gives greater accuracy in statistical aspects. Table 1 shows 
128 test points for the value of path losses for the signal sent. 

According to the above, Alsayyari, et al. [14] researcher team provided a model for calculating 
the loss of path for a wireless network spread in a concrete surface environment. Many data points 
have been collected for the signal received, and the characteristics of the log-normal shadowing model 
have been adjusted to provide a more accurate model for calculating the loss of path. The proposed 
model was compared with the path loss models of long grass and other scattered tree environments 
presented in previous works. In addition, the comparison between the proposed model and common-
use path loss models such as the free space path loss (FSPL) and the Two- ray path loss showed that 
the two models were inaccurate in predicting the amount of loss of path for a wireless network spread 
in a concrete surface environment [26]. 
 
2.2. Design and Training of Ann 

Many applications in the real world have been successful in using neural networks as an 
approximate method for non-linear problems. The fast algorithms rely on well-established methods to 
improve the number, such as Levenberg-Marquardt (LM). Four indicators are used as tools for 
assessing network performance and clarifying error rates: average square error (MSE), determining 
factor (R2), and average absolute error (MAE). The following Eq. (2) – Eq. (4) are used to develop 
these measurements: [25, 27]. 

       𝑀𝑆𝐸 =
1

𝑚
∑ (𝑇𝑖 −𝑁𝑖)

2𝑚
𝑖=1                  (2)  

       𝑀𝐴𝐸 =
1

𝑚
∑ |𝑇𝑖 −𝑁𝑖|
𝑚
𝑖=1                    (3) 

       𝑅2 = 1 −
∑ (𝑇𝑖−𝑁𝑖)

2𝑚
𝑖=1

∑ (𝑁𝑖)
2𝑚

𝑖=1

                        (4) 
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where Ti is the target result for i in the training data, Ni is the actual network result for i, and m is the 
total number of training data points. To determine the relative importance of a given entry factor i, use 
the following Eq. (5), developed by Olden, et al. [28]. 
 

𝐼𝑚𝑝(𝑖) = ∑ 𝐼𝑊𝑖ℎ(𝑥)𝑂𝑊ℎ𝑜(𝑥)
𝑚
𝑖=1                  (5) 

The weight of the connection between the input and output parameters i, as well as the hidden 
neuron x, is indicated by IWih(x) and OWho(x), respectively. The total number of hidden neurons is given 
by m, and the hidden neuron's index number is x. Imp(i) represents the relative significance of 
parameter i. In the current study, we employed Eq. (5) to determine the relevance of each suggested 
network input parameter. 

Table 1 presents the data set used for network training, while Table 2 provides a brief summary 
of their respective ranges. The input vectors of the network are the distance between the transmission 

and reception antennas (d) and the radial angle (θ) of the reception node site, while the output vector 
is the loss of path (PL).  
 
Table 1. 
Imperial path loss measurements in [DB] for 128 locations [26]. 

Radial No. 
Radial angle 

(Θ) degree 

Distance (d) 

5m 10m 15m 20m 25m 30m 35m 40m 

1 0 93 100 106 112 115 116 120 120 

2 22.5 92 100 106 111 114 116 120 120 
3 45 91 97 103 107 111 114 118 119 

4 67.5 89 98 102 107 111 115 117 118 

5 90 88 97 102 107 113 114 118 119 
6 112.5 90 98 103 106 112 114 117 118 

7 135 90 98 103 107 114 115 118 116 
8 157.5 90 99 103 108 112 112 116 117 

9 180 89 99 104 107 112 115 115 115 
10 202.5 86 96 101 105 109 113 114 113 

11 225 86 95 101 106 110 112 115 114 
12 247.5 86 95 100 103 107 112 114 114 

13 270 86 94 100 104 107 112 114 114 
14 292.5 87 95 100 105 109 111 113 113 

15 315 86 95 100 104 109 112 114 114 

16 337.5 88 96 101 107 108 112 114 114 
Avg. Path Loss (dB) 87.8 96.3 103 105.82 109.9 112.9 114.3 116 

 
Table 2. 
The experimental data ranges that were utilized to train the network. 

Radial angle Θ (Degree) Distance (m) Path loss (dB) Avg. path loss (dB) Reference 

0 - 337.5 5 - 40 86 - 120 87.75 - 116.2 Alsayyari A. et al.  (2015) 

 

MATLAB software was used to create a computer application (Matlab User's Guide, Copyright, 
R2017b). During training, a hidden layer of ten neurons was employed to get more accurate results. 
The hidden layer neurons sum the weighted inputs and transfer the product to the output neuron or 
nearby neurons using a non-linear activation function. By normalizing the data, we can better assess 
the relationship between the two sets of parameters (dependent and independent). Both inputs and 
outputs have been normalized to the interval [-1,1]. Normalized versions of the input and target 
vectors were fed into the network during training, which resulted in the network being more 
accurate. There is no need to use any additional patterns when training the ANN. The objective of an 
ANN is to arrive at an accurate estimation of the internal values in accordance with statistical values; 
the training can be accomplished with an adequate amount of data. Finally, the network was put to 
the test with the aid of the test samples set once the training process was finished without a hitch. 
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3. Model Generation and Evaluation 
The research used 128 data points from route loss test points to create a 2-10-1 network with a 

single hidden layer for path loss prediction, Figure 1. The LM technique used to train the network 
was combined with Tansig and Pureline activation functions in the hidden and output layers. The LM 
method was selected as the most efficient because of its low error rate and fast prediction speed. The 
network's performance in training, validation, and testing environments is presented in Figures (2-4) 
respectively. Table 3 provides an analysis of the effectiveness of the ANN in terms of the linear 
correlation coefficient (R), Mean Squared Error (MSE), Normalized Mean Squared Error (NMSE), 
Minimum Absolute Error, and Maximum Absolute Error, as well as the Mean Absolute Error (MAE) 
between the empirical data sets and the neural network outputs. 
 

 
Figure 1.  
The proposed 2-10-1 ANN network design. 

 
Table 3.   
Ann model performance on test phase. 

Performance Metric  
R 0.993 

MSE 0.688047782 
NMSE 0.00052127 

Min absolute error 0.000131104 
Max absolute error 2.426372211 

MAE 0.65765727 
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Figure 2.  
The network's performance for the training phase. 

 

 
Figure 3.  
The network's performance for the validation phase. 
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Figure 4.  
The network's performance for the testing phase. 

 
The mean square error (MSE) that occurred during the training phase as well as the verification 

and testing procedures shown in Figure 5. At the 16th round of repeat network training, the error 
appeared almost identical to the test and verification paths, and no excessive processing appears to 
have occurred, so the results can be considered acceptable at this round. In addition, at the 16th round 
of network training, where the performance of validation is at its highest level, the training is 
terminated. The decrease in MSE with repeated training demonstrates that the network acquires 
knowledge. 

When the mean square error (MSE) reached its lowest value, the neural network weights shown 
in Table 3 were extracted. Through the stimulation function used in the hidden layer and the 
weighing of the grid  (Eq. (6) and Eq. (7)), we can create a model for predicting track loss as shown in 
Eq. (9) where Ei can be extracted from Table 4. 

                       𝐴𝑖 =
2

1+exp(−2𝐸𝑖)
− 1,𝑖 = 1: 10      (6) 

 
        

𝑦𝑖 = 0.396148759𝐴1 − 1.452598172𝐴2 − 0.298445076𝐴3 + 0.065692319𝐴4 +
0.037979556𝐴5 + 0.008010673𝐴6 + 0.136439761𝐴7 + 1.827878761𝐴8 − 0.249978603𝐴9 − 

0.071826287𝐴10 −0.76564             (7)     
 

 𝑃𝐿|ℎ=0.2𝑚 = 𝑓(𝜃, 𝑑) 

                                          = ((y𝑖 − y. ymin)/y. gain)) + y. xoffset                          (8) 
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Figure 5.  
Illustrates the performance of the network during the various epochs. 

 
Table 4. 
Displays the weight values that were determined by the LM method using 10 neurons. 

𝑬𝒊 = 𝒘𝒊𝟏𝒅+ 𝒘𝒊𝟐𝜣+ 𝒃𝒊 
i Wi1 Wi2 bi 
1 -0.62302 -1.82554 2.158872 
2 -0.34997 -0.43338 0.651882 
3 2.316744 0.324739 -0.17349 
4 -5.63505 2.038106 1.815029 

5 -1.42184 8.25101 -0.40928 
6 -3.64266 3.674756 -0.14819 
7 3.442881 0.591924 1.430197 

8 0.062679 1.10506 1.622025 
9 3.305695 0.233368 2.7436 
10 3.866645 -2.28924 3.31497 

 

3.1. Performance Evaluation of New Model 
A numerical case was taken to evaluate the accuracy of the proposed model, in which the antenna 

height is constant and equal to 0.2 meters from the ground, the radial angle (θ), and the distance 
between the transmitter and receiver are 0 degrees, 5 meters respectively.  Table 5 displays the neural 
network constants for input and output from Matlab Simulink, which are essential for normalizing the 
inputs and denormalizing the outputs. 
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Table 5. 
The neural network constants for inputs and output. 

Neural network constant 

 Inputs Outputs Inputs 

 Radial angle (θ) Distance (d) Radial angle (θ) 
Xoffset 0.01 5 0.01 

Gain 0.005926102 0.057142857 0.005926102 
Ymin -1 -1 -1 

 

3.2. Calculation Steps 
1- Normalize the input data (x) using Eq. 9 

𝑁x = ((x − x. xoffset) ∗ x. gain) + x. ymin               (9) 

So the normalize value of radial angle (Nθ) and distance are (-1) and -1 respectively. 
2- Calculate Ei using 10 and Table 4, then calculate the activation function (Ai) from Eq. 6, as well 

as the results shown in Table 6. 
 

𝐸𝑖 = 𝑤𝑖1𝑑 + 𝑤𝑖2𝛩 + 𝑏𝑖                 (10) 
 

Table 6. 
The example resultes calculation values of EI and a. 

Ei Ai 
4.607473 0.999800939 

1.435252 0.892737849 
-2.81511 -0.99285014 

5.41231 0.999960194 
-7.23837 -0.99999897 

-0.18007 -0.1781446 
-2.60481 -0.98913194 

0.454282 0.425412101 
-0.79566 -0.66160294 

1.737332 0.939916403 
 

3-Calculate the output (y) using Eq. (7) 
y1= -0.603247166 

3- Denormalizing the output (yi) using Eq. (8) 
So the prediction value for path loss (PPL) for radial angle 0 degree and 5 meter distance is 92.7447; 
it's high and agrees with the empirical measured value (Table 5). The previous paragraphs provide the 
assumptions for the lognormal shading model Eq. (1), and its linear regression equation is: [25]. 

𝑌 = 64.84 + 32.1log(𝑑)     (11) 
Here is another example of calculating path losses using the lognormal shading model Eq. (2), as well 
as the model proposed in this study for different values of radiation angle and the distance, Table 7: 
 
Table 7. 
Numerical example Resultes for various Raial angle and distance using proposed model and linear regression model.  

Distance (m) Radial angle (θo) linear regression equation (dB) Eq.11 Our prediction model (dB) 

15 22.5 102.59 104.79 

5 45 87.27 90.38 

20 67.5 106.60 106.77 

30 90 112.25 114.48 

10 112.5 96.94 97.12 
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4. Results and Discussion 
As seen in Figure 6, the proposed PL prediction model based on network weights works very 

well. Statistical values like R and MSE show that the proposed formula is excellent at describing all 
possible operating conditions. The average square error and linear correlation coefficient of the new 
proposed model are 0.688047782 and 0.9924, respectively.  

For the same sender location (h), radial angle (θ), and distance (d), experimental data for path loss 
(PL) is compared with those calculated using new formula, the FSPL model, the Two-Ray model, and 
finding of Elmezughi, et al. [26] as shown in Table 8 and described in Figures 7-9. Clearly, the 
results of the new formula and the experimental data are perfectly compatible, and more accurate 
from the normal logarithmic model proposed by Faruk, et al. [17] as shown in Figure 9.  

According to Table 9 and Figure 7, the average absolute deviation value (AAPD) Eq. (12) for the 
results of the proposed formula, log-normal shadowing model, FSPL model, and Two-Ray model 
associations for the full experimental data bands are 0.51%, 4.1%, 40.579%, and 28.79%, respectively. 

𝐴𝐴𝑃𝐷 =
1

𝑛
∑ |

𝑂𝑖−𝑁𝑖

𝑂𝑖
| 𝑥100𝑛

𝑖=1              (12) 

 
Table 8. 
The Path loss of concrete surfaces environments predicted by the proposed model, two-ray model log-normal shadowing 
model, and FSPL model in [Db]. 

Transmitter 
antenna setting d (m) 

PL empirical 
measurements 

(dB) 

log-normal 
shadowing model 

[23] (dB) 
FSPL model (dB) 

2-Ray model 
(dB) 

Our prediction 
model (dB) 

 

Radial θ 
degree 

 

5 93 87.25 54 55.88 92.74 
10 100 96.94 60.04 67.95 100.45 

15 106 102.59 63.56 75,002 106.26 

20 112 106.6 66.06 so 111.21 
25 115 109.71 68 83.87 115.18 

30 116 112.25 69.58 $7,043 117.52 
35 120 114.4 70.92 $9.72 119.27 

40 120 116.26 72.08 92.04 120.39 
 
Table 9. 
AAPD (%) for log-normal shadowing model, FSPL, two-ray, and the proposed models. 

Transmitter antenna setting d (m) APPD (%) 

  
log-normal 

shadowing model 
[23] 

FSPL 
model 

2-Ray model 
Our prediction 

model 

Radial θ degree 

5 6.18 41.92 39.91 0.27 

10 3.06 39.95 32.04 0.45 
15 3.21 40.03 29.24 0.21 

20 20 4.81 41.01 28.57 
25 4.59 40.86 27.06 0.16 

30 3.22 40.01 24.96 1.31 
35 4.66 40.89 25.23 0.6 

40 3.11 39.93 23.29 0.33 

Average AAPD % 4.11 40.58 28.79 0.51 
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Figure 6.  
Comparison of network output performance to experimental data. 

 

 
Figure 7.  
A comparison of several models with proposed model outcomes for distance 5m and 0o radial angle. 
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Figure 8.  
A comparison of several models with proposed model outcomes for distance 10m and 0o radial angle. 

 

 
Figure 9.  
A comparison of several models with proposed model outcomes for distance 40m and 0o radial angle. 

 
In the end, Eq. (5) was used to determine the relative importance of each of the factors used. The 

total weights, known as Imp (i), for input factors such as the radial angle of the receptor site and the 
distance between the transmitter antennas and the receiver were 1.40 and 2.49 respectively. This 
indicates that the distance between the transmitter antennas and the receiver has a stronger impact 
on path loss. 
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5. Conclusion 
A methodology has been developed based on the use of ANN weights to calculate the path loss of 

wireless signals that spread in concrete surface environments. Using the gross quantitative weight 
formula, the user can get results without having to run the relevant ANN software. Also, the distance 
between transponder antennas has been shown to be the main factor affecting the amount of track loss 
in a concrete environment. The new formula for calculating path loss has a larger computability range 
and is more accurate than [26]. Finally, the new formula showed that it accurately outperformed the 
prediction of path losses when compared to the previous association log-normal shadowing model 
(given by Elmezughi, et al. [26]) and the Two-Ray and FSPL models. 
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