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Abstract: At the end of 2019, a type of pneumonia of unknown origin was detected in Wuhan, China. It 
was later determined that the illness was caused by the SARS-CoV-2 virus, and in 2020, the World 
Health Organization designated this disease as COVID-19. Various efforts have been made to enable 
timely detection of COVID-19 within the field of computational systems. This study proposes detecting 
COVID-19 based on the symptoms experienced by patients, utilizing data provided by the National 
Epidemiological Surveillance System (SINAVE) of Mexico City, from which 403,185 records were used. 
In situations where positive cases of COVID-19 are detected, it is predicted whether it will be a serious 
case in which the patient needs to be intubated or admitted to the Intensive Care Unit. For this, 
classification and regression decision trees (CART) are used. Different parameters were considered to 
define the CART model, and the stepwise variable selection process was also used to determine the 
significant variables that offer the best results, obtaining an accuracy of 87.04%. This study shows 
progress in the detection of COVID-19 using only the symptoms presented by the patients. 
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1. Introduction  

At the end of 2019, cases of a novel disease characterized by pneumonia caused by the new SARS-
CoV-2 coronavirus were reported. In 2020, the World Health Organization officially named this disease 
COVID-19 and declared it a global pandemic in the same year. By February 2023, there were 762 
million reported COVID-19 cases and 6.8 million deaths worldwide [1]. 

Since the onset of the pandemic, various scientific and medical fields have conducted research to 
understand, characterize, detect, and combat the disease. For its part, Artificial Intelligence (AI) has 
played an important role in the development of applications in the field of medicine, being a key piece in 
the rapid diagnosis of the disease [2]. Machine learning is a part of AI and focuses on developing 
systems that learn or improve performance from certain input data. Within the field of machine 
learning, work has been developed that includes the detection of COVID-19 from voice signals. Dash, et 
al. [3] coughs, and breathing patterns [4, 5]. Additionally, research has employed chest X-rays for 
COVID-19 detection, leveraging deep learning to achieve results [6-8]. Other studies have utilized 
human genome data alongside classifiers such as Decision Trees and Support Vector Machines [9]. 
Some researchers focus on the appearance of COVID-19 symptoms, some of them looking for the 
relationship between the initial symptoms and the anxiety associated with the virus [10] While other 
researchers are tasked with monitoring the symptoms that patients suffer to control the virus and 
prevent hospitalizations [11] on the other hand, there are other researchers whose main interest is to 
understand the number of symptoms identified in patients with COVID-19 and their association with 
different age groups [12] it is observed that all these works are related to the symptoms of the disease. 
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Some investigations have relied on health information systems that provide statistical data to 
compare morbidity information across databases for managing COVID-19 [13]. These data have also 
been used for clinical and hospitalization predictions [14] and mortality forecasts [15]. Other research 
has utilized clinical data to assess the severity of COVID-19 cases [16, 17] while some studies have 
calculated the probability of hospitalization and mortality for COVID-19 patients with comorbidities 
using clinical data [18]. 

This study proposes using statistical data from health information systems in Mexico City to detect 
COVID-19 based on symptoms reported by patients. If a positive COVID-19 diagnosis is determined, 
the study aims to predict the severity of the case, including the likelihood of intubation and the need for 
ICU admission. The health information data are sourced from the National Epidemiological 
Surveillance System (SINAVE) database. 
 
2. Materials and Methods 
2.1. Decision Trees 

A decision tree is a classification model structured like a tree. Each internal node represents a 
decision attribute or feature, and the branches correspond to decision rules. The leaf nodes represent the 
model's outputs, facilitating decision-making by formulating a test that begins at the root node and 
proceeds to a leaf node. 
 
2.2. Confusion Matrix 

The confusion matrix is a Table 1 that records the true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN) values (Figure 1) produced by a classification model. These values 

enable the calculation of metrics such as Sensitivity (𝑆𝐸), Specificity (𝑆𝑃), and Accuracy (𝐴𝐶𝐶), which 
indicate the model's ability to distinguish positive cases from negative ones, as well as the overall 
percentage of correct predictions. 

 

 
Figure. 1. 
Confusion matrix. 

 
The confusion matrix generated by the CART model shows the True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN) values used to calculate sensitivity, specificity, and 
accuracy metrics. 
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The equations used to calculate the values of 𝑆𝐸, 𝑆𝑃, and 𝐴𝐶𝐶 are shown below: 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝐶𝐶 =
𝑇𝑁 + 𝑇𝑃

𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 + 𝑇𝑃
 

 
2.3. COVID-19 Dataset 

SINAVE is an epidemiological dataset endorsed by Mexico's National Epidemiological Surveillance 
System (https://datos.cdmx.gob.mx/dataset/base-covid-sinave). SINAVE provides a COVID-19 
dataset that tracks registered cases throughout Mexico. It includes information on suspected and 
confirmed COVID-19 cases. The dataset comprises 89 fields and 403,185 records fields containing 
demographic data, patient comorbidities, and additional details such as gender, age, and nationality. It 
also includes fields describing symptoms presented by patients at the time of diagnosis, such as diarrhea, 
headache, vomiting, and myalgia. Additionally, the dataset contains information on severe cases and 
patients who required admission to the Intensive Care Unit. 
 
2.4. Selection Processes 

The variable selection process involves sequentially refining the set of variables in a dataset by 

including or excluding variables at each step. Initially, a Student's 𝑇-test is performed. This test is used 
to determine whether the null hypothesis for a variable is true, meaning that the variable does not 

influence the model's output. The Student's 𝑇-test is carried out using the following formula: 

𝑡 =
𝑥1̅̅ ̅ − 𝑥2̅̅ ̅

√
𝑆𝐶

2

𝑛1
+

𝑆𝐶
2

𝑛2

 

Where 𝑡 is the calculated 𝑇 statistic, 𝑥1̅̅ ̅ and 𝑥2̅̅ ̅ are the sample means, and 𝑆𝐶
2 is the pooled variance, 

calculated as, 𝑆𝐶
2 =

(𝑛1−1)𝑆1
2+(𝑛2−1)𝑆2

2

𝑛1+𝑛2−2
. The null hypothesis is rejected if 𝑡 > 𝑡(1−𝛼

2⁄ ),(𝑛1+𝑛2−2), where 

𝑡(1−𝑎
2⁄ ),(𝑛1+𝑛2−2) is the inverse of the 𝑇 distribution, known as the critical value 𝛼 is the maximum 

assigned probability value, commonly set to 0.05, and 𝑛1 + 𝑛2 − 2 is the model's degrees of freedom. 

Additionally, the 𝑃-value is often calculated, representing the probability associated with the statistic. 

The 𝑃-value is obtained by evaluating the 𝑇 distribution of the absolute value of 𝑡 and the model's 
degrees of freedom. The variable selection process, three primary methods are used: Forward method, 
Backward y Stepwise. In the Forward method, variables are introduced into the model one at a time 

based on their relevance, as determined by their 𝑇 statistic values. The process continues until adding 
further variables no longer improves the model's performance. In contrast, the Backward method begins 
with all potential variables included in the model. Variables are then sequentially removed based on 

their low 𝑇 statistic values, eliminating those deemed less significant. The process stops when further 
removals negatively impact the model's performance. The Stepwise method combines the Forward and 
Backward approaches. Initially, variables are added using the Forward method, but at specific stages, 
the Backward method is applied. By alternating between these two methods, the model can be evaluated 
to determine whether adding or removing variables improves its performance. The process concludes 
when no additional variables enhance the model, but removing any already included variables would 
negatively affect it. 
 
 
 

https://datos.cdmx.gob.mx/dataset/base-covid-sinave
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3. Experimentation and Results 
This section presents the experiments conducted and the results obtained in identifying positive 

cases and determining the severity of COVID-19 in patients using Decision Trees. 
The dataset used for this work is SINAVE, which consists of 89 fields. These include personal 

information about the patients, such as age, gender, and nationality. Additionally, the dataset contains 
information on symptoms typically associated with COVID-19 infection, such as fever, chest pain, 
cough, and shortness of breath, among others. SINAVE also includes data on severe COVID-19 cases, 
patients who required intubation, and those admitted to the Intensive Care Unit. 

The first step in this work involved cleaning the dataset to retain only the necessary fields for 
detecting COVID-19 and predicting severe cases, intubation requirements, and ICU admissions. After 
processing, a total of 50 fields were selected: 46 for input data used to train the decision tree and 4 as 
output data, corresponding to COVID-19 detection, severity, intubation cases, and ICU admission 
requirements. 

For this study, a Classification and Regression Tree (CART) model was used. Figure 2 illustrates 
the training dataset percentage that yielded the best results. The optimal results were achieved with 
85% of the data allocated for training and 15% for testing. The model achieved an accuracy rate of 
82.28% using 5-fold random cross-validation. 

The next step involves determining the splitting criterion. The splitting criterion is a technique 
used to decide how a tree should branch. Figure 3 shows the results of applying the splitting 
criteria: Gini, Entropy, and Log Loss. Among these, Entropy yielded the best results, achieving an 
accuracy of 82.42%. 

Another parameter to consider is the maximum depth of the tree. Figure 4 presents the 
experimental results for different depth levels, showing that the accuracy of the CART model reaches its 
peak at a depth of 6, achieving an accuracy of 86.8%. 

 

 
Figure. 2.  
Training set percentage and accuracy of the CART model. 

 
Figure 3 illustrates the accuracy achieved by the CART model when varying the percentage of data 

used for training and testing, with optimal results observed at 85% training data. 
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Figure 3.  
Division criteria applied to the CART model. 

 
Figure 4 compares the accuracy achieved using different splitting criteria (Gini, Entropy, Log Loss) 

for the CART model. The Entropy criterion provided the highest accuracy. 
 

 
Figure 4.   
Depth levels, CART model. 

 
A total of nine parameters were considered for the implementation of the CART model. The 

parameters used are as follows. 

• 85% of the dataset was allocated for training, and 15% for testing. 

• Entropy was used as the splitting criterion. 
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• A "Best" splitting strategy was applied. 

• The tree was limited to a maximum depth of 6 levels. 

• A minimum of 2 samples was required to split an internal node. 

• A minimum of 5 samples was required to create a leaf node. 

• A total of 42 features were considered for determining the best split at each node. 

• The tree consisted of a maximum of 180 leaves. 

• No fraction of weight in the leaves, minimum impurity decrease, class weights, or alpha 
complexity parameter was applied. 

The CART model with these parameters achieved an accuracy of 86.90% using 5-fold random cross-
validation. 

Following this, a Stepwise variable selection process was performed. Initially, a Student's T-test was 
used to identify the five most relevant variables for constructing the CART model. Table 1 presents the 
top five variables ranked by their significance using the Forward method. 

Subsequently, the Backward method was applied to eliminate unnecessary variables. Table 2 shows 
the results of applying the Backward method. It can be observed that in the first stage, the 
variable Cough was removed. Excluding this variable increased the accuracy of the CART model, 
reaching 84.534%. 
 
Table 1.  
Forward method, first stage. 

Number of variables Variable added Accuracy (%) 
1 Diassint 83.338 
2 Cough 83.668 

3 Myalgias 83.89 

4 Arthralgia 84.12 
5 Age 84.264 

 
Table 2.  
Backward method, first stage. 

Number of variables Deleted variable Accuracy (%) 
4 Diassint 83.428 

4 Cough 84.534 

The variable Cough has been removed from the model 
3 Myalgias 83.912 

3 Arthralgia 84.36 
3 Age 84.11 

 
Table 3.  
Forward method, second stage. 

Number of variables Added variable Accuracy (%) 
5 Headache 84.26 

6 Odynophagia 84.27 

7 Dyspnea 86.326 

8 Fever 86.949 
9 Ageusia 86.538 
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Table 4.  
Backward method, second stage. 

Number of variables Deleted variable Accuracy (%) 

8 Headache 86.086 

8 Odynophagia 86.274 

8 Dyspnea 84.556 

8 Fever 86.026 

8 Ageusia 86.444 
8 Diassint 86.568 

8 Myalgia 86.412 
8 Arthralgia 86.182 

8 Age 85.974 

 
In the second stage, the following 5 variables were added that were of the highest relevance, 

according to the Student's T-test. The Table 3 shows the results of applying the Forward method to 
these 5 variables. 

Table 4 shows the Backward method applied to the variables added from Table 2 and Table 3. In 
this case, no variables were eliminated, and the resulting accuracy was 86.949%. 

 

 
Figure 5.  
Confusion matrix for each of the output variables of the CART model. 

 

Subfigures represent the confusion matrices for each output variable: 

• Figure 5a. COVID-19 detection. 

• Figure 5b. Severe case identification. 

• Figure 5c. Intubation requirement. 

• Figure 5d. ICU admission necessity. 
Each subfigure includes sensitivity, specificity, and accuracy metrics for its respective output. 

Figure 5 presents the impact of varying the maximum depth levels of the CART model on its 
accuracy, with the optimal depth determined to be six levels. 

Following the same procedure, five stages were carried out. However, the accuracy value obtained 
in the fifth stage decreased compared to the fourth stage. Therefore, four stages were finally considered, 
resulting in a total of 16 variables and an accuracy of 87.04%. The 16 variables were then used to 
construct the confusion matrix for each of the output variables. Specifically, a confusion matrix was 
created for the detection of COVID-19 cases (Figure 5-a), another for determining severe cases (Figure 
5-b), one for identifying cases requiring intubation (Figure 5-c), and one more for cases needing 
admission to the Intensive Care Unit (Figure 5-d). 

Figure 5 presents the confusion matrix for each output variable and their respective Sensitivity, 
Specificity, and Accuracy values using the CART model. 
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4. Discussion 
The CART model was presented for the detection of COVID-19 based on the symptoms exhibited 

by a patient, and, in the case of a positive diagnosis, for predicting whether the case will be severe, 
require intubation, or necessitate admission to the Intensive Care Unit (ICU). The initial results showed 
that the best accuracy for the CART model was obtained by using 85% of the total samples for the 
training set and 15% for the test set, achieving an accuracy of 82.28% with 5-fold cross-validation in all 
experiments. However, by applying the Entropy division criterion, CART increased its accuracy by 
0.14%. When other parameters such as maximum depth and division strategy type were considered, 
among others, CART reached an accuracy of 86.90%. Subsequently, by using a Stepwise variable 
selection process, consisting of alternating Forward and Backward methods, an accuracy of 87.04% was 
achieved by using 16 variables determined through the variable selection process. Additionally, by using 
the confusion matrix, the following accuracy values were obtained: 0.7758 for COVID-19 detection, 
0.8110 for severe cases, 0.9449 for intubation-required cases, and 0.9529 for ICU admission-required 
cases. The results shown in Figure 5 indicate that the specificity metric values are acceptable, being 
above 0.85 for each of the expected outputs, meaning that CART classifies negative cases reasonably 
well. However, the sensitivity values provided by the CART model are generally low, indicating that 
CART does not adequately detect positive cases. 
 
5. Conclusions 

In this work, the CART model was presented for the detection of COVID-19 and, in the case of a 
positive diagnosis, for predicting whether the case will be severe, require intubation, or necessitate 
admission to the Intensive Care Unit (ICU), based on the symptoms exhibited by a patient. The 
SINAVE dataset, provided by the government of Mexico City, was used for this purpose. Different 
parameters were tested on the CART model to obtain the best performance, ultimately achieving an 
accuracy of 87.04%. Additionally, metrics such as sensitivity, specificity, and accuracy were used based 
on the confusion matrix for each of the expected outputs. For the detection of COVID-19, as well as the 
prediction of severe cases, cases requiring intubation, and those requiring ICU admission, acceptable 
accuracy values were obtained: 0.7758, 0.8110, 0.9449, and 0.9529, respectively. This study shows the 
importance of using non-invasive techniques by using only the symptoms presented by patients as a 
first analysis or approach in the detection of COVID-19 instead of invasive techniques such as the PCR 
test or the Antigen test for the detection of COVID-19. 
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