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Abstract: This study presents an innovative approach to fault detection in large-scale photovoltaic (PV) 
systems by leveraging the capabilities of drones and machine vision technologies. The proposed method 
is unsupervised, eliminating the need for manual intervention in identifying and analyzing faults in PV 
installations. By employing drone vision techniques equipped with high-resolution cameras and 
advanced image processing algorithms, comprehensive visual data of solar panels were captured. The 
collected images were processed for automatic detection and classification of various faults such as 
cracks, hotspots, and shading issues. The integration of these technologies not only enhances the 
accuracy of fault detection but also significantly reduces the time and cost associated with traditional 
inspection methods. This approach ensures the efficient and reliable operation of PV systems, 
contributing to the sustainable generation of solar energy. The original dataset employed in this work 
can be found at https://doi.org/10.17632/5ssmfpgrpc.1. 
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1. Introduction  

The implementation of drones equipped with thermal and optical sensors has revolutionized the 
inspection process, allowing for comprehensive, rapid, and cost-effective monitoring of expansive solar 
fields. Moreover, the global demand for renewable energy has spurred the rapid expansion of 
photovoltaic (PV) systems, making solar power one of the fastest-growing sources of electricity [1]. As 
PV installations scale up in size and number, the need for efficient and effective monitoring and 
maintenance of these systems becomes increasingly important [2]. Traditional inspection methods, 
often manual and labor-intensive, are not only time-consuming but also pose significant challenges in 
terms of accuracy and consistency, particularly in large-scale deployments [3]. To address these 
challenges, there is a growing interest in leveraging advanced technologies such as drones and machine 
vision [4]. In the pursuit of enhancing the reliability and efficiency of PV systems, the integration of 
drones and machine vision technologies for unsupervised fault detection has emerged as a promising 
frontier. 

Drones offer a flexible and cost-effective platform for data collection, capable of capturing high-
resolution images of vast PV arrays in a fraction of the time required by ground-based inspections [5]. 
When combined with machine vision algorithms, these images can be processed and analyzed to detect 
and classify faults autonomously, without the need for human oversight [6, 7]. There are numerous 
studies that have utilized the techniques of image processing for the detection and analyses of large PV 
systems faults [8]. Different advanced imaging sensors-based UAV devices have been used to capture 
high-resolution PV panel images [9]. To get the data ready for additional analysis, these images go 
through different preprocessing stages, which include reduction of noise, enhancement of contrast, and 
normalization [10].  
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Faults in PV systems can be detected primarily by identifying the different anomalies such as cracks, 
hotspots, and shading effects in the images [11]. Different algorithms of machine vision have also been 
applied to highlight these anomalies, specifically, techniques like histogram equalization and 
thresholding are utilized to ameliorate the visibleness of possible faults, before applying image 
segmentation to isolate areas of interest, facilitating targeted analysis [12]. After completing the 
segmentation, analysis of each segment is followed by pattern recognition and algorithms of 
classification to establish the fault and its type. The design of the system is such that it works without 
being supervised, using models of machine learning that are trained on various datasets of labeled 
anomalies. With this approach, the detected faults can be classified automatically without manual 
support, and thus meaningfully optimizing the maintenance time and efforts [13]. Researchers have 
implemented video processing that aids in understanding the health of PV systems [14] whereby 
continuous footage of solar panels is captured by quadcopter equipped with video cameras. 

Frame-by-frame, the captured solar panels are then processed for the detection of dynamical 
changes and invisible faults in static images [15]. The workflow of the video processing is by extraction 
of video feed’s key frames, concentrating on frames with substantial changes or possible faults, and the 
processing of these key frames is by similar techniques of image processing [16]. However, temporal 
changes analysis is also allowed by video processing, such as hotspots progression or shading 
widespread over time [17]. The process for fault detection is enhanced by using motion detection and 
algorithm for tracking to monitor anomalies across multi-frames [18]. By this, the faults development 
and the impact on the PV system overall performance can be monitored by the system. By combining 
image and video processing, there is an assurance of a more accurate and robust mechanism for 
detecting faults [19]. 

In furtherance of the existing related work, this paper explores the application of an unsupervised 
fault detection system that integrates drone-based imaging and machine vision for large PV systems. It 
delves into the intricate dynamics of large PV systems, employing state-of-the-art image processing 
techniques and machine learning algorithms to detect and analyze faults in an unsupervised manner. 
The work in this study is a step towards developing a method that can identify various types of faults, 
such as cracks, hotspots, and shading, with high accuracy and minimal human intervention. By 
enhancing the efficiency and reliability of PV system maintenance, the approach contributes to the 
sustainable and uninterrupted operation of solar power plants, for a more resilient and greener energy 
grid. 

 

2. Materials and Methods 
The main hardware components that comprise the materials employed in carrying out the 

experiment in this study are DJI Mavic 3 Thermal drone, solar panels, PV modules, inverter, storage 
battery, DC load, and solar charge controller. The main software materials are Windows 11 Home, 
Open CV, Python 3.x with libraries such as Flask, NumPy, and Matplotlib, computer vision algorithms 
with edge detection algorithm, morphological operations, and feature extraction algorithm plus the 
techniques of histogram equalization and thresholding. 
 
2.1. Application of Image Processing  

This study foundation lies in utilizing the techniques of image processing for detecting and 
analyzing large PV systems faults. Advanced imaging sensors-based drones are employed in capturing 
PV panel images of high-resolution. To get the data ready for additional analysis, these images go 
through different preprocessing stages, which include reduction of noise, enhancement of contrast, and 
normalization. PV faults are normally detected by identifying anomalies such as cracks, hotspots, and 
shading effects in the images, and these anomalies are highlighted by employing the algorithms of 
machine vision, including detection of edge, morphological operations, and extraction of features. 
Specifically, potential faults are made visible by histogram equalization technique, thresholding 
technique, etc. [20]. Areas of interest are then isolated by image segmentation, through which analysis 
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of the target is facilitated. After completing the segmentation, analysis of each segment is followed by 
pattern recognition and algorithms of classification to establish the fault and its type. The design of the 
system is such that it works without being supervised, using models of machine learning that are 
trained on various datasets of labeled anomalies. With this approach, the detected faults can be classified 
automatically without manual support, and thus meaningfully optimizing the maintenance time and 
efforts. Figure 1 shows the system description. 

 

 
Figure 1. 
System description showing (a) Satellite (b) DJI Mavic 3 Thermal drone (c) Solar PV (d) Remote control (e) PC [21]. 

 
2.2. Application of Video Processing 

To provide a complete overview of the health of the PV system, video processing is implemented in 
addition to image processing. The solar panels’ continuous footage is captured by video camera-
embedded drones. Frame-by-frame, the captured solar panels are then processed for the detection of 
dynamical changes and invisible faults in static images. The workflow of the video processing is by 
extraction of video feed’s key frames, concentrating on frames with substantial changes or possible 
faults, and the processing of these key frames is by similar techniques of image processing. However, 
temporal changes analysis is also allowed by video processing, such as hotspots progression or shading 
widespread over time. The process for fault detection is enhanced by using motion detection and 
algorithm for tracking to monitor anomalies across multi-frames. By this, the faults development and 
the impact on the PV system overall performance can be monitored by the system. By combining image 
and video processing, there is an assurance of a more accurate and robust mechanism for detecting 
faults.  

As shown in Figure 1, the detailed images and videos of a solar PV array are captured by the 
deployed thermal camera-embedded DJI Mavic 3 drone. The drone flies over the installed solar, 
analytically gathering visual data that shows the PV panels’ thermal characteristics. This data 
comprises images and videos, which are then moved to a computer for processing by specialized 
application. The thermal data are analyzed during the processing for the detection of anomalies, which 
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are indicative of solar panels faults. This method presents a complete and effective approach for large 
PV systems monitoring and maintenance. Figure 2 shows the workflow of the proposed system. 
 

 
Figure 2.  
Workflow of the proposed systems. 

 
As shown in Figure 2, drone was employed and hovered over the PV modules to start capturing 

thermal data. The thermal camera-embedded drone records the solar panels’ conditions. PV array’s 
thermal images and videos are captured by the drone, including gathering of complete data on the 
external temperature and possible anomalies across the solar panels. After data collection, the thermal 
images and videos are transmitted by the drone to a computer for more processing and analysis. The 
transmitted data go through preprocessing stages like reduction of noise and normalization for the 
enhancement of the images and videos’ quality and clarity, thereby enabling their suitability for analysis. 
The pre-processed data are handled by the algorithms of machine vision for anomalies detection, such as 
hotspots, cracks, or shading, that might be indicative of PV panels’ faults. The detected faults are 
evaluated at the analysis stage, the types of the detected faults and their exact locations on the solar 
panels are also determined and pinpointed at this stage. 
 
2.3. Tools for Enhancing Visual Data Captured by Drones 

Morphological transformation operations and canny edge algorithms are the essential tools used for 
the enhancement of visual data captured by the drones. 
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2.3.1. Morphological Transformation 
Morphological transformation operations are essential tools for enhancing the visual data captured 

by drones [22]. When monitoring PV systems, the images or videos obtained often contain noise and 
artifacts that can obscure the detection of faults like cracks, hotspots, or shading. Morphological 
operations help refine the images, making the analysis more accurate [23]. The application of the 
operations is as follows: 

a) Dilation: This operation can be used to emphasize or connect small features in the images, such as 
cracks or edges of hotspots, making them more detectable by subsequent processing steps. 

b) Erosion: By applying erosion, the algorithm can reduce noise and eliminate small, irrelevant 
details that might interfere with the accurate detection of faults. 

c) Opening and closing: These operations are combinations of dilation and erosion that help in 
cleaning up the images further. Opening can be particularly useful for removing small objects or noise, 
while closing is effective for filling in small holes or gaps within larger objects, such as minor 
discontinuities in panel surfaces. 
 
2.3.2. Canny Edge Algorithm 

The Canny edge algorithm is a powerful technique used for detecting edges in images with high 
precision [24]. In the context of PV system monitoring, this algorithm is instrumental in identifying 
the boundaries of various faults, such as cracks or physical defects on the panels [25]. The application of 
the algorithm of Canny edge is as follows: 

a) Edge detection: The Canny algorithm detects the edges of anomalies by identifying points of 
sharp intensity changes in the images. This is critical for isolating faults, as it allows the detection 
system to focus on the exact locations where the panel's structure is disrupted. 

b) Noise reduction: By incorporating a Gaussian blur in the initial step, the Canny algorithm helps 
reduce the impact of noise on the edge detection process, ensuring that only significant edges (faults) are 
identified. 

c) Non-maximum suppression and thresholding: These steps ensure that the detected edges are 
precise and distinct, minimizing false positives. This precision is essential for accurately pinpointing 
defects on the PV panels, which can then be addressed through maintenance. In essence, the Canny edge 
algorithm provides a robust and reliable method for detecting the exact boundaries of faults in PV 
panels, enabling precise and targeted maintenance efforts. This ensures the efficient operation of large-
scale PV systems, as identified issues can be promptly addressed, minimizing downtime and maximizing 
energy production. Figure 3 shows the usefulness of morphological operation and Canny edge 
algorithms as tools for enhancing the visual data captured by drones. 
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Figure 3. 
Operational sequence of morphological operation and Canny edge algorithms as tools 
for enhancing the visual data captured by drones. 

 
2.4. Segmentation Based on Hot Pixels Seeds 

Segmentation based on hot pixel seeds using various algorithms helps enhance and accurately detect 
anomalies in images of PV systems. Here, we provide an overview of the algorithms mentioned, explain 
their process, and illustrate how they might integrate with machine learning for segmentation. 
 
2.4.1. Box Blur 

Box blur, also known as a mean filter, averages the pixels within a kernel or window around each 
pixel in an image. This reduces image noise and smooths the image, which can help in reducing false 
positives when detecting hot pixels. In a machine learning context, a box blur might be used in a pre-
processing pipeline to smooth images before feeding them into a neural network or other machine 
learning models. For a given pixel (i,j), the output pixel value after box blur is given as illustrated by 
Equation (1): 
 

𝐼blur(𝑖, 𝑗) =
1
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I is the input image. 
K is the total number of pixels in the kernel. 
k is the size of the kernel. 
 
2.4.2. Gaussian Blur 

Gaussian blur uses a Gaussian function to calculate the transformation of each pixel, effectively 
smoothing the image and reducing noise while maintaining edge integrity better than the box blur. The 
Gaussian blur of an image is given as illustrated by Equation (2): 

𝐼blur(𝑖, 𝑗) =
1

𝐾
∑ = −

𝐾
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𝐾

2
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 ∑ = −
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𝑛
 𝐺(𝑚, 𝑛) . 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)        (2) 

where, 

𝐺 (𝑚, 𝑛) =
1

2𝜋𝜎2 
𝑒 −

𝑚2 + 𝑛2

2𝜎2
 

𝜎 is the standard deviation, determining the spread of the blur. 
 
2.4.3. Median Blur 

Median blur replaces each pixel with the median of the surrounding pixel values. This is 
particularly useful for removing salt-and-pepper noise while preserving edges. The output of the median 
blur for a given pixel (i,j) is illustrated by Equation (3): 
 

𝐼blur(𝑖, 𝑗) = Median({ 𝐼 (𝑖 + 𝑚, 𝑗 + 𝑛) | 𝑚, 𝑛 𝜖 Kernel })        (3) 
 
2.4.4. Histogram Equalization 

Histogram equalization enhances the contrast of an image by spreading out the most frequent 
intensity values, making it easier to identify features such as hot pixels. The formula for histogram 
equalization is illustrated by Equation (4): 
 

𝐼eq(𝑖, 𝑗) = floor (
(𝐿 − 1) × 𝐶𝐷𝐹(𝐼 (𝑖, 𝑗))

Total Pixels
)       (4) 

where, 
L is the number of intensity levels. 
CDF is the cumulative distribution function of the intensity histogram. 
 
2.4.5. Segmentation Based on Hot Pixels Structured 

The workflow and flowchart of the segmentation process based on hot pixels structured are 
presented in this section. 
 
A) Workflow 
Start 
Initiate the segmentation process 
Load input image 
Load the original image that needs to be processed 
 Preprocessing technique selection 
Decision point: Choose a preprocessing technique 
If box blur: 
Apply box blur to the image 
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Box blur( 𝐼 ) =  
1

𝑁2
 ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)

𝑘

𝑗= −𝑘

𝑘

𝑖= −𝑘

 

 
Subtract the blurred image from the original 
 

DiffBox ( 𝑥, 𝑦 ) =   𝐼(𝑥, 𝑦) − Box blur( 𝐼(𝑥, 𝑦)) 
 
Highlight hot pixels where DiffBox( x,y )>T  (where T is a threshold) 
If Gaussian blur: 
    Apply Gaussian blur to the image 

Gaussian blur ( I ) = 
1

2𝜋𝜎2 
𝑒 −

𝑥2+𝑦2

2𝜎2  

 
Subtract the blurred image from the original 
 

DiffGaussia  ( 𝑥, 𝑦 ) =   𝐼(𝑥, 𝑦) − Gaussian Blur( 𝐼(𝑥, 𝑦)) 
 
Identify hot pixels where DiffGaussian (x, y) > T 
           If histogram equalization: 
Apply histogram equalization to the image 
 

𝐼eq( 𝑥, 𝑦 ) = HE( 𝐼 ( 𝑥, 𝑦) ) 
 
Enhance contrast to facilitate hot pixel detection 
 

DiffHE ( 𝑥, 𝑦 ) = 𝐼eq( 𝑥, 𝑦) − 𝐼( 𝑥, 𝑦 ) 
 
Highlight hot pixels where DiffHE (x, y) > T 
            If Median blur: 
  Apply median blur to the image 

Median blur ( 𝐼( 𝑥, 𝑦) = Median{𝐼 (𝑥 + 𝑖, 𝑦 + 𝑗)} 
 
Compare the blurred image to the original. 

DiffMedian ( 𝑥, 𝑦) = 𝐼(𝑥, 𝑦) − Median blur( 𝐼 (𝑥, 𝑦)) 
Find hottest pixel 
Calculate the hottest pixel value 

Hotpixel  max
(𝑥,𝑦)

𝐼(𝑥, 𝑦) 

Determine the location of the hottest pixel 
Generate output and graph 
Output the processed image with hot pixels identified 
Display the hottest pixel value and location 
Generate a graph visualizing the pixel intensities 

Graph = { (𝑥, 𝑦, 𝐼 (𝑥, 𝑦)|(𝑥, 𝑦) ∈ Image dimensions} 
Combine and validate hot pixels 
Collect potential hot pixels from all methods 
Cross-validate and refine the selection 
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Validated hot pixels = ⋃ Hot pixels from all methods 

Segmentation 
Segment the image based on validated hot pixels 

Segmented image = { 𝐼(𝑥, 𝑦) ∈ Validated Hot Pixels } 
Mark regions containing hot pixels 
Output segmented Image 
Produce the final segmented image with hot pixels identified 
End 
Conclude the segmentation process 
 
B) Flowchart 

 
Figure 4. 
Segmentation based on hot pixels seeds. 

 
Hot pixel spots in the context of solar PV systems can be dangerous for several reasons, among 

which are: 



612 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 603-626, 2025 
DOI: 10.55214/25768484.v9i2.4542 
© 2025 by the authors; licensee Learning Gate 

 

a) Heat accumulation: Hot pixel spots on solar panels indicate localized areas where the panel is 
absorbing more sunlight and converting it into heat rather than electricity.  

b) Reduced efficiency: Solar panels are designed to convert sunlight into electrical energy efficiently. 
c) Cell degradation: Prolonged exposure to hotspots can accelerate the degradation of solar cells. 
d) Potential for cell failure: Hotspots can create thermal stress on the solar cells, increasing the risk 

of cell failure or permanent damage. 
e) Fire hazard: In extreme cases, particularly with concentrated hotspots, there is a risk of fire 

hazard. 
f) Impact on system performance: Beyond affecting individual panels, hotspots can impact the 

performance of the entire solar PV system. 
 

3. Implementation 
For the validation of our proposed work, we collected images in the Digital Image and Signal 

Processing (DISPLAY) lab at Tshwane University of Technology (TUT) for our remote PV system. 
The system includes two panels of Jinko JKM200M-72 modules, each producing 200 W. The PV 
modules’ main specifications in the DISPLAY lab are shown in Table 1. The entire system was 
assembled in our lab, ensuring all required components, connections, measurements, and mounting were 
carefully managed. 
 
Table 1. 
System specifications of the JKM200M-72 module. 

Electrical specification (Nominal) 
Max power 200 W 

Open circuit voltage 45.6 V 
Short circuit current 5.8 A 

Maximum power voltage 36.9 V 

Maximum power current 5.42 A 
Maximum series fuse current 10 A 

Maximum system voltage 1000 V 
Mechanical specifications 

Cells 72 
Module dimensions 62.2 × 31.8 in. 

Module thickness 1.4 in. 
Weight 32 lb 

Limits 
Temperature of operating module -400F to +1850F 

Storm resistance/Static load Tested to IEC 61215 for loads of 5400 Pa (113 psf) 

 
The PV system’s schematic diagram is illustrated in Figure 5, while the complete installed system in 

DISPLAY is shown in Figure 6. Alongside our collected data, we also utilized images of PV modules 
taken at the Soshanguve South campus of TUT during drone flyovers. Additionally, we included images 
sourced online, used with permission. 
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Figure 5. 
Schematic diagram of stand-alone trolley PV solar. 

 
The DJI Mavic 3 Thermal is a state-of-the-art drone specifically designed for thermal imaging and 

inspection tasks, offering a suite of advanced features ideal for detailed analysis of PV systems. Below 
are the key specifications that underscore its capabilities: 
 
3.1. DJI MAVIC 3 Thermal Specifications 
a) Thermal Imaging Camera: 
Resolution: 640 × 512 pixels 
Frame rate: 30 Hz 
Field of view (FOV): 61° × 47° 
Thermal sensitivity (NETD): ≤ 50 mK at f/1.0 
Temperature measurement range: -20°C to 150°C, 0°C to 500°C (High gain mode) 
Image processing enhancements: Features integrated with advanced image processing technologies, 
including MSX for enhanced image detail. 
b) Visual Imaging Camera: 
Sensor: 1/2" CMOS, 12 MP 
Video resolution: Up to 4K (3840 × 2160) at 30fps 
Field of view (FOV): 56° horizontal 
Digital zoom: Capable of up to 32× digital zoom for close inspection. 
c) Flight Performance: 
Maximum flight time: Approximately 45 minutes under optimal conditions. 
Maximum speed: 72 km/h in sport mode. 
Maximum transmission distance: 15 km, supported by the O3+ transmission system. 
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Obstacle detection: Provides omnidirectional sensing (forward, backward, upward, downward, and 
lateral) for enhanced flight safety. 
d) Drone Design: 
Weight: Approximately 920 grams. 
Dimensions: 221 × 96.3 × 90.3 mm (folded), 347.5 × 283 × 107.7 mm (unfolded). 
e) Additional Features: 
Satellite navigation: Supports GPS, GLONASS, and Galileo. 

RTK compatibility: Optional integration with the D-RTK 2 Mobile Station for enhanced 
positioning accuracy. 

Intelligent flight modes: Includes smart tracking, waypoint flight, and AI spot-check for efficient 
and automated inspection processes. 

The capabilities of the DJI Mavic 3 Thermal’s high-resolution thermal and visual imaging, in 
addition to its advanced flight features, make it an exceptional tool for efficient and precision PV 
systems inspections. Its modern design and portability further distinguish it from other thermal 
imaging solutions, such as the FLIR Vue Pro, by providing a comprehensive and versatile inspection 
platform. 
 

 
Figure 6. 
In the DISPLAY Lab at TUT showing implemented (a) PV module (b) Solar panels (c) DJI Mavic 3T 
equipped with an integrated thermal camera [26] 

 
In the DISPLAY lab, the system’s external defects were simulated by placing polystyrene materials 

at the back of the PV panel, adhesive paper on the front glass, and a small piece of gum. To further test 
the system, an input image from an online source was also utilized. Thermal and visual data were 
processed by utilizing Python 3.x, Windows 11 Home environment, Intel Core i5-4210M CPU @ 2.60 
GHz, and 8 GB of RAM. The images were processed and analyzed by OpenCV, Python, with libraries 
such as Flask, NumPy, and Matplotlib. The pip commands were used for the installation of libraries, 
accelerating the implementation of image processing tasks, such as thermal anomaly detection. 
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4. Results and Discussions 
This section presents and discusses the results obtained from the experiment carried out in this 

study. Figure 7 illustrates the interface of the PV module fault detection and demonstrates its 
functionality with images. 
 

 
Figure 7. 
Illustration of application's interface, demonstrating its functionality with images. 

 
4.1. Effects of Morphological Transformations and Canny Edge Detector  

The implementation of morphological transformations and canny edge detector was for the hotspots 
detection in the PV module. As illustrated in Figure 8, the thermal image was processed using the 
following techniques to enhance and detect hotspots: 

(a) Filtered image: The initial raw thermal image was subjected to a box blur filter, which smooths 
the image and reduces noise, preparing it for further analysis.  

(b) Equalized image: Following filtering, histogram equalization was applied to the image. This step 
improves contrast, making features more distinct and easier to analyze.  

(c) Edge-detected image: The contrast-enhanced image was then processed using the Canny edge 
detector, which highlights the edges and boundaries within the image, revealing potential hotspots.  

(d) Morphological operation result (Dilation): Finally, a morphological dilation operation was 
performed on the edge-detected image. This technique expands the detected edges, making them more 
prominent and continuous, thus facilitating better identification of significant features. 
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Figure 8. 
Enhancement and detection of hotspots using filtered image, equalized image, edge detected image, and dilation. 

 
4.2. Effects of Gaussian Blur and Morphological Erosion  

The segmentation of thermal hotspots in the PV module was achieved using Gaussian blur and 
morphological erosion, alongside the Canny edge detector, as illustrated in Figure 9. To effectively 
identify hotspots in thermal images, we applied a series of sophisticated image processing methods:  

(a) Initial filtering: We started with the raw thermal image and applied Gaussian blur to it. This 
step smooths out the image and reduces noise, which prepares the image for clearer subsequent 
processing.  

(b) Contrast enhancement: Next, we enhanced the image’s contrast using histogram equalization. 
This adjustment makes the features in the image stand out more sharply, facilitating better detection of 
thermal anomalies.  

(c) Edge detection: With the enhanced image, we used the Canny edge detection algorithm. This 
technique highlights the edges and boundaries within the image, revealing the contours of potential 
hotspots.  

(d) Morphological refinement (Erosion): Finally, we performed morphological erosion on the edge-
detected image. Erosion helps to eliminate small unwanted details and noise, refining the edges to better 
delineate the significant thermal features and improve the accuracy of hotspot detection. These steps 



617 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 603-626, 2025 
DOI: 10.55214/25768484.v9i2.4542 
© 2025 by the authors; licensee Learning Gate 

 

together provide a comprehensive approach to analyzing thermal images, ensuring precise identification 
and evaluation of hotspots.  
 

 
Figure 9. 
The segmentation of thermal hotspots in the PV module using Gaussian blur 
and morphological erosion, alongside the Canny edge detector. 

 
Figure 10 presents the pixel intensity graph generated from the processed thermal image utilizing 

the described techniques. This graph offers an in-depth view of how pixel intensities are distributed 
throughout the image, which is essential for analyzing thermal anomalies. By applying morphological 
refinement through erosion, the graph highlights the refined intensity patterns, making it easier to 
identify and assess significant thermal features and anomalies. 
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Figure 10. 
Histogram of pixel intensities. 

 
Figure 11 demonstrates the detection of simulated defects on the PV module. To mimic a small 

external defect, a piece of gum was placed on the glass surface of the module, which was identified as a 
hotspot. Additionally, a small piece of polystyrene was positioned behind the panel and glued to its back 
surface. Both the gum on the glass and the polystyrene on the back of the panel were successfully 
detected, highlighting the system's ability to identify various thermal anomalies. 
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Figure 11. 
Demonstration of detection of simulated defects on the PV module. 

 
An input thermal image, obtained with permission from an online source [13] was used to evaluate 

the effectiveness of the detection algorithms. This image contains PV modules with known defects and 
was specifically chosen to test the fault detection capabilities of the applied algorithms. Figure 12 
presents the results, showcasing how the algorithms successfully identified the defects in the PV 
modules from the input image. 
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Figure 12. 
Result showcasing how the algorithms successfully identified the defects in the PV modules from the input image. 

 
Figure 13 illustrates the pixel intensity graph derived from the processed thermal image using the 

described techniques. The graph provides a detailed view of the distribution of pixel intensities across 
the image, which is crucial for analyzing thermal anomalies. 
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Figure 13:  
Illustration of the pixel intensity graph derived from the processed thermal image. 

 
4.3. Effects of Opening Techniques  

The opening operation is a morphological transformation used in image processing to clean up 
small objects or noise from an image. The combination of these two operations, first erosion and then 
dilation, makes the opening operation particularly effective at removing small, unwanted features while 
preserving the shape and structure of larger, relevant objects in the image. This is useful in scenarios 
like image preprocessing, where the goal is to clean up the image before further analysis, such as 
detecting larger features or objects. Figure 14 illustrates the application of the morphological 
transformation known as "Opening" within the fault detection process. This operation, consisting of 
erosion followed by a dilation, effectively removes small objects or noise from the image. In the context 
of PV system analysis, the opening operation helps in eliminating minor artifacts and irrelevant details, 
thus enhancing the visibility of significant features such as cracks, hotspots, or other structural 
anomalies in the PV modules. By cleaning up the image, opening ensures that the subsequent analysis 
focuses on more prominent and relevant faults, improving the overall accuracy of the fault detection 
process. 
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Figure 14. 
Application of morphological transformation known as "Opening" within the fault detection process. 

 
4.4. Effects of Closing Techniques  

The closing operation, as shown in Figure 15, is a morphological transformation that involves 
performing a dilation followed by erosion. This operation is particularly useful in the context of image 
processing for PV systems, where it helps to fill in small gaps, holes, or discontinuities within larger 
objects. In the context of fault detection for PV modules, the closing operation smooths the contours of 
detected features, connects adjacent broken parts of a fault, and fills in small cracks or gaps that may 
have appeared due to noise or imaging artifacts. For example, in thermal images of PV modules, there 
may be small gaps within regions that should be uniformly hot due to faults like hotspots. The closing 
operation can fill these gaps, making the fault areas more coherent and easier to detect. This enhances 
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the accuracy of fault detection by ensuring that minor discontinuities do not lead to missed or 
fragmented fault detection. 
 

 
Figure 15. 
Application of morphological transformation known as "Closing" within the fault detection process. 

 
The Simple Linear Iterative Clustering (SLIC) algorithm is a popular method for superpixel 

generation. Superpixels are groups of pixels that share similar characteristics, effectively reducing the 
complexity of image processing tasks by working on clusters of pixels rather than individual pixels. 
SLIC is especially useful in segmenting images into meaningful regions based on color and spatial 
proximity. SLIC algorithm and its impact are illustrated in Figure 16. 
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Figure 16. 
Explanation of the SLIC algorithm and its impact on the project. 

 
Throughout this research, several critical observations and advancements were made which are on a 

par with the best results ever obtained in this area of research [13, 26-29]. The deployment of drones 
facilitated the collection of high-resolution images, providing detailed visual and thermal data crucial for 
identifying anomalies such as hot pixels, cell cracks, and delamination in PV modules. The use of 
various image preprocessing techniques such as Box blur, Gaussian blur, Median blur, and Histogram 
equalization proved effective in enhancing image quality, which is paramount for accurate fault 
detection. Furthermore, the application of unsupervised machine learning algorithms enabled the 
autonomous detection of faults without the need for pre-labeled data. Techniques such as clustering and 
anomaly detection were instrumental in distinguishing between normal and faulty conditions. This 
approach not only reduced the dependency on expert supervision but also minimized human error, 
leading to more reliable and consistent fault detection outcomes [30]. 

The integration of machine vision with thermal imaging also played a pivotal role in enhancing the 
detection of temperature anomalies, which are often indicative of potential faults. By analyzing thermal 
patterns and correlating them with visual data, the system was able to identify subtle defects that might 
otherwise be overlooked. This multimodal analysis provided a more holistic understanding of the health 
and performance of PV modules. The findings of this research underscore the immense potential of 
leveraging drones and machine vision for unsupervised fault detection in large PV systems. The 
automated nature of this approach not only improves the efficiency of fault detection but also 
significantly reduces operational costs and downtime. As the demand for renewable energy continues to 
grow, ensuring the optimal performance and longevity of PV systems becomes increasingly critical. The 
methodologies and technologies explored in this study offer a robust framework for advancing the 
maintenance and monitoring of solar installations. The original dataset employed in this work is 
publicly and freely available for scientific community use at https://doi.org/10.17632/5ssmfpgrpc.1 
[26]. 
 

5. Conclusions 
Automated fault detection and analysis for large PV systems using PV module fault detection in 

drone vision system has been presented in this study. The integration of drones and machine vision for 
unsupervised fault detection represents a significant leap forward in the management of PV systems. By 
harnessing the power of these technologies, we can enhance the sustainability and efficiency of solar 
energy production, contributing to a more resilient and environmentally friendly energy infrastructure. 
Our future research would focus on refining these techniques and exploring their applicability across 
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different types of renewable energy systems, paving the way for a smarter and more sustainable energy 
future. 
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