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Abstract: In cybersecurity, recognizing and mitigating malicious URLs represents paramount challenges 
due to their various cyber threats, including phishing, malware distribution, and fraud. This paper aims 
to create a URL detection system that employs machine learning and data mining methods. The proposed 
system comprises several steps: data acquisition, preprocessing, feature selection, URL tokenization, and 
classification. First, we acquire a recent dataset containing both malicious URLs and normal ones and 87 
numerical features. The features are preprocessed by scaling them using a standard scaler to prevent the 
model from being biased towards certain features. Furthermore, Fick's Law metaheuristic optimization 
algorithm (FLA) is used for feature selection, utilizing the Light Gradient Boosting Machines (LGBM) 
accuracy as a fitness function for the algorithm, resulting in a 50% feature reduction. The URLs are 
tokenized using Bidirectional Encoder Representations from Transformers (BERT) and converted to a 
feature vector. The combined BERT feature vector and FLA-selected features are input for the 
Categorical Boosting (CatBoost) classifier, achieving 96.59% accuracy, 96.75% precision, 96.41% recall, 
and 96.58% F1-score. The system surpasses all other machine learning and deep learning methodologies 
in its validation. Additionally, the proposed system outperformed the results of previous studies that 
utilized the same dataset. The proposed system is an effective and efficient approach for detecting 
malicious URLs, safeguarding digital assets, and ensuring the integrity of online environments. 
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1. Introduction  

Communication technologies have profoundly influenced the advancement and expansion of 
businesses across several domains, including social networking, e-commerce, and online banking. 
Unfortunately, the technology is accompanied by sophisticated methods for scamming and attacking 
consumers. These assaults use rogue websites that deceive users into revealing crucial information, 
ultimately resulting in identity or financial theft or the installation of malware on the user's machine [1].  

Users usually have insufficient understanding of Uniform Resource Locators (URLs), complicating 
their ability to ascertain the trustworthiness of web pages. Ad redirection, concealed URLs, alternate 
URLs, or typographical errors enhance consumers' susceptibility to compromised URL assaults. 
Offenders create counterfeit websites that resemble legitimate websites and distribute them through spam 
emails, social media, or Short Message Service (SMS) during these attacks [2]. 

Many attack strategies exist, including SQL injection, phishing, social engineering, denial-of-service, 
and man-in-the-middle attacks. The constraints of conventional security management solutions are 
intensifying due to the significant rise in security risks and the fast evolution of IT technology [3]. 
Malicious URLs are URLs that have been used for cyberattacks. It is estimated that nearly one-third of 
all websites are potentially malicious [4] and thus frequently used to commit cybercrimes. 

Threats employing harmful URLs encompass Spam, Phishing, Drive-by-Download, and Social 
Engineering [5].  
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Drive-by-Download describes the indiscriminate acquisition of malware brought on by a URL visit. 
These attacks are frequently carried out by taking advantage of flaws in software by inserting malicious 
code using JavaScript or plugins [6]. Social engineering, phishing, and other tactics trick visitors into 
divulging private information by impersonating trustworthy websites [7]. Spam refers to the utilization 
of appealing communications for phishing or promotional purposes. 

Google's data indicate that 10,000 websites are banned daily due to malicious behavior [8]. The 
Phishing Activity Trends Report by the Anti-Phishing Working Group (APWG) indicates that the 
number of phishing websites recorded in the first quarter of 2022 surpasses one million [9]. The APWG 
research identifies the industrial sectors most frequently targeted by attackers, as seen in Figure 1. 
Financial services, including banks, are especially susceptible to phishing, accounting for 23.6% of all 
assaults. Webmail and Software-As-A-Service providers have been targeted by 20.5%, while fewer 
assaults (3.8%) were aimed at the logistics and shipping industries [9]. 

This trend persists, as evidenced by the most recent data from the APWG, which indicates that over 
1.2 million distinct phishing attacks were reported in the first half of 2023. Additionally, the threat was 
persistent and expanding, as evidenced by the 47% increase in phishing attempts in the fourth quarter of 
2023 compared to the previous quarter [7]. Statistics from the U.S. government Internet Crime 
Complaint Center (IC3) for 2022 indicated that exploitation, fraud, and internet-based theft are pervasive, 
resulting in significant financial losses of $10.3 billion that year. In 2022, the IC3 recorded an astonishing 
800,944 complaints about email account compromise (EAC) and business email compromise (BEC) [10]. 
Consequently, efficient methods for identifying fraudulent URLs can significantly mitigate cybersecurity 
problems. 
 

 
Figure 1. 
Targeting percentage of industry sectors by malicious URL attacks. 

 
Maintaining a comprehensive list of harmful URLs is nearly unfeasible, mainly when new URLs are 

created daily [11]. Attackers use a variety of strategies to get around blacklists, such as fast-flux, which 
hosts webpages using automatically generated proxies; algorithmic creation of new URLs; and multi-
attack execution to change the attack signature and make it invisible to tools that target particular 
signatures [12]. 

Thus, traditional methods of URL analysis that rely on static signatures or blacklists, struggle to 
keep pace with the evolving tactics of cybercriminals. Employing data mining techniques for malicious 
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URL recognition can address this challenge by enabling more efficient and accurate identification of 
malicious URLs capable of detecting new and previously unseen threats in real-time. This capability can 
help organizations and individuals prevent cyber-attacks and safeguard sensitive information. 

The paper aims to create a system that employs data mining and machine learning methodologies to 
detect malicious URLs. The study has the following contributions: 

• The study developed an accurate URL detection framework utilizing the recent Web Page Phishing 
Detection (WPPD) dataset incorporating URL text, syntax, structure, web page content, and 
features from external services.  

• Bidirectional Encoder Representations from Transformers (BERT) is used to tokenize URL text 
and convert it to a feature vector. 

• Fick's Law Algorithm (FLA) is used to select the most essential features from other features in the 
dataset leading to a 50% dataset reduction. 

• The BERT tokens and the FLA selected features are input to the Categorical Boosting (CatBoost) 
classifier which achieved 97% accuracy. 

• The system is contrasted with alternative machine learning techniques, deep learning 
methodologies, and other studies using the same dataset where the proposed system achieved the 
best results. 

The subsequent sections of the paper are structured as follows: The second section comprehensively 
examines the related work that utilizes the WPPD dataset. The third section explains the proposed 
system, describing the WPPD dataset. Then, we explain the proposed methodology's different stages, 
including data preprocessing, feature section, tokenization, and classification. The fourth section 
demonstrates how the proposed system is evaluated and validates its efficiency against previous studies 
and machine learning approaches. The last section concludes the study and provides future 
recommendations on it.  
 

2. Related Work 
The related work that involves developing data mining techniques to identify malicious URLs is 

covered in this section. We emphasize the related work using the WPPD dataset Abdelhakim and Salima 
[13]. Rani, et al. [14] used the WPPD dataset to build a malicious URL detection model. They first 
preprocessed the data to check for missing values, impute them with missing values, and label encode the 
class label column. The dataset was then divided into two parts: a 30% testing set and a 70% training set. 
Using the tree method, they used SHapley Additive exPlanations (SHAP) to select the highest-ranked 20 
features. The selected features are then input for the Random Forest (RF) classifier for training on the 
training set. The model was tested on the test set and achieved 90.28% accuracy, 89.96% precision, and 
91.52% recall. 

Lestari and Ulina [15] developed a system to detect phishing attacks using the WPPD dataset. They 
first preprocessed that data where they normalized it using standard scalar. They then used Analysis of 
Variance (ANOVA) for feature selection, which selected 52 features out of a total of 87 features in the 
dataset. The dataset is divided into 20% for testing and 80% for training. The Deep Neural Networks 
(DNN) model is then employed for detection. Three hidden layers of 128 neurons, an input layer of 52 
features, and an output layer of one neuron determine whether the input URL is phishing. In the input 
and hidden layers, the activation function was the Rectified Linear Unit (ReLU); while sigmoid is used for 
the output layer. The optimization of neural networks was done using the Adam optimizer. The model 
has 95.01% accuracy and 95.05% precision rates.  

Chantar, et al. [16] used the WPPD dataset to develop a website phishing detection model. A genetic 
algorithm selects features while naïve Bayes is used for the detection model. Before feature selection, the 
model achieved 76% precision, 75% recall, 74% F1 score, and 74.8% accuracy. Then, the genetic algorithm 
resulted in a 60% feature reduction. After using the genetic algorithm to select the best features, the 
system achieved 92.7% precision, 92.7% recall, 92.7% F1-score, and 92.6% accuracy. 
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Agagu, et al. [17] developed a prediction system for phishing websites using the WPPD dataset. 
Following preprocessing, which includes label encoding the target, the dataset is divided into a 20% 
testing set and an 80% training set. They used an ensemble voting system combining Categorical 
Boosting (CatBoost), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting (LGBM) for 
prediction. The proposed system achieved 93% accuracy, 92.2% recall, 93.4% precision, and 92.8% F1 
score.  

Manala and Jansen van Vuuren [18] used the WPPD dataset to develop a phishing URL detection 
model. They used random forest feature importance to select the top 20 essential features. They compared 
multiple classifiers, including decision tree, bagging AdaBoost, XGBoost, and the random forest classifier, 
where XGBosst performed best. The proposed model using the random forest for feature selection and 
XGBoost for detection achieved 92.77% accuracy, 92.19% recall, 93.27% precision, and 92.73% F1-score.   

Ouellette, et al. [19] developed a crypto-jacking and phishing detection system from URLs using the 
WPPD dataset. After preprocessing, the dataset was split into a 30% testing set and a 70% training set. 
They did a comparative analysis between multiple feature selectors, including Correlation feature 
selection, Minimum Redundancy Maximum Relevance (mRMR), chi-squared, recursive feature 
elimination, univariate statistical test, permutation feature importance, sequential feature selection, and 
sequential backward selection. They concluded that mRMR is the best among them. They also compared 
different classifiers, including extreme randomized trees (extra tree), Adaptive Boosting (AdaBoost), 
gradient boosting, decision tree, and random forest algorithms, and random forest gave the best results. 
The proposed system using mRMR for feature selection and random forest for detection achieved 95.65% 
recall, 95.01% precision, 95.28% accuracy, and 95.33% F1-score. 

To facilitate the continuous updating of models by distributed nodes based on streams of fresh 
phishing data without data accumulation, Revathi [20] presented a phishing detection model that 
combines federated learning with continual learning. The proposed model used an attention-based 
classifier with residual connections for detection tasks. On the WPPD dataset, the system achieved 96% 
recall, 90% precision, 93% accuracy, and 93% F1 score. 

Al-Sabbagh, et al. [21] built a phishing detection algorithm on the WPPD dataset. They first 
preprocessed the data and cleaned it from noise. They then used the Correlation-based Feature Subset 
Evaluator (CfsSubsetEval) method to select 19 features. Then they transformed the feature space into a 
polynomial kernel and used K-means clustering two cluster data into two clusters (phishing or not) based 
on Euclidean distance. The proposed system achieved 89.2% accuracy, 88.5% precision, 90.1% recall and 
89.3% F1-score. 

Zonyfar, et al. [22] developed a model to classify legitimate websites from phishing ones using the 
WPPD dataset. They presented a hybrid model combining convolutional neural networks and long short-
term memory (HCNN-LSTM) for this detecting task. The model has an input layer, succeeded by a 
convolutional layer, a max-pooling layer, and an additional convolutional layer. The output is 
subsequently sent to an LSTM layer of 50 neurons, from which it is transmitted to a fully connected layer 
employing the ReLU activation function, followed by a dropout layer, and in the end, the output layer 
utilizing the sigmoid activation function. Training uses 60% of the dataset, whereas testing uses 40%. The 
proposed approach attained F1-score, recall, and precision, all at 95% and 95.19% accuracy. Table 1 
compares the above-discussed studies regarding the feature selection algorithm, the classification 
algorithm, and the achieved accuracy. 
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Table 1. 
Related work using the WPPD dataset comparison. 

Study Feature Selection Algorithm Accuracy 

Rani, et al. [14]  TreeSHAP Random Forest 90.28% 
Zonyfar, et al. [22]  N/A HCNN-LSTM 95.19% 

Al-Sabbagh, et al. [21]  CfsSubsetEval K-Means 89.2% 
Revathi [20]  N/A Federated-Continual Learning 93% 

Lestari and Ulina [15]  ANOVA DNN 95.01% 
Manala and Jansen van Vuuren [18]  Random Forest XGBoost 92.77% 

Agagu, et al. [17]  N/A CatBoost, XGBoost, and LightGBM 93% 
Chantar, et al. [16]  Genetic Algorithm Naïve Bayes 92.6% 

Ouellette, et al. [19]  mRMR Random Forest 95.28% 

 

3. Materials and Methods 
Combining data miming algorithms with intelligent systems have shown good results in different 

applications.  The goal of this study is to develop an intelligent system that can recognize malicious URLs 
without depending on a blacklist. To achieve this, we use the data mining framework shown in Figure 2.  
 

 
Figure 2. 
The proposed system framework. 

 
The framework consists of multiple stages. First, it acquires the WPPD dataset; then, the URLs are 

tokenized using a BERT tokenizer, which outputs its input ID and attention mask for each token. Each 
URL has 512 tokens, producing a combined 1024 feature vector. The WPPD dataset also has another 87 
URL numerical features scaled using the standard scalar method. The scaled features are input to the 
FLA which selected 47 features. The selected features and the feature vector produced from the 
tokenization stage are then input for the classification stage that uses the Cat Boost classifier to be trained 
to recognize malicious URLs from normal ones. The methodology's effectiveness is validated by 
evaluating the trained model with unseen URLs to measure various evaluation metrics, including 
precision, recall, accuracy, and F1-score. Each stage is thoroughly examined in the subsequent 
subsections. 
 
3.1. Data Acquisition 

The WPPD dataset is designed to facilitate the development of machine learning-based phishing 
detection systems. It includes 11,430 URLs and 87 extracted characteristics. Three distinct categories are 
the source of features: Fifty-six are derived from the structure and syntax of URLs, twenty-four are 



1379 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 2: 1374-1390, 2025 
DOI: 10.55214/25768484.v9i2.4650 
© 2025 by the authors; licensee Learning Gate 

 

obtained from the content of their corresponding sites, and seven are acquired through querying other 
services. The dataset is equilibrated, comprising precisely 50% phishing and 50% legal URLs, with 5715 
instances for each category [23]. The authors gathered authentic web page URLs from Yandex [24] and 
Alexa [25] whereas phishing URL data were collected from OpenPhish [26] and PhishTank [27]. 
Figure 3 shows a snapshot from the dataset where "url" is the URL that we store as phasing or not. The 
"status" column specifies whether the URL is phishing or legitimate. Other columns represent the other 
78 features of the dataset.   
 

 
Figure 3. 
Snapshot from the WPPD dataset. 

 
The examination of URL text acquires URL-derived attributes. The characteristics of this category 

are categorized into structural and statistical aspects. Structural-based aspects pertain to fundamental 
URL components' existence, location, and characteristics (i.e., protocol, top-level domain, and port). The 
number or distribution of essential URL elements, specific words, or characters within URL text are 
among the aspects of statistics. These features include the number of dots and subdomains, as well as the 
length of the word. 

Accessing URLs' web pages and looking at their HTML content yields content-based attributes. They 
are classified into two categories: hyperlinks and abnormal content-based traits. The hyperlink attributes 
in HTML tags are the number, status, and type of hyperlinks (internal/external). Abnormal content 
characteristics identify suspicious content or scripts that exhibit questionable behaviors. Examples of 
dubious content include blank hyperlinks and other domain names within title tags. Examples of 
questionable behavior include disabling the right-click feature and sending form data to email addresses. 
Reference third-party services and search engines are utilized to acquire external attributes. Examples 
include Alexa [25]; WHOIS [28]; Google LLC [29] and OpenPageRank [30]. 
 
3.2. Data Preprocessing 

The dataset has 74 features of integer values and 13 features of real values. These columns have 
different mean and standard deviation ranges, which would hinder the learning process, so we need to 
normalize the data. We used a standard scalar to give the features a unit mean and standard deviation. 
Standard scaling works for every feature independently, where we calculate the mean as shown in 
Equation (1). 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

                                                                               (1) 

where 𝜇 is the mean of the feature, 𝑁 is the total number of rows, and 𝑥𝑖 is the feature value. After 
calculating the mean, we calculate the standard deviation of the feature as in Equation (2). 
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𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

                                                                         (2) 

where 𝜎 is the standard deviation of the feature, 𝑁 is the total number of rows, and 𝑥𝑖 is the feature 
value. After calculating the standard deviation, we calculate the feature value after standard scaling as in 
Equation (3) 

𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎
                                                                                 (3) 

where 𝑧𝑖 is the transformed 𝑥𝑖 after standard scaling. After scaling, the feature values are normalized 
such that they have uint standard deviation and unit mean. This makes the learning process thereafter 
more efficient. The standard scalar algorithm can be shown in Algorithm 1.  

Algorithm 1: Dataset preprocessing using standard scalar 
 Input: Dataset Features (F) 
 Output: Standardized Dataset Features (Z) 

1 Create Z with the same size as F 
2 Foreach feature X in F: 
3 Calculate the mean 𝜇 as in Equation (1) 
4 Calculate the standard deviation 𝜎 as in Equation (2) 
5 Foreach value 𝑥𝑖 in X: 
6 Calculate transformed value 𝑧𝑖 as in Equation (3) 
7 Store 𝑧𝑖 in the corresponding position in Z 
8 End Foreach 
9 End Foreach 
10 Return Z 

 
3.3. Feature Selection 

We implemented the  FLA [31] a metaheuristic optimization technique rooted in physics, and 
employed Fick's rule of diffusion to illustrate the natural migration of molecules from higher 
concentration to lower concentration regions. The algorithm's fundamental concept is to perceive the 
problem space as a finite-dimensional space in which the optimal solution is identified by simulating the 
diffusion of materials. Initially, the randomly generated initial population is divided into two equal groups. 
The diffusion operator adjusts the population placements during transitions between three stages: 1) 
exploration, 2) the transition from exploration to exploitation, and 3) exploitation. To determine the 
updated fitness value, the new location is employed. Once the iteration reaches the termination condition, 
the global optimal solution is modified per the fitness value. The FLA technique is defined in Algorithm 
2. 

We employed LGBM accuracy as the criterion for fitness function assessment. LGBM [32] is an 
implementation of gradient-boosted decision trees (GBDT) [33] an ensemble approach that sequentially 
combines decision trees (as weak learners) through boosting. Decision trees are integrated so that each 
subsequent learner addresses the preceding tree's residuals, enhancing the model's performance. The final 
model consolidates the outcomes from each phase, resulting in the attainment of a robust learner. The 
FLA selected 47 features out of 87, accounting for around 50% feature reduction.  

Algorithm 2: Fick's Law Metaheuristic Algorithm for Feature Selection 
 Input: Population of selected feature solutions (𝑁), LGBM accuracy evaluation  

function (𝐹), number of iterations (𝑇) 
 Output: selected features from the best solution particle 
1 Divide the population into two equal groups 𝑁1, and  𝑁2 
2 Foreach group 𝑁𝑖 : 
3  Foreach molecule 𝑚𝑖 in 𝑁𝑖 : 
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4   Calculate the fitness function (𝐹) 
5  End Foreach 
6 End Foreach 
7 Find the best molecule in each group  
8 Find the global optimum (𝑚𝑏𝑒𝑠𝑡) 
9 For t= 1: T 
10  

 𝑇𝐹𝑡 = sinh (
𝑡

𝑇
)

0.5
 

11  If (𝑇𝐹𝑡 < 0.9)  
12   Apply the Diffusion state (Exploration Phase): 
13    Calculate the direction of the flow of the molecules in the exploration state 
14    Determine the number of molecules to travel from region to region 
15    Update molecules' position according to the exploration state   
16  Else If (𝑇𝐹𝑡 ≤ 1)  
17   Apply the Equilibrium State (Transition Phase): 
18    Calculate the direction of the flow of the molecule in the transition state 
19    Update molecule position according to the transition state   
20  Else 
21   Apply the Steady State (Exploitation Phase): 
22    Update molecule position according to the exploitation state 
23  End If 
24 End for 
25 Return molecule with the best fitness value  𝑚𝑏𝑒𝑠𝑡 

 
3.4. Tokenization 

The tokenization [34] task is performed on the URL text using the BERT tokenizer [35]. 
Tokenization divides a continuous text stream into smaller, more significant units, referred to as tokens, 
which may include words, phrases, or symbols. We used "bert-base-uncased," [36] where the tokenizer 
first converts the text to lowercase and removes redundant spaces. BERT uses WordPiece [37] as a 
tokenization scheme. The WordPiece algorithm builds the vocabulary during pretraining from a large 
corpus based on token frequency. It starts with individual characters and combines them into subwords 
or words based on co-occurrence. The pre-trained vocabulary includes frequent tokens like "www,” 
".com," and "/login." Tokens not in the vocabulary are split into smaller subwords or individual 
characters. 

Each sequence starts and ends with the addition of special tokens [CLS] and [SEP], respectively. 
We employ a maximum sequence length of 512, which truncates sequences that exceed 512 tokens, and 
the padding of shorter sequences with the special token [PAD]. The tokenizer produces two numbers for 
each token: the input_id and the attention_mask. The input _id is the id number of the token in the BERT 
tokenizer vocabulary, while attention_mask is a binary mask indicating whether the token is an actual 
token or a padding one. The tokenization algorithm based on BERT is shown in Algorithm 3. The BERT 
tokenizer outputs 1024 features for each URL, of which 512 are input_ids and 512 are attention_masks. 
In our proposed model, we use the output BERT tokenizer as features combined with the dataset features 
and then fed to the classification step.  

Algorithm 3: BERT-based URL Tokenization 
 Input: pertained "bert-base-uncased" model vocabulary (V), URLs dataset (D), Sequence 

maximum length (max_len) 
 Output: Tokens dataset (TD) 

1 Foreach URL 𝑢𝑖 in the dataset: 
2  Lowercase the URL 𝑢𝑖 
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3  Trim the URL 𝑢𝑖 
4  Split URL into words W based on punctuation 
5  Foreach word in 𝑤𝑖 in W 
6   If 𝑤𝑖 in V: 
7    Add 𝑤𝑖 to tokens list K 
8   Else: 
9    Split 𝑤𝑖 into subwords S using the WordPiece algorithm 
10    Add subwords S to tokens list K 
11   End If 
12  End Forecah 
13  If (len(K) < max_len-2): 
14   Add [PAD] tokens until reaching max_len-2 
15  Else If (len(K) > max_len-2) 
16   Truncate tokens after max_len-2 
17  Add [CLS] token at the start of K 
18  Add [SEP] token at the end of K 
19  Append K to TK 
20 End Foreach  
21 Foreach token list 𝐾𝑖 in TK: 
22  Create an empty feature list F=[] 
23  Foreach token 𝑛𝑖 in token list 𝐾𝑖 
24   Find the corresponding input_id 𝑖𝑑𝑖 of 𝑛𝑖 from V 
25   Append 𝑖𝑑𝑖 to feature list F 
26   If 𝑛𝑖is not [PAD]: 
27    attention_mask 𝑚𝑎𝑠𝑘𝑖 = 1 
28   Else 
29    attention_mask 𝑚𝑎𝑠𝑘𝑖 = 0 
30   End If 
31   Append Attention mask 𝑚𝑎𝑠𝑘𝑖 to feature list F 
32  End Foreach 
33  Append F to TD 
34 End Foreach 
35 Return TD 

 
3.5. Classification 

After merging the output of the feature selection and the tokenization step, create a dataset with a 
feature vector for each URL consisting of 1024 BERT token features and 47 FLA-selected features. 
Training and testing sets of the dataset were separated to create a machine-learning classifier. We utilize 
Cat Boost [38] for classification. Cat Boost is a machine learning classifier used primarily for gradient 
boosting in decision tree models. Ordered Target Statistics (OTS) and Order Boosting (OB) are used by 
Cat Boost. OTS and OB implemented random permutations of the training data to mitigate the prediction 
shift caused by a specific type of target leakage present in all gradient-boosting algorithms currently in 
use. Cat Boost employs decision trees as its primary predictor. 

Cat Boost constructs balanced trees as its foundational predictors, referred to as symmetric trees. Cat 
Boost’s symmetric trees guarantee that every leaf node at the same level has the same decision rule, in 
contrast to conventional gradient boosting techniques that construct trees leaf-wise or depth-wise. This 
lowers the possibility of overfitting and speeds up execution. Figure 4 illustrates the Cat Boost process 
using an input dataset with N samples and X attributes, and we create N trees from the N-ordered boosted 
samples. Each tree in the ensemble corrects the errors of the previous trees using gradient descent on the 
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loss function. After the training procedure ends, the model is tested where each model's prediction is 
aggregated and averaged to get the final prediction.  
 

4. Experimental Results 
The performance of the proposed approach is illustrated in that section, following a discussion of the 

performance assessment measures. This section also illustrates how the proposed approach outperformed 
other machine learning and deep learning methods and previous relevant studies that utilized the same 
dataset.  
 

 
Figure 4. 
CatBoost procedure on the WPPD dataset. 

 
4.1. Evaluation Metrics 

Four measures are utilized to assess the effectiveness of the suggested system: accuracy, precision, 
recall, and F1-score. The true positive (TP), true negative (TN), false positive (FP), and false negative 
(FN) values are computed before calculating these metrics. TP indicates a malicious URL that is correctly 
predicted as malicious. FP indicates legitimate URLs that are wrongly classified as malicious. TN 
indicates legitimate URLs correctly classified as legitimate, while FN indicates malicious URLs wrongly 
classified as legitimate.  

The ratio of the true malicious classification to the total number of malicious classifications is known 
as precision as in Equation (4). A low precision indicates a high number of false positives. According to 
Equation (5), the recall is the proportion of accurate malicious classifications to all original malicious 
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samples. A high recall indicates a low number of incorrectly identified original samples. The F1-score 
measures the harmonic mean of recall and precision. This measure, which can be computed using Equation 
(6), often shows how resilient the classification process is. Equation (7) computes accuracy, the proportion 
of the model's correctness, by dividing the total number of accurate classifications by the total number of 
samples. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃 
                                                                  (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁 
                                                                         (5) 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
                                                         (6) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁 + 𝑇𝑁
                                                       (7) 

 
4.2. Feature Selection Results 

Feature selection is performed with the FLA metaheuristic optimization to identify the significant 
characteristics for malicious URL detection. A population size of 50 molecules and 10 epochs were utilized 
to establish the termination criterion. The FLA selected 47 features, maximizing the objective LGBM 
accuracy function to 97.16%. Other metaheuristic algorithms were considered, such as Chernobyl Disaster 
Optimization (CDO) [39] Energy Valley Optimization (EVO) [40] Coati Optimization Algorithm 
(CoatiOA) [41] the physical phenomenon of RIME-ice (RIME) [42] and Osprey Optimization Algorithm 
(OOA) [43]. However, the FLA algorithm outperformed the others in reducing the dataset's 
dimensionality, as shown in Figure 5.  
 

 
Figure 5. 
Comparing FLA to other recent metaheuristic optimization algorithms. 

 
FLA and RIME are the best in decreasing dimensionality by selecting only 47 features, but FLA 

achieved a higher fitness value than RIME. Also, OOA achieved the best fitness value of 97.33, but it only 
reduced five features from the original 87 features, accounting for negligible feature reduction. Following 
OOA, the CoatiOA and the FLA achieved the best fitness value of 97.16, but CoatiOA eliminated only 
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nine features while FLA eliminated 40 features accounting for 50% feature reduction without 
compromising accuracy, validating choosing it for the feature selection process.   

The selected features are 'length_url', 'length_hostname', 'ip', 'nb_dots', 'nb_hyphens', 'nb_or', 
'nb_underscore', 'nb_tilde', 'nb_percent', 'nb_slash', 'nb_semicolumn', 'nb_dollar', 'nb_www', 'nb_com', 
'nb_dslash', 'http_in_path', 'https_token', 'ratio_digits_url', 'punycode', 'port', 'tld_in_path', 
'random_domain', 'shortening_service', 'path_extension', 'nb_redirection', 'length_words_raw', 
'char_repeat', 'shortest_word_host', 'longest_word_path', 'avg_words_raw', 'avg_word_host', 
'phish_hints', 'statistical_report', 'ratio_extHyperlinks', 'ratio_intRedirection', 'ratio_extRedirection', 
'submit_email', 'ratio_intMedia', 'ratio_extMedia', 'iframe', 'popup_window', 'onmouseover', 
'domain_in_title', 'domain_registration_length', 'domain_age', 'google_index' and 'page_rank'. The 
feature distribution of the selected 47 features before normalization is shown in Figure 6. We have 40 
discrete integer features from the distribution while having 7 real-valued features. The data is clean and 
doesn't have null or noisy values.  
 
4.3. Classification Results 

The experimental results are obtained using a PC with a Tesla T4 GPU and 32 GB RAM. Table 2 
shows the hardware and software specifications used to obtain the experimental results. The proposed 
system is designed and implemented using Python 3.10.13, PyTorch 2.1.2, sklearn 1.3.2 framework, 
catboost 1.2, and lightgbm 3.3.2 Python libraries. The dataset is split into an 80% training set and a 20% 
test set as shown in Table 3. 
 
Table 2. 
Hardware and software specification. 

Hardware  

CPU Intel(R) Xeon(R) CPU @ 2.00GHz 

GPU 15GB Tesla T4×2 

RAM 32 GB 

Software  

OS Ubuntu 22.04 

Language Python 3.10.13 

Frameworks 
PyTorch 2.1.2 

scikit-learn 1.3.2 

Libraries 
catboost 1.2 

lightgbm 3.3.2 
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Figure 6. 
The 47 FLA selected features distribution. 
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Table 3. 
Training and testing labels count after data split. 

Training labels Testing labels 

Class Count Class Count 

Malicious 4572 Malicious 1143 
Legitimate 4572 Legitimate 1143 

 
Experiments were done using the proposed system, which achieved 96.59% accuracy, 96.75% 

precision, 96.41% recall, and 96.58% F1 score. Experiments were done utilizing other machine learning 
algorithms, and the proposed system outperformed them, as shown in Table 4. Logistic regression and 
Adaptive Boosting (AdaBoost) are the best-performing algorithms after the proposed system, while 
Quadratic Discriminant Analysis is the worst classification algorithm on the WPPD dataset. 
 
Table 4. 
Proposed system results against other machine learning algorithms. 

Algorithm Accuracy Precision Recall F1-score 
Proposed system 0.9659 0.9675 0.9641 0.9658 
AdaBoost [44]  0.937 0.937 0.937 0.937 

Support vector machine [45]  0.9256 0.9176 0.9353 0.9263 
Logistic regression [46]  0.9374 0.9378 0.937 0.9374 

K- nearest neighbor [47]  0.916 0.9288 0.9011 0.9147 

Gaussian naive bayes [48]  0.5774 0.9683 0.1601 0.2748 
Decision trees [49]  0.9252 0.9248 0.9256 0.9252 

Linear discriminant analysis [50]  0.9121 0.9067 0.9186 0.9126 
Quadratic discriminant analysis [51]  0.6045 0.965 0.217 0.3543 

 
Also, the system performance is compared with other deep learning architectures, and again, the 

system outperformed all of them, as shown in Table 5. It shows that when used for classification, BERT 
is the best-performing deep learning algorithm after the proposed system, reflecting the effect of BERT 
tokenization on enhancing the proposed system performance. Deep Multilayer Perceptron (MLP) is 
performing worst among the deep learning methodologies. Furthermore, we compared the proposed 
system with previous related studies working on the WPPD, as shown in Figure 7, and the proposed 
system outperformed previous studies. 
 
Table 5. 
Proposed system results against other deep learning algorithms. 

Algorithm Accuracy Precision Recall F1-Score 

Proposed system 97 97 96 97 
Deep MLP [20]  76 78 75 77 

Recurrent neural network [20]  88 87 87 87 
Convolution neural network [22]  91 91 91 91 

Long short term memory [22]  95 95 95 95 
BERT [52]  96 96 95 96 
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Figure 7.  
Comparing the proposed system with previous studies using the same dataset. 

 

5. Conclusion 
Identifying malicious URLs poses significant issues owing to diverse cyber threats such as phishing, 

virus dissemination, and fraud. This study created a URL detection system utilizing data mining and 
machine learning methodologies. Initially, we acquired a dataset comprising malicious and benign URLs 
and 87 numerical attributes. The features are preprocessed by scaling using the standard scaler to avert 
bias in the model towards specific attributes. Additionally, the FLA is employed for feature selection, 
utilizing the accuracy of LGBM as the objective function, leading to a 50% decrease in features. The URLs 
are tokenized via BERT tokenizer and transformed into a feature vector. The integrated BERT feature 
vector and FLA chosen features serve as input for the CatBoost classifier, resulting in 97% accuracy. 
Alternative deep learning and machine learning methodologies are assessed, and the system outperforms 
them. The proposed method is also compared to previous studies that employed the same dataset and 
results surpassing previous findings. Future directions could explore integrating the system with real-
time detection frameworks to enhance its applicability in dynamic online environments. Additionally, 
employing advanced natural language processing techniques, such as generative models, to understand 
complex URL patterns better may improve detection accuracy. Lastly, extending the system to detect 
emerging threats like URL obfuscation and adversarial attacks could enhance its robustness. 
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