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Abstract: This paper examines Infrastructure as Code (IaC) with Ansible to automate and enhance 
security hardening in Linux environments. As IT infrastructures grow more complex, manual security 
configurations become error-prone, inefficient, and inconsistent. IaC addresses these issues by allowing 
organizations to define and deploy infrastructure configurations as code, ensuring a consistent security 
baseline. Focusing on key settings for Firewalld, SELinux, and SSH, the study demonstrates how 
Ansible enforces these configurations in a scalable, repeatable, and resilient manner. Results show that 
using Ansible for security hardening reduces deployment times, minimizes manual errors, and ensures 
uniform security standards across diverse systems. This research offers a practical foundation for 
organizations seeking to improve their cybersecurity posture, emphasizing IaC's transformative 
potential in achieving secure, efficient, and adaptable infrastructure management. 
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1. Introduction  

Infrastructure as Code (IaC) is emerging as a vital approach for automating and standardizing these 
environments, helping to meet the dual demands of agility and security. This paper explores using IaC, 
specifically with the tool Ansible, to implement security hardening measures within Linux-based 
infrastructures. By focusing on critical security configurations for Firewalld, SELinux, and SSH, this 
work demonstrates how Ansible can enforce security policies in a repeatable, efficient, and scalable 
manner. Through practical, detailed examples, this paper illustrates the processes involved in automating 
these security configurations to mitigate vulnerabilities and minimize the risk of manual 
misconfigurations. 

This paper aims to bridge the gap between traditional security hardening methods and automated 
infrastructure management, showcasing the potential of IaC to enhance security while improving 
operational efficiency. Ansible’s idempotence, or its ability to apply consistent configurations without 
creating redundancy, is central to the approach presented here. Furthermore, this paper discusses the 
challenges and benefits of using Ansible for security hardening, emphasizing the integration of IaC with 
Continuous Integration/Continuous Deployment (CI/CD) pipelines to maintain real-time compliance 
and readiness for rapid deployment. In this way, the work demonstrates the potential of IaC to drive 
secure and agile infrastructure management, aligning with modern DevOps and DevSecOps principles. 

This paper’s contributions include a practical guide on automating security hardening for Linux 
systems using Ansible and insights into the benefits of integrating IaC with CI/CD workflows to support 
continuous security. Additionally, this work highlights the applicability of IaC in enforcing systematic 
security policies across different environments, addressing both on-premises and cloud-based 
infrastructures. By examining Ansible’s scalability, flexibility, and adaptability in Red Hat-based systems, 
this paper provides a foundation for further research and adoption of IaC in enterprise security practices. 
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The rest of this paper is organized as follows. The next section will cover related work to hardening 
Linux environments, followed by an in-depth look at discussing the usage of IaC in modern IT systems 
and then configuring Firewalld, SELinux, and SSH using Ansible. The paper concludes with a discussion 
of potential future research directions and a conclusion. 
 

2. Related Work 
System hardening, particularly in Linux-based and critical infrastructure environments, has gained 

significant attention in recent years as the threat landscape continues to evolve. One approach to 
improving installation efficiency in hardened Linux systems is highlighted by Ortiz-Garcés, et al. [1] 
who proposed a methodology using Spacewalk for optimizing installation times in critical infrastructures, 
ultimately aiding in enhancing system resilience in such environments [1]. Similarly, Rose and Zhou [2] 
examine system hardening strategies for Infrastructure as a Service (IaaS) platforms, focusing on 
enhancing security protocols within the shared infrastructure of cloud environments to reduce 
vulnerability exposure Rose and Zhou [2]. Bosio, et al. [3] address the critical need for security 
hardening in real-time operating systems to ensure reliability and functionality, particularly in time-
sensitive systems where security lapses could lead to substantial operational disruptions [3]. 

In specialized systems like facial recognition technologies, Cindori, et al. [4] explore hardening 
mechanisms to safeguard these systems against unauthorized access and data breaches, emphasizing the 
unique vulnerabilities inherent to biometric systems Cindori, et al. [4]. Stöckle, et al. [5] advance the 
field by automating the implementation of Windows security configurations, showcasing methods to 
streamline security guide adherence across enterprise environments [5]. Further advancing automation, 
He and Vechev [6] leverage large language models to conduct adversarial testing for code security, 
proposing that AI tools can enhance the effectiveness of hardening efforts in code-based environments 
[6]. 

Infrastructure-as-Code (IaC) principles are also applied to open networking, as illustrated by Salazar-
Chacón and Parra [7] who use tools like Git and Ansible to streamline security configurations in 
network environments, particularly in Linux-based systems like Cumulus Linux [7]. Addressing closed-
source software, Huang, et al. [8] investigate methods for mitigating vulnerabilities, highlighting the 
challenges posed by limited source visibility and proposing frameworks for enhancing closed-system 
security [8]. Kernel security is further enhanced through techniques like profile-guided indirect branch 
elimination, as suggested by Duta et al., where kernel hardening is achieved through innovative control-
flow methodologies aimed at preventing malicious access [9]. 

In large-scale organizational contexts, Stöckle, et al. [10] discuss Scapolite, a DevOps-based solution 
designed to simplify and improve security guide authoring and testing, supporting consistent and 
scalable hardening practices Stöckle, et al. [10]. Amarchand, et al. [11] emphasize foundational Linux 
security principles, highlighting the importance of basic hardening strategies within Linux systems for 
widespread security impact [11]. Additional innovations include Franzen, et al. [12] RandCompile, a 
tool designed to eliminate forensic gadgets from the Linux kernel, further complicating the analysis and 
exploitation of kernel vulnerabilities [12]. 

Yin, et al. [13] introduce an audit and monitoring framework based on MQTT for Linux systems, 
aiming to provide continuous security monitoring capabilities essential for dynamic and interconnected 
systems [13]. In the domain of cyber-physical systems, Potteiger, et al. [14] integrate moving target 
defense with control reconfiguration strategies to protect against targeted attacks, especially in 
infrastructure-critical cyber-physical applications [14]. For web development environments, Wang, et al. 
[15] focus on API hardening as a means to prevent DOM-based XSS vulnerabilities, advocating for 
security measures embedded directly into development workflows [15]. For legacy IoT devices, Carrillo-
Mondéjar, et al. [16] propose HALE-IoT, a firmware-based solution to retrofit security features into 
outdated devices, effectively extending their lifespan without compromising security [16]. Lastly, 
Spensky, et al. [17] address security concerns in physical interfaces of cyber-physical systems, 
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developing TRUST.IO to enhance interface security. This is a critical consideration, given the rise in 
physical threats to cyber infrastructure [17]. 

This body of research illustrates diverse hardening approaches, each tailored to the unique demands 
of specific systems and environments. These studies highlight the necessity of adopting multifaceted 
hardening strategies, from automation and AI-driven tools to targeted IoT and kernel security measures, 
to ensure protection across varying infrastructure layers and technological platforms. 
 

3. Using Infrastructure as Code in Modern IT Systems 
Before exploring the main focus of this seminar paper, security hardening, it is essential first to 

discuss how IaC tools like Ansible are transforming modern IT infrastructures by enhancing agility, 
flexibility, and automation. These tools enable the rapid deployment and configuration of standardized 
physical or virtual instances. 

In this context, agility refers to the IT system's capacity to adapt swiftly and efficiently to changes in 
the market, technology, or internal business processes. Tools such as Ansible and Terraform, a 
commonly used combination, facilitate this agility by allowing IT administrators to quickly provision 
infrastructure, typically virtual machines, and configure them uniformly. This approach significantly 
accelerates the provisioning and configuration process, reducing the likelihood of misconfiguration. 
Additionally, IaC configurations, such as Ansible playbooks, are treated as code, making it possible to 
leverage version control systems like Git or apply GitOps principles. This practice ensures that changes 
are trackable, auditable, and reversible when necessary, supporting a more agile and controlled approach 
to infrastructure management. Ansible further enhances efficiency by allowing community or vendor 
roles, modules, and collections to streamline the configuration process. For customized needs, IT teams 
can create private roles and modules stored in private collections within repositories to foster DevOps 
concepts and methodologies within the organization. 

Moreover, IaC integrates seamlessly with CI/CD pipelines, allowing for automated testing and 
deployment of infrastructure changes. This integration ensures that infrastructure is consistently in a 
deployment-ready state, supporting rapid development cycles and enabling quicker feature and update 
delivery. 

In terms of flexibility, Ansible adapts to meet the diverse and evolving needs of various environments, 
including public cloud providers (such as AWS, Azure, and Google Cloud), cloud-native platforms like 
Kubernetes or OpenShift, on-premises environments (both Linux and Windows), and network devices 
like routers and switches. Standard configurations can be abstracted into reusable roles or modules, 
reducing errors and saving time across different projects. However, despite these advantages, 
implementing IaC, especially at an organizational level, presents challenges due to its steep learning 
curve. During initial adoption, IT teams (such as DevOps engineers or system administrators) may 
revert to manual configuration or use Bash or PowerShell scripts integrated into playbooks, which can 
undermine the intended purpose of Ansible or similar IaC tools. 

This section concludes with an overview of IaC and its growing popularity as a modern infrastructure 
management approach. The next chapter will dive into the technical aspects of Ansible, providing 
examples of playbooks that can enhance the security of newly deployed RHEL systems. 
 

4. Using Ansible For Linux Machine Hardening 
Given the broad scope of security hardening for Linux (or any operating system), which varies 

depending on the machine's role, installed applications, and its environment, this section will focus on 
enhancing security through Firewalld, SELinux, and SSH configurations using Ansible. These 
components will be discussed, followed by playbook examples for practical application. 

4.1.Firewalld Configuration 
The first component addressed is Firewalld, with the following playbook ensuring its installation and 

activation: 
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--- 
- name: Playbook for security hardening 
  hosts: webserver 
  tasks: 
    - name: Ensure Firewalld is installed 
      ansible.builtin.dnf: 
        state: present 
        name: firewalld 
    - name: Ensure that firewalld is enabled and started 
      ansible.builtin.service: 
        name: firewalld 
        state: started 
        enabled: true 
This playbook installs the Firewalld package and starts the service. Although Firewalld is pre-

installed and enabled by default on RHEL, Ansible’s idempotence ensures no repeated changes are made. 
To test connectivity, additional applications (MariaDB and httpd) are installed as shown below: 

--- 
… 
    - name: Ensure httpd and mariadb packages are installed 
      ansible.builtin.dnf: 
        state: present 
        name: "{{ item }}" 
      loop: 
       - mariadb 
       - httpd 
    - name: Ensure httpd and mariadb are enabled and started 
      ansible.builtin.service: 
        name: "(( item ) )" 
        state: started 
        enabled: true 
      loop: 
       - httpd 
       - mariadb 
After these services are running, testing shows that external connections are blocked on ports 80 and 

3306, as shown in Figure 1.  
 

 
Figure 1.  
Connection test to port 80 and 3306. 
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The playbook is then updated to permit these connections: 
… 
- name: Configure firewalld to allow HTTP and MySQL 
      ansible.posix.firewalld: 
        state: enabled 
        immediate: true 
        permanent: true 
        service: "{{ item }}" 
      loop: 
       - mysql 
       - http 
Now, we can successfully connect, as shown in Figure 2. 
 

 
Figure 2.  
Successful connection to ports 80 and 3306. 

 
Additionally, non-essential services like “cockpit” and “dhcpv6-client” are disabled: 
… 
 - name: Block non-required services 
      ansible.posix.firewalld: 
        state: disabled 
        permanent: true 
        immediate: true 
        service: "{{ item }}" 
      loop: 
        - cockpit 
        - dhcpv6-client 
This concludes the Firewalld subsection of the Linux hardening using Ansible. Next, we will 

configure the SELinux for HTTPD (Hypertext Transfer Protocol daemon). 

4.2. SELinux Configuration for HTTPD 
SELinux requires configuration for the HTTPD server to bind to a non-standard port (10080). This 

involves modifying the httpd.conf file and apply the following play: 
--- 
- name: SELinux configuration 
  hosts: webserver 
  vars: 
    selinux_policy: targeted 
    selinux_state: enforcing 
    selinux_ports: 
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      - ports: 10080 
        proto: tcp 
        setype: http_port_t 
        state: present 
  tasks: 
    - name: Apply SELinux role 
      block: 
        - include_role: 
            name: redhat.rhel_system_roles.selinux 
      rescue: 
        - name: Check for failure for other reasons than required reboot 
          ansible.builtin.fail: 
          when: not selinux_reboot_required 
        - name: Restart managed host 
          ansible.builtin.reboot: 
        - name: Reapply SELinux role to complete changes 
          include_role: 
            name: redhat.rhel_system_roles.selinux 
    - name: Restart httpd service 
      service: 
        name: httpd 
        state: restarted 
This play sets SELinux to “enforcing,” configures the port context, and restarts HTTPD. If a reboot 

is required, it automatically re-applies the SELinux configuration. We will configure SSH (Secure Shell) 
hardening in the following subsection. 
 
4.3. SSH Hardening 

The SSH service is hardened by changing its listening port to 2022 and turning off root login and 
password authentication. SELinux is also configured to allow SSH on the new port: 

--- 
- name: SSH hardening 
  hosts: webserver 
  vars: 
    selinux_ports: 
      - ports: 2022 
        proto: tcp 
        setype: ssh_port_t 
        state: present 
  tasks: 
    - name: Apply SELinux role 
      block: 
        - include_role: 
            name: redhat.rhel_system_roles.selinux 
      rescue: 
        - name: Check for failure for other reasons than required reboot 
          ansible.builtin.fail: 
          when: not selinux_reboot_required 
        - name: Restart managed host 
          ansible.builtin.reboot: 
        - name: Reapply SELinux role to complete changes 
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          include_role: 
            name: redhat.rhel_system_roles.selinux 
    - name: Configure firewalld 
      ansible.posix.firewalld: 
        state: enabled 
        immediate: true 
        permanent: true 
        port: 2022/tcp 
    - name: Configure SSH configuration 
      ansible.builtin.copy: 
        src: ./ssh-hardened 
        dest: /etc/ssh/sshd_config 
        owner: root 
        group: root 
        mode: 0600 
      notify: restart ssh 
  handlers: 
    - name: restart ssh 
      ansible.builtin.service: 
        name: sshd 
        state: restarted 
The associated SSH configuration file contains the following settings: 
Port 2022 
Include /etc/ssh/sshd_config.d/*.conf 
AuthorizedKeysFile /etc/.rht_authorized_keys .ssh/authorized_keys 
ClientAliveInterval 60 
Subsystem sftp /usr/libexec/openssh/sftp-server 
PasswordAuthentication no 
PermitRootLogin no 
PubkeyAuthentication yes 
This section demonstrated how Ansible can improve Linux security by managing Firewalld, 

SELinux, and SSH configurations. 
 

5. Future Research 
Although this paper primarily focused on foundational security configurations for Firewalld, 

SELinux, and SSH through Ansible, more advanced areas within Infrastructure as Code (IaC) warrant 
deeper investigation to strengthen security practices across diverse infrastructures. 

One area of interest involves developing advanced security policies and implementing Role-Based 
Access Control (RBAC) within IaC tools like Ansible, Terraform, and Chef. By designing more granular 
access controls in automated configurations, security can be significantly enhanced in complex, multi-
user environments. Future research could also explore integrating Identity and Access Management 
(IAM) systems with IaC solutions, analyzing the effects on security in both cloud-based and on-premises 
setups. 

Another potential research direction is automated compliance and auditing for IaC-based 
environments. Adhering to security standards such as CIS, NIST, and ISO is critical for secure 
infrastructure management. Future studies could focus on creating specialized playbooks and IaC 
modules that perform compliance checks and remediation tasks. Incorporating these compliance checks 
within CI/CD pipelines could help organizations maintain continuous security and regulatory adherence 
in real time, reducing vulnerabilities introduced by non-compliance. 
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6. Conclusion 
This paper demonstrates that IaC represents a significant advancement in the automation and 

standardization of security hardening practices, particularly within Linux-based environments. By 
applying IaC tools like Ansible, organizations can address the growing demands for agility, consistency, 
and security in infrastructure management. By automating crucial security configurations such as 
Firewalld, SELinux, and SSH, IaC reduces the time and effort required for manual setups and minimizes 
human error, a common source of security vulnerabilities. Ansible’s idempotence allows for repeatable 
and reliable deployment processes that ensure systems maintain a uniform security baseline, reducing the 
risk of configuration drift over time. The work underscores Ansible’s adaptability and modularity, 
making it possible to apply security hardening at scale across various environments, from on-premises 
infrastructure to cloud-based platforms and across different development and deployment stages. 

As highlighted in the paper, integrating IaC with CI/CD pipelines further elevates security practices 
by enabling continuous compliance and rapid adaptation to new security requirements. This integration 
supports ongoing monitoring and automated testing of configurations and aligns with modern DevOps 
and DevSecOps practices, facilitating seamless collaboration between development, operations, and 
security teams. The continuous, automated checks provided by IaC integration within CI/CD pipelines 
allow for real-time remediation of security issues, fostering a proactive security culture. This capability is 
precious in dynamic and large-scale environments where frequent changes and rapid deployment cycles 
can create security gaps if not managed effectively. 

Despite its advantages, adopting IaC for security hardening also presents challenges, as implementing 
automated configurations and achieving seamless integration into existing workflows require specialized 
knowledge and a cultural shift toward embracing automation and standardization. The paper suggests 
that future research should explore advanced security policies, such as RBAC and identity management, 
within IaC frameworks to enhance fine-grained control over infrastructure access. Additionally, it points 
to the need to develop automated compliance and auditing tools within IaC solutions aligned with 
security standards like CIS, NIST, and ISO. Such advancements could enable organizations to meet 
regulatory requirements continuously, reducing risks associated with non-compliance and improving 
overall security posture. 
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