
Edelweiss Applied Science and Technology
ISSN: 2576-8484
Vol. 9, No. 2, 1147-1155
2025
Publisher: Learning Gate
DOI: 10.55214/25768484.v9i2.4697
© 2024 by the authors; licensee Learning Gate

© 2025 by the authors; licensee Learning Gate
History: Received: 19 December 2024; Revised: 24 January 2025; Accepted: 28 January 2025; Published: 10 February 2025
* Correspondence: damir.regvart@algebra.hr

Security hardening using infrastructure as code

Damir Regvart1*, Jasmin Redžepagić2, Adriano Bubnjek3, Robert Petrunić4
1,2,3,4Department of System Engineering and Cybersecurity, Algebra University, Zagreb, Croatia; damir.regvart@algebra.hr
(D.R.) jasmin.redzepagic@algebra.hr (J.R.) abubnjek@algebra.hr (A.B.) robert.petrunic@algebra.hr (R.P.)

Abstract: This paper examines Infrastructure as Code (IaC) with Ansible to automate and enhance
security hardening in Linux environments. As IT infrastructures grow more complex, manual security
configurations become error-prone, inefficient, and inconsistent. IaC addresses these issues by allowing
organizations to define and deploy infrastructure configurations as code, ensuring a consistent security
baseline. Focusing on key settings for Firewalld, SELinux, and SSH, the study demonstrates how
Ansible enforces these configurations in a scalable, repeatable, and resilient manner. Results show that
using Ansible for security hardening reduces deployment times, minimizes manual errors, and ensures
uniform security standards across diverse systems. This research offers a practical foundation for
organizations seeking to improve their cybersecurity posture, emphasizing IaC's transformative
potential in achieving secure, efficient, and adaptable infrastructure management.

Keywords: Ansible, Security hardening, Configuration management, Linux automation.

1. Introduction

Infrastructure as Code (IaC) is emerging as a vital approach for automating and standardizing these
environments, helping to meet the dual demands of agility and security. This paper explores using IaC,
specifically with the tool Ansible, to implement security hardening measures within Linux-based
infrastructures. By focusing on critical security configurations for Firewalld, SELinux, and SSH, this
work demonstrates how Ansible can enforce security policies in a repeatable, efficient, and scalable
manner. Through practical, detailed examples, this paper illustrates the processes involved in automating
these security configurations to mitigate vulnerabilities and minimize the risk of manual
misconfigurations.

This paper aims to bridge the gap between traditional security hardening methods and automated
infrastructure management, showcasing the potential of IaC to enhance security while improving
operational efficiency. Ansible’s idempotence, or its ability to apply consistent configurations without
creating redundancy, is central to the approach presented here. Furthermore, this paper discusses the
challenges and benefits of using Ansible for security hardening, emphasizing the integration of IaC with
Continuous Integration/Continuous Deployment (CI/CD) pipelines to maintain real-time compliance
and readiness for rapid deployment. In this way, the work demonstrates the potential of IaC to drive
secure and agile infrastructure management, aligning with modern DevOps and DevSecOps principles.

This paper’s contributions include a practical guide on automating security hardening for Linux
systems using Ansible and insights into the benefits of integrating IaC with CI/CD workflows to support
continuous security. Additionally, this work highlights the applicability of IaC in enforcing systematic
security policies across different environments, addressing both on-premises and cloud-based
infrastructures. By examining Ansible’s scalability, flexibility, and adaptability in Red Hat-based systems,
this paper provides a foundation for further research and adoption of IaC in enterprise security practices.

https://orcid.org/0009-0004-7184-0987
https://orcid.org/0000-0002-0486-4151

1148

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 2: 1147-1155, 2025
DOI: 10.55214/25768484.v9i2.4697
© 2025 by the authors; licensee Learning Gate

The rest of this paper is organized as follows. The next section will cover related work to hardening
Linux environments, followed by an in-depth look at discussing the usage of IaC in modern IT systems
and then configuring Firewalld, SELinux, and SSH using Ansible. The paper concludes with a discussion
of potential future research directions and a conclusion.

2. Related Work
System hardening, particularly in Linux-based and critical infrastructure environments, has gained

significant attention in recent years as the threat landscape continues to evolve. One approach to
improving installation efficiency in hardened Linux systems is highlighted by Ortiz-Garcés, et al. [1]
who proposed a methodology using Spacewalk for optimizing installation times in critical infrastructures,
ultimately aiding in enhancing system resilience in such environments [1]. Similarly, Rose and Zhou [2]
examine system hardening strategies for Infrastructure as a Service (IaaS) platforms, focusing on
enhancing security protocols within the shared infrastructure of cloud environments to reduce
vulnerability exposure Rose and Zhou [2]. Bosio, et al. [3] address the critical need for security
hardening in real-time operating systems to ensure reliability and functionality, particularly in time-
sensitive systems where security lapses could lead to substantial operational disruptions [3].

In specialized systems like facial recognition technologies, Cindori, et al. [4] explore hardening
mechanisms to safeguard these systems against unauthorized access and data breaches, emphasizing the
unique vulnerabilities inherent to biometric systems Cindori, et al. [4]. Stöckle, et al. [5] advance the
field by automating the implementation of Windows security configurations, showcasing methods to
streamline security guide adherence across enterprise environments [5]. Further advancing automation,
He and Vechev [6] leverage large language models to conduct adversarial testing for code security,
proposing that AI tools can enhance the effectiveness of hardening efforts in code-based environments
[6].

Infrastructure-as-Code (IaC) principles are also applied to open networking, as illustrated by Salazar-
Chacón and Parra [7] who use tools like Git and Ansible to streamline security configurations in
network environments, particularly in Linux-based systems like Cumulus Linux [7]. Addressing closed-
source software, Huang, et al. [8] investigate methods for mitigating vulnerabilities, highlighting the
challenges posed by limited source visibility and proposing frameworks for enhancing closed-system
security [8]. Kernel security is further enhanced through techniques like profile-guided indirect branch
elimination, as suggested by Duta et al., where kernel hardening is achieved through innovative control-
flow methodologies aimed at preventing malicious access [9].

In large-scale organizational contexts, Stöckle, et al. [10] discuss Scapolite, a DevOps-based solution
designed to simplify and improve security guide authoring and testing, supporting consistent and
scalable hardening practices Stöckle, et al. [10]. Amarchand, et al. [11] emphasize foundational Linux
security principles, highlighting the importance of basic hardening strategies within Linux systems for
widespread security impact [11]. Additional innovations include Franzen, et al. [12] RandCompile, a
tool designed to eliminate forensic gadgets from the Linux kernel, further complicating the analysis and
exploitation of kernel vulnerabilities [12].

Yin, et al. [13] introduce an audit and monitoring framework based on MQTT for Linux systems,
aiming to provide continuous security monitoring capabilities essential for dynamic and interconnected
systems [13]. In the domain of cyber-physical systems, Potteiger, et al. [14] integrate moving target
defense with control reconfiguration strategies to protect against targeted attacks, especially in
infrastructure-critical cyber-physical applications [14]. For web development environments, Wang, et al.
[15] focus on API hardening as a means to prevent DOM-based XSS vulnerabilities, advocating for
security measures embedded directly into development workflows [15]. For legacy IoT devices, Carrillo-
Mondéjar, et al. [16] propose HALE-IoT, a firmware-based solution to retrofit security features into
outdated devices, effectively extending their lifespan without compromising security [16]. Lastly,
Spensky, et al. [17] address security concerns in physical interfaces of cyber-physical systems,

1149

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 2: 1147-1155, 2025
DOI: 10.55214/25768484.v9i2.4697
© 2025 by the authors; licensee Learning Gate

developing TRUST.IO to enhance interface security. This is a critical consideration, given the rise in
physical threats to cyber infrastructure [17].

This body of research illustrates diverse hardening approaches, each tailored to the unique demands
of specific systems and environments. These studies highlight the necessity of adopting multifaceted
hardening strategies, from automation and AI-driven tools to targeted IoT and kernel security measures,
to ensure protection across varying infrastructure layers and technological platforms.

3. Using Infrastructure as Code in Modern IT Systems
Before exploring the main focus of this seminar paper, security hardening, it is essential first to

discuss how IaC tools like Ansible are transforming modern IT infrastructures by enhancing agility,
flexibility, and automation. These tools enable the rapid deployment and configuration of standardized
physical or virtual instances.

In this context, agility refers to the IT system's capacity to adapt swiftly and efficiently to changes in
the market, technology, or internal business processes. Tools such as Ansible and Terraform, a
commonly used combination, facilitate this agility by allowing IT administrators to quickly provision
infrastructure, typically virtual machines, and configure them uniformly. This approach significantly
accelerates the provisioning and configuration process, reducing the likelihood of misconfiguration.
Additionally, IaC configurations, such as Ansible playbooks, are treated as code, making it possible to
leverage version control systems like Git or apply GitOps principles. This practice ensures that changes
are trackable, auditable, and reversible when necessary, supporting a more agile and controlled approach
to infrastructure management. Ansible further enhances efficiency by allowing community or vendor
roles, modules, and collections to streamline the configuration process. For customized needs, IT teams
can create private roles and modules stored in private collections within repositories to foster DevOps
concepts and methodologies within the organization.

Moreover, IaC integrates seamlessly with CI/CD pipelines, allowing for automated testing and
deployment of infrastructure changes. This integration ensures that infrastructure is consistently in a
deployment-ready state, supporting rapid development cycles and enabling quicker feature and update
delivery.

In terms of flexibility, Ansible adapts to meet the diverse and evolving needs of various environments,
including public cloud providers (such as AWS, Azure, and Google Cloud), cloud-native platforms like
Kubernetes or OpenShift, on-premises environments (both Linux and Windows), and network devices
like routers and switches. Standard configurations can be abstracted into reusable roles or modules,
reducing errors and saving time across different projects. However, despite these advantages,
implementing IaC, especially at an organizational level, presents challenges due to its steep learning
curve. During initial adoption, IT teams (such as DevOps engineers or system administrators) may
revert to manual configuration or use Bash or PowerShell scripts integrated into playbooks, which can
undermine the intended purpose of Ansible or similar IaC tools.

This section concludes with an overview of IaC and its growing popularity as a modern infrastructure
management approach. The next chapter will dive into the technical aspects of Ansible, providing
examples of playbooks that can enhance the security of newly deployed RHEL systems.

4. Using Ansible For Linux Machine Hardening
Given the broad scope of security hardening for Linux (or any operating system), which varies

depending on the machine's role, installed applications, and its environment, this section will focus on
enhancing security through Firewalld, SELinux, and SSH configurations using Ansible. These
components will be discussed, followed by playbook examples for practical application.

4.1.Firewalld Configuration
The first component addressed is Firewalld, with the following playbook ensuring its installation and

activation:

1150

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 2: 1147-1155, 2025
DOI: 10.55214/25768484.v9i2.4697
© 2025 by the authors; licensee Learning Gate

- name: Playbook for security hardening
 hosts: webserver
 tasks:
 - name: Ensure Firewalld is installed
 ansible.builtin.dnf:
 state: present
 name: firewalld
 - name: Ensure that firewalld is enabled and started
 ansible.builtin.service:
 name: firewalld
 state: started
 enabled: true
This playbook installs the Firewalld package and starts the service. Although Firewalld is pre-

installed and enabled by default on RHEL, Ansible’s idempotence ensures no repeated changes are made.
To test connectivity, additional applications (MariaDB and httpd) are installed as shown below:

…
 - name: Ensure httpd and mariadb packages are installed
 ansible.builtin.dnf:
 state: present
 name: "{{ item }}"
 loop:
 - mariadb
 - httpd
 - name: Ensure httpd and mariadb are enabled and started
 ansible.builtin.service:
 name: "((item))"
 state: started
 enabled: true
 loop:
 - httpd
 - mariadb
After these services are running, testing shows that external connections are blocked on ports 80 and

3306, as shown in Figure 1.

Figure 1.
Connection test to port 80 and 3306.

1151

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 2: 1147-1155, 2025
DOI: 10.55214/25768484.v9i2.4697
© 2025 by the authors; licensee Learning Gate

The playbook is then updated to permit these connections:
…
- name: Configure firewalld to allow HTTP and MySQL
 ansible.posix.firewalld:
 state: enabled
 immediate: true
 permanent: true
 service: "{{ item }}"
 loop:
 - mysql
 - http
Now, we can successfully connect, as shown in Figure 2.

Figure 2.
Successful connection to ports 80 and 3306.

Additionally, non-essential services like “cockpit” and “dhcpv6-client” are disabled:
…
 - name: Block non-required services
 ansible.posix.firewalld:
 state: disabled
 permanent: true
 immediate: true
 service: "{{ item }}"
 loop:
 - cockpit
 - dhcpv6-client
This concludes the Firewalld subsection of the Linux hardening using Ansible. Next, we will

configure the SELinux for HTTPD (Hypertext Transfer Protocol daemon).

4.2. SELinux Configuration for HTTPD
SELinux requires configuration for the HTTPD server to bind to a non-standard port (10080). This

involves modifying the httpd.conf file and apply the following play:

- name: SELinux configuration
 hosts: webserver
 vars:
 selinux_policy: targeted
 selinux_state: enforcing
 selinux_ports:

1152

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 2: 1147-1155, 2025
DOI: 10.55214/25768484.v9i2.4697
© 2025 by the authors; licensee Learning Gate

 - ports: 10080
 proto: tcp
 setype: http_port_t
 state: present
 tasks:
 - name: Apply SELinux role
 block:
 - include_role:
 name: redhat.rhel_system_roles.selinux
 rescue:
 - name: Check for failure for other reasons than required reboot
 ansible.builtin.fail:
 when: not selinux_reboot_required
 - name: Restart managed host
 ansible.builtin.reboot:
 - name: Reapply SELinux role to complete changes
 include_role:
 name: redhat.rhel_system_roles.selinux
 - name: Restart httpd service
 service:
 name: httpd
 state: restarted
This play sets SELinux to “enforcing,” configures the port context, and restarts HTTPD. If a reboot

is required, it automatically re-applies the SELinux configuration. We will configure SSH (Secure Shell)
hardening in the following subsection.

4.3. SSH Hardening

The SSH service is hardened by changing its listening port to 2022 and turning off root login and
password authentication. SELinux is also configured to allow SSH on the new port:

- name: SSH hardening
 hosts: webserver
 vars:
 selinux_ports:
 - ports: 2022
 proto: tcp
 setype: ssh_port_t
 state: present
 tasks:
 - name: Apply SELinux role
 block:
 - include_role:
 name: redhat.rhel_system_roles.selinux
 rescue:
 - name: Check for failure for other reasons than required reboot
 ansible.builtin.fail:
 when: not selinux_reboot_required
 - name: Restart managed host
 ansible.builtin.reboot:
 - name: Reapply SELinux role to complete changes

1153

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 2: 1147-1155, 2025
DOI: 10.55214/25768484.v9i2.4697
© 2025 by the authors; licensee Learning Gate

 include_role:
 name: redhat.rhel_system_roles.selinux
 - name: Configure firewalld
 ansible.posix.firewalld:
 state: enabled
 immediate: true
 permanent: true
 port: 2022/tcp
 - name: Configure SSH configuration
 ansible.builtin.copy:
 src: ./ssh-hardened
 dest: /etc/ssh/sshd_config
 owner: root
 group: root
 mode: 0600
 notify: restart ssh
 handlers:
 - name: restart ssh
 ansible.builtin.service:
 name: sshd
 state: restarted
The associated SSH configuration file contains the following settings:
Port 2022
Include /etc/ssh/sshd_config.d/*.conf
AuthorizedKeysFile /etc/.rht_authorized_keys .ssh/authorized_keys
ClientAliveInterval 60
Subsystem sftp /usr/libexec/openssh/sftp-server
PasswordAuthentication no
PermitRootLogin no
PubkeyAuthentication yes
This section demonstrated how Ansible can improve Linux security by managing Firewalld,

SELinux, and SSH configurations.

5. Future Research
Although this paper primarily focused on foundational security configurations for Firewalld,

SELinux, and SSH through Ansible, more advanced areas within Infrastructure as Code (IaC) warrant
deeper investigation to strengthen security practices across diverse infrastructures.

One area of interest involves developing advanced security policies and implementing Role-Based
Access Control (RBAC) within IaC tools like Ansible, Terraform, and Chef. By designing more granular
access controls in automated configurations, security can be significantly enhanced in complex, multi-
user environments. Future research could also explore integrating Identity and Access Management
(IAM) systems with IaC solutions, analyzing the effects on security in both cloud-based and on-premises
setups.

Another potential research direction is automated compliance and auditing for IaC-based
environments. Adhering to security standards such as CIS, NIST, and ISO is critical for secure
infrastructure management. Future studies could focus on creating specialized playbooks and IaC
modules that perform compliance checks and remediation tasks. Incorporating these compliance checks
within CI/CD pipelines could help organizations maintain continuous security and regulatory adherence
in real time, reducing vulnerabilities introduced by non-compliance.

1154

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 2: 1147-1155, 2025
DOI: 10.55214/25768484.v9i2.4697
© 2025 by the authors; licensee Learning Gate

6. Conclusion
This paper demonstrates that IaC represents a significant advancement in the automation and

standardization of security hardening practices, particularly within Linux-based environments. By
applying IaC tools like Ansible, organizations can address the growing demands for agility, consistency,
and security in infrastructure management. By automating crucial security configurations such as
Firewalld, SELinux, and SSH, IaC reduces the time and effort required for manual setups and minimizes
human error, a common source of security vulnerabilities. Ansible’s idempotence allows for repeatable
and reliable deployment processes that ensure systems maintain a uniform security baseline, reducing the
risk of configuration drift over time. The work underscores Ansible’s adaptability and modularity,
making it possible to apply security hardening at scale across various environments, from on-premises
infrastructure to cloud-based platforms and across different development and deployment stages.

As highlighted in the paper, integrating IaC with CI/CD pipelines further elevates security practices
by enabling continuous compliance and rapid adaptation to new security requirements. This integration
supports ongoing monitoring and automated testing of configurations and aligns with modern DevOps
and DevSecOps practices, facilitating seamless collaboration between development, operations, and
security teams. The continuous, automated checks provided by IaC integration within CI/CD pipelines
allow for real-time remediation of security issues, fostering a proactive security culture. This capability is
precious in dynamic and large-scale environments where frequent changes and rapid deployment cycles
can create security gaps if not managed effectively.

Despite its advantages, adopting IaC for security hardening also presents challenges, as implementing
automated configurations and achieving seamless integration into existing workflows require specialized
knowledge and a cultural shift toward embracing automation and standardization. The paper suggests
that future research should explore advanced security policies, such as RBAC and identity management,
within IaC frameworks to enhance fine-grained control over infrastructure access. Additionally, it points
to the need to develop automated compliance and auditing tools within IaC solutions aligned with
security standards like CIS, NIST, and ISO. Such advancements could enable organizations to meet
regulatory requirements continuously, reducing risks associated with non-compliance and improving
overall security posture.

Transparency:
The authors confirm that the manuscript is an honest, accurate, and transparent account of the
study; that no vital features of the study have been omitted; and that any discrepancies from
the study as planned have been explained. This study followed all ethical practices during writing.

Copyright:
© 2025 by the authors. This open-access article is distributed under the terms and conditions of the
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

References
[1] I. Ortiz-Garcés, A. Echeverría-López, and R. Andrade, "Methodological proposal for the optimization of the

installation times of hardenized Linux operating systems through the Spacewalk solution in critical infrastructures,"
presented at the 2020 International Conference on Computational Science and Computational Intelligence (CSCI).
https://doi.org/10.1109/CSCI51800.2020.00024, 2020

[2] T. Rose and X. Zhou, "System hardening for Infrastructure as a Service (IaaS)," presented at the 2020 IEEE Systems
Security Symposium (SSS). https://doi.org/10.1109/SSS47320.2020.9174202, 2020.

[3] A. Bosio, S. Carlo, M. Rebaudengo, and A. Savino, "Toward the hardening of real-time operating systems," presented
at the 2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT). . https://doi.org/10.1109/DFT56152.2022.9962356, 2022.

[4] D. Cindori, I. Tomičić, and P. Grd, "Security hardening of facial recognition systems," presented at the 2021 44th
International Convention on Information, Communication and Electronic Technology (MIPRO).
https://doi.org/10.23919/mipro52101.2021.9596961, 2021.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CSCI51800.2020.00024
https://doi.org/10.1109/SSS47320.2020.9174202
https://doi.org/10.1109/DFT56152.2022.9962356
https://doi.org/10.23919/mipro52101.2021.9596961

1155

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 2: 1147-1155, 2025
DOI: 10.55214/25768484.v9i2.4697
© 2025 by the authors; licensee Learning Gate

[5] P. Stöckle, B. Grobauer, and A. Pretschner, "Automated implementation of Windows-related security-configuration
guides," presented at the 2020 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE). https://doi.org/10.1145/3324884.3416540, 2020.

[6] J. He and M. T. Vechev, "Large language models for code: Security hardening and adversarial testing," in Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications Security.
https://doi.org/10.1145/3576915.3623175, 2023.

[7] G. Salazar-Chacón and D. M. Parra, "Infrastructure-as-code in open-networking: git, ansible, and cumulus-linux case
study," 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC).
https://doi.org/10.1109/CCWC57344.2023.10099084, 2023.

[8] Z. Huang, G. Tan, and X. Yu, "Mitigating vulnerabilities in closed source software," EAI Endorsed Trans. Security
Safety, vol. 8, no. 30, pp. e1-e4, 2022. https://doi.org/10.4108/eetss.v8i30.253

[9] V. Duta, C. Giuffrida, H. Bos, and E. Van Der Kouwe, "PIBE: practical kernel control-flow hardening with profile-
guided indirect branch elimination," in Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. https://doi.org/10.1145/3445814.3446740, 2021.

[10] P. Stöckle, I. Pruteanu, B. Grobauer, and A. Pretschner, "Hardening with scapolite: A DevOps-based approach for
improved authoring and testing of security-configuration guides in large-scale organizations," in Proceedings of the
Twelfth ACM Conference on Data and Application Security and Privacy. https://doi.org/10.1145/3508398.3511525, 2022.

[11] G. Amarchand, P. Brown, and T. Mahoney, "Linux security," Advances in Engineering Innovation, vol. 2, pp. 17-20,
2023. https://doi.org/10.54254/2977-3903/2/2023015

[12] F. Franzen, A. C. Wilhelmer, and J. Grossklags, "Rand compile: Removing forensic gadgets from the Linux kernel to
combat its analysis," in Proceedings of the 39th Annual Computer Security Applications Conference.
https://doi.org/10.1145/3627106.3627197, 2023.

[13] J. Yin, Y. Ishikawa, and A. Takefusa, "A linux audit and MQTT-based security monitoring framework," 2023 IEEE
47th Annual Computers, Software, and Applications Conference (COMPSAC).
https://doi.org/10.1109/COMPSAC57700.2023.00090, 2023.

[14] B. Potteiger, Z. Zhang, and X. Koutsoukos, "Integrated moving target defense and control reconfiguration for
securing cyber-physical systems," Microprocess," Microsystems, vol. 73, p. 102954, 2020.
https://doi.org/10.1016/j.micpro.2019.102954

[15] P. Wang, J. Bangert, and C. Kern, "If it’s not secure, it should not compile: Preventing DOM-based XSS in large-
scale web development with API hardening," presented at the 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). https://doi.org/10.1109/ICSE43902.2021.00123, 2021.

[16] J. Carrillo-Mondéjar, H. Turtiainen, A. Costin, J. L. Martínez, and G. Suarez-Tangil, "HALE-IoT: Hardening legacy
internet of things devices by retrofitting defensive firmware modifications and implants," IEEE Internet of Things
Journal, vol. 10, no. 10, pp. 8371-8394, 2023. https://doi.org/10.1109/JIOT.2022.3224649

[17] C. Spensky et al., "TRUST.IO: Protecting physical interfaces on cyber-physical systems," presented at the 2020 IEEE
Conference on Communications and Network Security (CNS). https://doi.org/10.1109/CNS48642.2020.9162246,
2020.

https://doi.org/10.1145/3324884.3416540
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1109/CCWC57344.2023.10099084
https://doi.org/10.4108/eetss.v8i30.253
https://doi.org/10.1145/3445814.3446740
https://doi.org/10.1145/3508398.3511525
https://doi.org/10.54254/2977-3903/2/2023015
https://doi.org/10.1145/3627106.3627197
https://doi.org/10.1109/COMPSAC57700.2023.00090
https://doi.org/10.1016/j.micpro.2019.102954
https://doi.org/10.1109/ICSE43902.2021.00123
https://doi.org/10.1109/JIOT.2022.3224649
https://doi.org/10.1109/CNS48642.2020.9162246

