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Abstract: Proper fruit harvesting timing is crucial in agriculture to ensure optimal product quality. 
Particularly, manually determining fruit ripeness requires significant time and expertise from farmers. 
Inaccuracies in harvest timing often lead to resource wastage and lower crop quality. Simultaneously, 
advancements in image-based classification technology offer promising solutions to address these 
challenges. Convolutional Neural Networks (CNN) are powerful deep learning architectures effective in 
recognizing complex patterns in image data, enabling high-accuracy visual information processing. 
YOLOv8 (You Only Look Once version 8) represents a recent implementation of object detection 
algorithms renowned for its ability to swiftly and accurately detect objects in real-time. Many studies 
have used limited data under controlled conditions. Additionally, there is a lack of research exploring 
how YOLOv8 and CNN models can be adapted to various environmental conditions, such as natural 
lighting and diverse backgrounds. This study proposes the integration of CNN with YOLOv8 to 
autonomously classify fruit ripeness stages, specifically focusing on pineapples. This method facilitates 
automated detection and classification of fruit ripeness, thereby enhancing harvest management 
efficiency for farmers. Performance testing of the YOLOv8 system yielded promising results with a 
mean Average Precision (mAP) of 88.5%, Precision of 78.4%, and Recall of 84.2%. These findings affirm 
the system’s capability to consistently and accurately assess pineapple ripeness across various field 
conditions. By harnessing CNN and YOLOv8 technologies, we introduce an innovative approach to 
fruit harvesting management applicable in modern agricultural practices. 
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1. Introduction  

Effective identification of fruit ripeness is crucial in modern agriculture to optimize harvest timing 
and ensure high-quality produce. Manual assessment of fruit ripeness is labor-intensive and prone to 
inconsistencies, leading to inefficiencies in resource management and market readiness. In pineapple 
cultivation, determining the optimal harvest time directly impacts yield, fruit quality, and economic 
returns. Environmental factors such as temperature, humidity, and soil conditions, alongside 
agricultural practices like irrigation and fertilization, significantly influence pineapple development and 
ripening. Variability in ripeness stages affects fruit flavor, texture, and nutritional content, influencing 
consumer preferences and market acceptance. Improper timing of harvest can result in premature or 
overripe fruits, leading to financial losses for farmers and processors. The challenges in accurately 
assessing fruit ripeness manually are manifold. Firstly, subjective judgment in visual assessment can 
vary widely among individuals, leading to inconsistent results. Secondly, the process is time-consuming 
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and labor-intensive, particularly in large-scale agricultural operations. Thirdly, factors such as 
variations in fruit size, shape, and external appearance can further complicate accurate ripeness 
assessment, necessitating more objective and efficient methodologies. 

Recent advancements in image processing technologies have revolutionized fruit ripeness 
assessment. These systems leverage digital imaging and machine learning algorithms to automate the 
analysis of fruit characteristics. By capturing and analyzing digital images, these technologies can detect 
subtle differences in color, texture, and size indicative of ripeness stages [1]. This automation enhances 
accuracy, efficiency, and consistency in fruit grading and sorting processes, thereby improving overall 
productivity and market competitiveness. A variety of machine learning algorithms have been applied to 
fruit ripeness assessment, including Support Vector Machines (SVM), Random Forests, and 
Convolutional Neural Networks (CNN). CNNs have emerged as particularly effective in image-based 
tasks due to their ability to extract intricate features directly from pixel data. CNN-based methods 
enhance accuracy such as in robotics localization with AMCL+CNN and in skin cancer detection using 
GoogLeNet, achieving superior results in both applications [2, 3]. This capability allows CNNs to 
robustly classify complex patterns in fruit images, enhancing accuracy and adaptability across different 
fruit types and environmental conditions [4]. CNNs offer significant advantages in fruit ripeness 
classification due to their hierarchical architecture and feature extraction capabilities. These networks 
excel in handling large datasets and learning complex patterns, making them well-suited for real-time 
applications in agricultural settings [5]. YOLOv8 represents a cutting-edge approach in object 
detection, known for its real-time capabilities and high accuracy in identifying and classifying objects 
within images. Integrating YOLOv8 with CNNs enhances the speed and precision of fruit ripeness 
assessment, enabling rapid detection and classification of ripeness stages in pineapples and other fruits 
[6]. Implementation of CNN as part of deep learning continues to evolve in various research studies for 
detecting digital image [7, 8].  

Several studies have explored YOLO’s real-time object detection and classification capabilities for 
fruit ripeness assessment. YOLOv8, known for its high-speed processing and accuracy, has been 
successfully implemented for detecting and classifying fruits across various ripeness stages. For 
instance, research Wang [9] leveraged YOLOv8 to automate fruit ripeness detection, testing the model 
on a dataset labelled by ripeness stage. The study highlighted YOLOv8's accuracy and real-time 
processing as beneficial for agricultural applications, helping optimize harvest timing and reduce waste. 
Another study Patel [10] directly compared YOLO’s performance to CNNs, finding that while CNNs 
were accurate, YOLO’s speed and real-time feedback made it more suitable for immediate agricultural 
applications. Research Li and Chen [11] specifically applied YOLOv8 to classify pineapple ripeness, 
demonstrating the model’s effectiveness in distinguishing between various ripeness stages, which 
underscores YOLOv8’s utility in practical agricultural processes like sorting and quality control. 
Additionally, studies by Wang and Zhang [12] further emphasized YOLOv8's efficiency and accuracy 
in fruit ripeness assessment, proposing that YOLOv8 can significantly enhance automation in 
agriculture, thus supporting sustainable harvesting practices.  

Another study Reddy and Reddy [13] proposed a similar hybrid model, combining YOLOv8 for 
locating fruits and CNN for classifying ripeness. This model achieved an accuracy of 95%, supporting 
effective harvesting and post-harvest processes by reducing waste and improving crop quality. Research 
on mango ripeness detection [14] also illustrated the benefits of merging YOLO’s real-time detection 
with CNN’s feature extraction, which showed promising results for practical applications in agriculture. 
Furthermore, studies such as Wang [15] on strawberry classification used YOLOv8+ with CNN to 
capture fine details, demonstrating the integrated model’s ability to adapt to complex environmental 
variations. 

Several studies have applied YOLOv8 and CNN specifically for classifying the ripeness of various 
fruits under diverse conditions, including pineapples. For example, research by Li and Chen [11] 
focused on training YOLOv8 to classify pineapple ripeness stages, achieving high accuracy across 
different ripeness levels, which validates YOLOv8's potential for use in quality control and efficient 
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sorting in pineapple production. Additional research Kumar [16] extended the application of YOLOv8 
to other fruits, underscoring the model’s ability to handle datasets curated for distinct ripeness stages. 
The use of YOLOv8 and CNN combined in specialized contexts such as mango ripeness detection [14] 
and cherry ripeness assessment [17] further highlights the effectiveness of these models in specific 
agricultural applications, enhancing precision and robustness in real-world scenarios. 

Addressing the limitations of controlled environments in agricultural applications, some studies 
focused on improving YOLOv8 and CNN adaptability to real-world conditions, including variations in 
lighting and background complexity. For instance, Xiao, et al. [18] developed an enhanced YOLOv8 
model that demonstrated superior speed and accuracy under variable conditions, incorporating modules 
such as CSP and C2f for lightweight processing. Another study You [17] introduced an improved 
YOLOv8 with attention mechanisms to enhance detection in natural cherry fruit environments, 
achieving precision rates over 98%. Research by Wang [15] also adapted YOLOv8 for strawberry 
detection using Focal-EIOU loss to boost performance under diverse environmental conditions. These 
enhancements underscore the ongoing need to refine YOLO and CNN models to meet the dynamic 
requirements of agricultural settings, ultimately increasing their robustness and applicability. 

Despite the significant advancements in the application of machine learning algorithms, particularly 
YOLOv8 and Convolutional Neural Networks (CNNs), for fruit ripeness classification, many existing 
studies have primarily utilized datasets that are limited in scope and collected under highly controlled 
conditions. These controlled environments do not accurately reflect the variability and challenges 
present in real-world agricultural settings. Moreover, there is a notable deficiency in research dedicated 
to investigating how these models can be effectively adapted to function under diverse environmental 
conditions. This includes factors such as varying natural lighting, which can affect image quality, and 
heterogeneous backgrounds that can introduce noise and complicate the detection and classification 
processes. Addressing these gaps is essential to develop robust, adaptable, and practical solutions for 
automated fruit ripeness assessment that can be reliably deployed in dynamic agricultural environments. 

While significant progress has been made in applying machine learning techniques, such as 
YOLOv8 and Convolutional Neural Networks (CNNs), to the classification of fruit ripeness, many 
studies have relied on limited datasets collected in controlled environments. These controlled settings 
fail to represent the complexities and variability of real-world agricultural conditions. Furthermore, 
there is a lack of comprehensive research exploring the adaptation of these models to diverse 
environmental factors, including variations in natural lighting and complex, variable backgrounds. This 
gap highlights the need for further investigation to enhance the robustness and versatility of these 
models, ensuring their effectiveness in practical, real-world applications within the agricultural 
industry. 

Based on various studies recommending increased use of YOLOv8 for fruit ripeness classification 
through CNN, this research also developed the algorithm to determine the ripeness level of pineapples. 
This study aims to develop and evaluate a pineapple ripeness classification system using CNN with 
YOLOv8. The research focuses on enhancing the efficiency of harvest operations, improving quality 
control measures, and reducing losses associated with improper timing. The outcomes of this research 
are expected to optimize pineapple production practices, mitigate economic losses due to suboptimal 
harvest timing, and strengthen the competitiveness of farmers in local and global markets. By 
advancing automated ripeness assessment techniques, the study contributes to sustainable agriculture 
practices and food security, ensuring consistent supply of high-quality produce. 
 

2. Research Method 
2.1. Data Collection 

This research involves data collection, preprocessing, modeling, and testing, applying the YOLOv8 
algorithm for object detection and CNN for classification on an annotated pineapple photo dataset with 
four ripeness labels, evaluated across 50 epochs. Data collection was conducted through field 
observations and interviews with pineapple farmers in Kotamobagu, resulting in a dataset of 592 photos 
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labeled as Unripe, Half-Ripe, Ripe, and Overripe. Specifically, the dataset included 150 images of Unripe, 
150 of Half-Ripe, 150 of Ripe, and 142 of Overripe pineapples. Each image was taken in a resolution of 
1920x1080 pixels under varying environmental conditions to represent diverse real-world settings, 
including different lighting conditions and angles. The images were captured with a high-resolution 
DSLR camera to ensure quality. Data augmentation techniques such as rotation (up to 30°), horizontal 
flipping, cropping, and scaling were applied to enhance the dataset, increasing the diversity of training 
samples. This resulted in a post-augmentation dataset size of over 1,200 images, providing a robust 
foundation for model learning. 

Labeling criteria for pineapple ripeness included various visual indicators. Unripe pineapples had 
dark green skin, a hard texture, no sweet aroma, and prominent eyes. Half-Ripe pineapples showed a 
transition from green to yellow skin, a slightly soft texture, a faint sweet aroma, and slightly flattened 
eyes. Ripe pineapples were mostly yellow-skinned, with a soft texture, a strong sweet aroma, and nearly 
flat eyes. Overripe pineapples had yellow to yellow-brown skin, a very soft texture, a strong sweet 
aroma with possible fermentation hints, and fully flattened or sunken eyes. These labels were validated 
through expert analysis to maintain labeling consistency. 

The data collected had high quality and represented a diversity of environmental conditions, which 
was important for the machine learning model. The use of data augmentation techniques effectively 
expanded the dataset and added additional variations that helped the model learn better. Experience 
from previous research showed that datasets of similar size had yielded adequate results for similar 
tasks. Additionally, the evaluation and validation of the model were well-conducted with this dataset, 
ensuring the model did not overfit. Computational efficiency was also an important consideration, as a 
dataset of this size allowed model training to be carried out with limited resources. Therefore, the 592 
manually labeled photos provided adequate representation for each stage of pineapple ripeness necessary 
for a reliable learning model.  

The dataset was divided into three subsets to facilitate effective training, validation, and testing. 
The largest portion, 486 images, was allocated to the Training Set to enable the model to learn and 
recognize visual patterns for each ripeness stage. To evaluate model performance during training and 
fine-tune its parameters, 70 images were set aside for validation. This Validation Set assists in 
monitoring accuracy and adjusting the training process to prevent overfitting. The Test Set of 36 
images was used for unbiased model performance evaluation, confirming its capability to detect and 
classify pineapple ripeness in real-world scenarios. This systematic dataset division enhances the 
model's reliability and effectiveness. 
 
2.2. Modelling Process 

Data modeling used CNNs for deep learning classification. YOLOv8, which uses CNN as its 
backbone, processes images to detect objects in one stage, making it faster than traditional two-stage 
models [19]. YOLOv8 was employed for object detection, while CNN handled classification. YOLOv8 
detects the object in the image, and CNN classifies its ripeness stage. Testing evaluated the model's 
accuracy in identifying pineapple ripeness using metrics such as Mean Average Precision (mAP), 
Precision, Recall, and F1-Score. Performance metrics such as mAP, Precision, Recall, and F1-Score are 
utilized in this study to measure the accuracy and balance of YOLOv8 and CNN models in identifying 
pineapple ripeness from images. These metrics provide an objective evaluation of the models' precision, 
detection capabilities, and reliability in this task. Figure 1 shows the workflow stages of the program 
implementing YOLOv8 detection and CNN classification.  
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Figure 1.  
Program flowchart. 

 
Based on Figure 1, the process begins with data collection, where images of pineapples at various 

ripeness stages are gathered along with related metadata, such as lighting conditions and angles. This 
step ensures a diverse and representative dataset. Next, the images undergo preprocessing, which 
includes several sub-processes to enhance their quality and usability. Normalization adjusts the pixel 
values of the images to a standard range, such as [0, 1] or [-1, 1], which helps stabilize the training 
process and improve model convergence. Resizing ensures all images are of uniform size, consistent 
with the requirements of the YOLOv8 model, which is crucial for neural network training. Data 
augmentation applies transformations such as rotation (up to 30°), flipping, cropping, and scaling to the 
images, increasing the diversity of the training dataset and reducing overfitting by simulating 
variations. Optionally, image segmentation isolates the regions of interest (the pineapples), depending 
on the quality of the images and the specific requirements of the YOLOv8 model. With preprocessed 
data, the YOLOv8 model undergoes training and validation. The dataset is split into training and 
validation sets, and the YOLOv8 model is trained to detect pineapples in the images. Model validation 
ensures accurate pineapple detection. Detected pineapples are then extracted using the bounding boxes 
predicted by the YOLOv8 model, cropping the relevant regions from the images. These cropped images 
are preprocessed, if necessary, tailored to the CNN model's requirements. The CNN architecture 
included three convolutional layers for feature extraction, each followed by 2x2 max-pooling layers to 
reduce spatial dimensions. Two fully connected layers perform final classification. The model trained for 
50 epochs with a learning rate of 0.001. This architecture supports high-speed classification across 
various ripeness classes, integrating well with YOLOv8’s efficient detection process. 
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In this study, To train data using Roboflow and Pycharm with Ultralytics YOLOv8. A CNN with 
convolutional and pooling layers was employed alongside the YOLOv8 architecture, known for its 
superior object detection performance. The CNN model integrated features such as Feature Pyramid 
Networks (FPN) for multi-scale object detection. YOLOv8 excels in efficiency by performing object 
detection in a single pass through the network, making it suitable for applications requiring rapid and 
accurate object detection in images. The model is continually refined with optimizations aimed at 
improving speed and accuracy, maintaining its relevance across various real-world scenarios.  

YOLOv8 is an object detection model that builds upon the principles of previous YOLO versions 
but with improvements in accuracy and efficiency. In the YOLOv8 stages, there are several calculation 
steps, including bounding box prediction, confidence score, class prediction, and loss function. In the 
bounding box prediction, each grid cell predicts B bounding boxes and confidence scores for those 
boxes. A bounding box is defined by: 

 

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝐵𝑜𝑥 = (𝑥, 𝑦, 𝑤, ℎ)           (1) 
 

Where (x, y) is the center of the box relative to the bounds of the grid cell, and w and h are the 
width and height of the box relative to the entire image. In the confidence score, each bounding box has 
a confidence score that reflects the probability that the box contains an object and the accuracy of the 
bounding box. The confidence score is defined as: 
 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑃 (𝑂𝑏𝑗𝑒𝑐𝑡)𝑥 𝐼𝑂𝑈𝑝𝑟𝑒𝑑,𝑡𝑟𝑢𝑡ℎ           (2) 

 

Where P(Object) is the probability of an object being present in the box and 𝐼𝑂𝑈𝑝𝑟𝑒𝑑,𝑡𝑟𝑢𝑡ℎ is the 

Intersection over Union between the predicted box and the ground truth box. In the class prediction, 
each grid cell also predicts C conditional class probabilities. The final prediction score for each class is: 
 

𝐶𝑙𝑎𝑠𝑠 𝑆𝑐𝑜𝑟𝑒 = 𝑃( 𝑂𝑏𝑗𝑒𝑐𝑡)𝑥 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  (3) 
 

Where 𝑃( 𝑂𝑏𝑗𝑒𝑐𝑡) is the conditional class probability given that an object is present. The YOLO 
loss function combines classification loss, localization loss (error between predicted bounding box and 
ground truth), and confidence loss (objectness score): 

 

𝐿𝑜𝑠𝑠 = 𝜆coord ∑  

𝑠2

𝑖=0

 ∑  

𝐵

𝑗=0

 1𝑖𝑗
𝑜𝑏𝑗

  [(𝑥𝑖 − �̂�𝑖)2 + (𝑦𝑖 − �̂�𝑖)2 + (𝑤𝑖 − �̂�𝑖)2 + (ℎ𝑖 − ℎ̂𝑖)
2

]

+ ∑  

𝑠2

𝑖=0

 ∑  

𝐵

𝑗=0

 1𝑖𝑗
𝑜𝑏𝑗

 (�̂�𝑖 − 𝐶𝑖)
2

+  𝜆noobj ∑  

𝑠2

𝑖=0

 ∑  

𝐵

𝑗=0

 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(�̂�𝑖 − 𝐶𝑖)
2

+ ∑  

𝑠2

𝑖=0

 1𝑖
𝑜𝑏𝑗

 ∑  

𝑐∈ classss 

(𝑝𝑖(𝑐) − �̂�𝑖(𝑐))2    

      (4) 

Where 𝜆𝑐𝑜𝑜𝑟𝑑  and 𝜆𝑛𝑜𝑜𝑏𝑗  are constants that determine the weight of the coordinate loss and the 

no-object confidence loss. The CNN model is then trained and validated using the cropped images to 
classify the ripeness of the pineapples. This step involves training the CNN model and validating its 
accuracy in classifying the ripeness stages. CNNs are used for image classification tasks and consist of 
several layers, including convolutional layers, pooling layers, and fully connected layers [20]. 
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In the convolutional layer, the convolution operation involves applying a filter to an input to 
produce activation map: 

 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑝 (𝑖, 𝑗) = (𝑋 ∗ 𝑊)(𝑖, 𝑗) =  ∑ ∑ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝑊(𝑚, 𝑛)

𝑛𝑚

     (5) 

 
Where X is the input matrix, W is the filter matrix, and (i,j) are the coordinates of the activation 

map. Then, the activation function (ReLU), the Rectified Linear Unit (ReLU) is commonly used to 
introduce non-linearity: 

 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)       (6) 
 
In the pooling layer reduce the spatial dimensions of the input, commonly using max pooling: 

𝑀𝑎𝑥 𝑃𝑜𝑜𝑙 (𝑖, 𝑗) = 𝑚𝑎𝑥
𝑚,𝑛

 (𝑋(𝑖 + 𝑚, 𝑗 + 𝑛))     (7) 

Where (i, j) are the coordinates in the pooling window. In the fully connected layers connect every 
neuron in one layer to every neuron in another layer, typically represented as: 
 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑊 ∙ 𝑥 + 𝑏                     (8) 
 
Where W is the weight matrix, x is the input vector, and b is the bias vector. In the loss function 

(Cross-Entropy Loss), it is used for classification tasks [21] the cross-entropy loss is commonly used: 
 

𝐿 = − ∑ 𝑦𝑖 log(�̂�𝑖)

𝑖

                               (9) 

       

Where 𝑦𝑖 is the true label, and 𝑦ˆ𝑖is the predicted probability for class i. The overall performance of 
the integrated YOLOv8 and CNN pipeline is then evaluated using metrics such as accuracy, precision, 
recall, and F1-score. A detailed report of the classification results is generated. Finally, the process 
concludes, having successfully processed and classified the pineapple images. 
 

3. Result and Discussion 
In this research, the YOLOv8 algorithm was successfully implemented to automatically detect and 

classify the ripeness levels of pineapples. The process involved training a model using a meticulously 
annotated dataset of pineapple images, categorized into four distinct ripeness stages: Unripe, Half-Ripe, 
Ripe, and Overripe. The annotations were crucial in enabling the model to learn and recognize the 
visual cues associated with each ripeness level. The implementation and evaluation of the model were 
carried out through a series of comprehensive tests. Initially, the dataset was trained using the PyCharm 
development environment, where the trained model was subsequently tested on various media types. 
This included static photos, recorded videos, and live feeds from a webcam. These tests aimed to assess 
the model's performance in different scenarios and ensure its robustness in practical applications.  

In addition to the PyCharm tests, the model was also evaluated using the Roboflow platform. On 
Roboflow, the model underwent further testing with additional photo and video data. This dual-
platform approach allowed for a thorough examination of the model's capabilities and provided insights 
into its accuracy and reliability across different data sources and testing environments. The extensive 
testing confirmed the effectiveness of the YOLOv8 algorithm in detecting and classifying pineapple 
ripeness levels accurately. The successful implementation demonstrated the potential for automating the 
assessment of fruit ripeness, which could be beneficial for farmers and the agriculture industry by 
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providing a reliable and efficient tool for determining the optimal harvest time and ensuring fruit 
quality. 
 

 
Figure 2.  
Implementation with Pycharm Ultralytics YOLOv8. 

 
In Figure 2, the comparison of pineapple ripeness classification based on digital images with various 

backgrounds and light intensities revealed intriguing results. The evaluation conducted through 
PyCharm involved rigorous testing with a range of confidence thresholds. This process identified four 
distinct ripeness labels. Each image that was successfully detected, despite noise, varying light 
conditions affecting color intensity, or diverse backgrounds, enabled the system to display the 
classification of pineapple ripeness along with its confidence score. Additionally, by leveraging the real-
time webcam capabilities within PyCharm, the system achieved a commendable confidence score. This 
allowed for accurate classification of the pineapple as unripe, half-ripe, ripe, and overripe, showcasing 
the system's robustness in dynamic real-world scenarios. These findings underscored the effectiveness 
of the YOLOv8 algorithm in precise fruit ripeness assessment, highlighting its practical applicability in 
agricultural and consumer contexts. 

 

 
Figure 3.  
Implementation with Pycharm Ultralytics YOLOv8 and Roboflow in realtime. 

 
In Figure 3 shows an example of real-time detection of pineapple ripeness using PyCharm and 

Roboflow. In this sample, despite the significant influence of background and lighting conditions, the 
classification still yields results with certain confidence values.  
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Figure 4.  
Implementation with Pycharm Ultralytics YOLOv8 and Roboflow in video. 

 
In Figure 4, which comprised two images—one from video data and the other from a photograph—

the process of digital image identification was employed using the Roboflow application to classify the 
ripeness levels of pineapples. The classification yielded various confidence values, ultimately assigning a 
single ripeness label. Moreover, an image of a pineapple with a confidence score was identified as being 
categorized. Additionally, the study involved selecting samples data points from the training dataset as 
detailed in Table 1. 
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Table 1. 
Training result. 

Epoch 
Train/box_ 

loss 
Train/ 
cls_loss 

Train/dfl_ 
loss 

Metrics/precision(B) 
Metrics/ 
recall(B) 

Metrics/ 
mAP50(B) 

Metrics/mAP50-
95(B) 

Val/ 
Box_Loss 

Val/ 
Cls_Loss 

Val/ 
Dfl_Loss 

Lr/pg 0 Lr/pg 1 Lr/pg 2 

1 3.010 4.660 4.221 0.0003 0.072 0.0002 8e-05 2.512 4.735 4.116 0.00040984 0.00040984 0.00040984 

2 2.975 4.294 3.971 0.0008 0.211 0.022 0.007 2.410 4.521 3.921 0.00081014 0.00081014 0.00081014 
3 2.935 3.843 3.650 0.434 0.327 0.201 0.082 2.579 8.549 3.432 0.0011939 0.0011939 0.0011939 
10 2.076 2.685 2.689 0.370 0.478 0.416 0.230 1.735 2.435 2.521 0.0010273 0.0010273 0.0010273 
11 2.083 2.679 2.675 0.429 0.480 0.417 0.189 1.724 2.506 2.519 0.0010025 0.0010025 0.0010025 

12 2.043 2.586 2.619 0.364 0.573 0.474 0.257 1.795 2.612 2.625 0.00097775 0.00097775 0.00097775 
20 1.762 2.106 2.308 0.469 0.592 0.583 0.342 1.489 2.034 2.245 0.0007797 0.0007797 0.0007797 
21 1.788 2.122 2.314 0.559 0.667 0.633 0.359 1.531 1.746 2.259 0.000755 0.000755 0.000755 

22 1.714 1.991 2.267 0.543 0.654 0.618 0.366 1.517 1.783 2.249 0.00073025 0.00073025 0.00073025 
30 1.602 1.854 2.127 0.607 0.758 0.676 0.411 1.388 1.586 2.110 0.00053225 0.00053225 0.00053225 
31 1.633 1.826 2.141 0.578 0.795 0.687 0.408 1.463 1.465 2.165 0.0005075 0.0005075 0.0005075 
32 1.584 1.736 2.097 0.561 0.653 0.639 0.395 1.439 1.624 2.137 0.00048275 0.00048275 0.00048275 

40 1.507 1.641 2.044 0.655 0.863 0.729 0.438 1.432 1.375 2.127 0.00028475 0.00028475 0.00028475 
41 1.415 1.543 2.089 0.580 0.809 0.680 0.436 1.403 1.382 2.077 0.00026 0.00026 0.00026 
42 1.365 1.472 2.021 0.624 0.846 0.719 0.458 1.349 1.385 2.018 0.00023525 0.00023525 0.00023525 

50 1.279 1.301 1.936 0.644 0.873 0.754 0.478 1.345 1.263 2.021 3.725e-05 3.725e-05 3.725e-05 
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At the final epoch, the results in Table 1 indicate that the YOLOv8 model performs well in 
detecting and classifying objects within images. The Train/Box_Loss (1.279) and Train/Cls_Loss 
(1.301) values demonstrate the model’s ability to recognize object positions and classes with moderate 
error levels. Additionally, the precision score of 0.644 indicates that approximately 64.4% of the model’s 
positive predictions are correct, while the high recall of 0.873 reflects strong sensitivity, meaning the 
model successfully detects most objects in the images. The mAP@0.5 value of 0.754 confirms a good 
overall accuracy at a moderate overlap threshold, whereas the mAP@0.5:0.95 value of 0.478 shows 
satisfactory performance under stricter overlap conditions. In the validation data, the loss metrics 
(Val/Box_Loss, Val/Cls_Loss, and Val/Dfl_Loss) are consistent with the training results, indicating 
that the model does not suffer from overfitting and is thus expected to perform well on new data. With a 
small and stable learning rate of 3.725e-05, the model learns at a controlled pace, helping maintain a 
balance between accuracy and generalization. Overall, the YOLOv8 model shows significant potential 
for object detection applications, with strong recall and map values, although there remains room for 
improving precision to enhance classification accuracy. The visualizations provide further insights into 
the system's performance. Additionally, throughout the training and testing process across each epoch, 
the system shows progress and performance improvements, which are illustrated in Figure 5. 

 

 
Figure 5. 
Confusion matrix normalized. 
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The confusion matrix depicted in Figure 5 serves as a crucial evaluation tool, offering a detailed 
comparison between the actual classifications of pineapple ripeness levels and the predictions generated 
by the YOLOv8 model. This matrix provides a comprehensive breakdown of how well the model 
performs across different ripeness categories—Unripe, Half-ripe, Ripe, and Over-ripe. Each cell in the 
matrix represents the count of observations where the model correctly or incorrectly classified 
pineapples into these categories. By analyzing this matrix, researchers can assess the model's accuracy, 
precision, recall, and overall effectiveness in accurately identifying the ripeness stage of pineapples based 
on the visual cues captured in the dataset. 
 

 
Figure 6.  
Diagram mAP result. 

 
The map diagram presented in Figure 6 offers a comprehensive visualization of the model's 

performance across varying IoU thresholds, showcasing the intricate balance between recall and 
precision in object detection tasks. In the provided image, the x-axis in each plot represents the number 
of epochs or training steps, indicating the training progression over time. The y-axis varies by plot: for 
loss metrics (train/box_loss, train/cls_loss, train/dfl_loss, val/box_loss, val/cls_loss, and val/dfl_loss), 
it shows the loss values, which measure the model's error; for performance metrics (metrics/precision(B) 
and metrics/recall(B)), it represents the precision and recall scores, assessing accuracy and detection 
coverage; and for metrics/mAP@0.5 and metrics/mAP@0.5:0.95, the y-axis indicates mean Average 
Precision (mAP) at different IoU thresholds, reflecting prediction accuracy across varying levels of 
overlap requirements. IoU, or Intersection over Union, serves as a critical metric that quantifies the 
spatial overlap between predicted bounding boxes and ground truth annotations. By incrementally 
adjusting the IoU threshold from 0 to 1, researchers can analyze how the model's precision and recall 
metrics evolve. Typically, as the IoU threshold increases, the model becomes more stringent in its 
detection criteria, leading to higher precision but potentially lower recall, as fewer predictions meet the 
stricter overlap criterion. Conversely, lowering the IoU threshold can increase recall by capturing more 
instances but might sacrifice precision due to increased false positives. 
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This curve provides valuable insights into the model's robustness and effectiveness in detecting 
pineapple ripeness levels across different IoU thresholds. It enables researchers to make informed 
decisions about model configuration and optimization, aiming to strike a balance that aligns with 
specific application requirements, whether prioritizing precision, recall, or a trade-off between both 
metrics. The visual representation in Figure 6 aids in understanding how changes in IoU thresholds 
impact the overall performance and reliability of the YOLOv8 model in fruit ripeness assessment tasks. 

 

 

 
Figure 7.  
Testing parameter correlation curve. 

 
Figure 7 illustrated the relationships among key testing parameters in the YOLOv8-based 

pineapple ripeness detection model, offering insights into model performance across different 
thresholds. In the Precision-Recall Curve (a), the x-axis represents recall, and the y-axis represents 
precision, showing the balance between correctly identified positives and true positives detected. The 
Recall-Confidence Curve (b) plots recall on the y-axis against varying confidence levels on the x-axis, 
indicating model sensitivity across different confidence thresholds. Similarly, the Precision-Confidence 
Curve (c) has precision on the y-axis and confidence on the x-axis, reflecting accuracy in positive 
detections at different confidence levels. Lastly, the F1-Confidence Curve (d) shows the F1 score on the 
y-axis against confidence on the x-axis, providing a balanced view of precision and recall across 
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confidence levels, underscoring the importance of optimizing confidence thresholds to enhance overall 
model performance. 

 

 
Figure 8.  
Diagram mAP result in roboflow. 

 
Figure 8 showed the performance measurement results of the algorithm with an map of 88.5%, 

precision of 78.4%, and recall of 84.2%. The application of the YOLOv8 algorithm for detecting and 
classifying pineapple ripeness showed promising results, as evidenced by the performance metrics 
achieved. These results demonstrated the model's ability to effectively distinguish between various 
stages of pineapple ripeness, consistent with the findings of previous studies discussed in the 
introduction. As reviewed in the literature, various studies highlighted the advantages of CNNs and 
object detection algorithms like YOLO in improving the accuracy and efficiency of fruit ripeness 
assessment. The application of CNNs in image-based tasks proved to be highly effective, particularly in 
fruit classification, where the accuracy achieved was very high. Similarly, this study reaffirmed the 
ability of CNNs to process pineapple images and classify their ripeness stages with high precision. 
YOLOv8, with its real-time object detection capabilities, was employed in various studies to enhance the 
speed and accuracy of fruit ripeness detection. This study also showed that YOLOv8 could quickly and 
accurately identify pineapple ripeness stages, which aligned with previous findings regarding the 
advantages of YOLOv8 in object detection tasks across various environmental conditions. 

The study’s findings align with and expand upon previous research. YOLOv8’s real-time object 
detection has been widely recognized for accuracy and speed across various agricultural applications, as 
reviewed in Li and Chen [11] and Wang and Zhang [12]. The model's performance on pineapple 
ripeness classification confirms its utility for agricultural automation, with results that echo those of 
similar studies using CNN and YOLO for fruit ripeness classification under controlled conditions. This 
research, however, uniquely demonstrates that YOLOv8 performs consistently across variable 
environmental conditions, addressing a significant gap noted in prior studies which operated in 
controlled settings. 
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However, the results of this study also revealed challenges, particularly related to the variation in 
the dataset. This aligned with criticisms in previous studies that many investigations were conducted in 
controlled environments that did not fully reflect the complexity and variability of real-world 
agricultural conditions. This challenge underscored the importance of using high-quality data and high-
performance imaging devices to enhance the reliability of real-time applications. Additionally, this study 
emphasized the importance of parameter optimization in achieving robust detection and classification 
capabilities. As suggested in previous literature, using data augmentation techniques and transfer 
learning could help overcome dataset limitations and improve the model's adaptability to diverse 
environmental conditions. In this context, this study contributed to our understanding of the 
application of YOLOv8 for fruit ripeness assessment, particularly for pineapples, and identified areas 
that required further improvement. By combining the findings from this study and existing literature, it 
could be concluded that while YOLOv8 showed significant potential for practical agricultural 
applications, improvements in data quality and better model optimization techniques were still needed 
to achieve optimal results in various environmental conditions. This study aimed to develop and 
evaluate a pineapple ripeness classification system using CNN with YOLOv8, focusing on enhancing 
harvest operation efficiency, improving quality control measures, and reducing losses associated with 
improper timing. The outcomes of this research could optimize pineapple production practices, reduce 
economic losses, and increase the competitiveness of farmers in local and global markets. By advancing 
automated ripeness assessment techniques, this study contributed to sustainable agricultural practices 
and food security, ensuring a consistent supply of high-quality produce. 
 

4. Conclusion 
This research successfully demonstrated the effectiveness of the YOLOv8 algorithm in automating 

pineapple ripeness detection and classification, achieving a high level of accuracy across multiple 
ripeness stages (Unripe, Half-Ripe, Ripe, and Overripe). Through extensive testing in varied 
environments and media (static images, videos, and real-time webcam feeds), the model attained 
commendable performance metrics, including an map of 88.5%, precision of 78.4%, and recall of 84.2%. 
These results validate the potential of YOLOv8 for practical applications in agriculture, specifically in 
enhancing the efficiency of harvest operations and improving quality control in fruit production. 

However, to further advance this field, future research should address the challenges posed by 
environmental variability—such as changes in lighting and background conditions—that can affect 
model accuracy in real-world settings. It is suggested that future studies consider expanding the dataset 
with diverse environmental conditions and employing techniques like data augmentation and transfer 
learning to improve model adaptability. Additionally, investigating the use of higher quality imaging 
devices or integrating additional sensory data could further enhance detection reliability. By building on 
these findings, subsequent research can contribute to developing more robust and scalable solutions for 
automated ripeness assessment, ultimately supporting sustainable agricultural practices and 
strengthening food supply chains. 
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