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Abstract: Plasmonic nano-antennas are widely accepted as suitable platforms for biosensing tasks 
because Surface Plasmon Resonance (SPR) is very sensitive to changes in its environment. However, 
recent studies suggest that SPRs may have limited Quality (Q) factors, especially in comparison with 
their dielectric counterparts. Therefore, this paper attempts to innovate the design of plasmonic nano-
antennas to achieve high Q factors through Surface Lattice Resonance (SLR) in the visible frequency 
band. This resonance is linked with plasmonic nanostructures organized in arrays. The structure 
consists of a metal-dielectric-metal configuration at the base with metallic nanopillars protruding 
upward. The nanophotonic device has been investigated for refractometric sensing applications. The 
maximum Q factor achieved as a result of this work is 245, which has been compared with contemporary 
plasmonic metasurface Q factors. The simulation framework has been implemented in COMSOL 
Multiphysics, which employs the Finite Element Method (FEM). Regression analysis has been used to 
formulate the calibration curve for the sensor. High Q factors provide better selectivity for biosensing 
applications. 
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1. Introduction  

Nanoscience remains one of  the greatest wonders of  the twenty-first century. It utilizes knowledge 
from multidisciplinary research fields to enhance its viability and practicality. A conspicuous domain of  
nanoscience is nanophotonics which involves the interaction of  light with matter designed at nanometer 
scale. This interaction has been studied and documented for a wide variety of  applications including 
computing, communications, healthcare and environmental control [1, 2]. In this paper, we focus on the 
application of  nanophotonics in sensor technology.  

Sensors play a significant role in the monitoring and evaluation of  engineering systems. 
Traditionally, a sensor has been defined as a device that converts a physical, chemical or biological 
parameter into an electrical signal [3]. However, photonic sensors have an enormous role to play in 
today’s time. Photonic systems are generally faster than electronic systems because of  the speed of  
electromagnetic waves. Nanophotonic sensors are also less bulky compared to traditional optical 
sensors. They provide smaller footprints as well [4, 5]. A special class of  micro/nanophotonic sensors 
comprises plasmonic materials. The concept of  a plasmonic material was presented by Veselago [6]. His 
theoretical contribution described a material with negative values of  permittivity and permeability. In 
this era, there is a remarkable emphasis on the engineering of  novel optical materials. Plasmonic and 
other types of  novel optical materials are collectively known as metamaterials today [6, 7].  

Metamaterials have been frequently used for the development of  miniaturized optical sensors. Naib 
et al. have extensively reported sensors employing resonating metamaterial structures. A large portion 
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of  their work is based on plasmonic biosensors in the terahertz frequency band [8, 9]. Similarly, Patel, 
et al. [10] have studied various metamaterial designs, with special focus on graphene and plasmonics 
[10, 11]. Several applications have been targeted by photonic metamaterial sensors. Different 
parameters of  blood have been investigated through metaphotonic biosensors [12, 13]. The detection 
of  microorganisms associated with fatal diseases have also been reported in the realm of  biophotonic 
metasensors [14, 15]. Biomedical sensors employing metamaterial structures have been proposed for 
cancer detection too [16, 17]. Various other biomedical applications have been explored in the context 
of  metamaterial optics. Plasmonic sensors have also shown good promise in the sensing of  analytes for 
various other arenas like environmental monitoring and food industry [18, 19].  

This area is witnessing great interest from researchers as many new metamaterial ideas are being 
proposed for sensing applications. Another well-acknowledged category of  metamaterial sensors 
consists of  dielectric sensors. As opposed to plasmonics, dielectric structures suffer from lower losses 
and provide ease of  fabrication due to their compatibility with Complementary Metal-Oxide 
Semiconductor (CMOS) processes. In terms of  sensing performance, plasmonic sensors usually display 
higher values of  sensitivity compared to dielectric sensors. This is because SPR is very sensitive to 
changes in its environment. However, higher quality factors can easily be achieved by virtue of  
dielectric resonators, which appears to be a challenge for plasmonic sensors [20-22]. Hence, this paper 
concentrates on the enhancement of  quality factors in plasmonic sensors.   

The fundamental concept behind a plasmonic resonance is a metal-dielectric interface. A metal-
dielectric interface gives rise to a special phenomenon known as Surface Plasmon Resonance. Two 
commonly reported types of  plasmonic resonances are Surface Plasmon Polariton (SPP) and Localized 
Surface Plasmon Resonance (LSPR). In the former case, strong electromagnetic fields are observed 
along the boundary of  a metal and dielectric. On the other hand, when strong fields are confined within 
nanoscale structures, we call it LSPR. The interaction between nanostructures and light is on a 
subwavelength scale, which requires the size of  nanostructures to be smaller than the wavelengths of  
incident electromagnetic beams. Plasmonic nanostructures can be arranged periodically on larger 
surfaces to engineer light wavefronts. These flat optical surfaces are called metasurfaces. The term 
‘metasurface’ represents a two-dimensional counterpart of  the term ‘metamaterial’, which is used to 
refer to any artificially engineered material with unnatural characteristics. Arrays of  periodic 
nanophotonic resonators give rise to combined resonances termed as Surface Lattice Resonances (SLRs). 
Generally, in the case of  LSPR, the frequency response has a low Quality (Q) factor. On the other hand, 
collaborative plasmonic resonances originating from nanoplasmonic arrays have larger Q factors. 
Therefore, Q factor has been a question of  interest in the context of  plasmonic metasurfaces, especially 
because of  their widespread applications in bioimaging, biosensing, cloaking, etc [23-25].  

In this paper, a novel SLR sensor design has been targeted. The proposed sensor operates in the 
visible light band and provides sharp reflection dip in the targeted frequency range. We emphasize that 
quality factors have not come into detailed discussion in the context of  plasmonic biosensors. Therefore, 
this paper includes a deep insight into the Q factor of  plasmonic metasurface sensors. This is one aspect 
of  this paper’s novelty. The Q factor achieved through the proposed design competes among the highest 
quality factors reported till date. A comparison table (Table 1) validates the claim. The sensor 
performance, involving measurement of  frequency shifts with changing refractive indices, has been 
discussed in detail. The simulation work has been carried out in COMSOL Multiphysics. It uses Finite 
Element Method (FEM) for solving electromagnetic problems. Data analysis and visualization has been 
done in Python.  
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Table 1. 
Comparison of  the proposed work with different meta-photonic sensors. 

Ref. Wavelength/ 
frequency 

Materials Structure Signal Response Maximum 
Q Factor 

Singh, et al. [26] 633 nm Ag, Si3N4, BP Planar waveguide Resonance angle 131.51 

Maurya, et al. [27] 11 – 13 THz Au, SiO2 Square patch with 
triangular edges. 

Absorption peak - 

Asim and Cada [28] 1800 – 2200 nm Ag, SiO2 Nanocylinders Absorption peak 49.99 

Asim, et al. [29] 0 – 1 THz Al, Au, Cu, 
SiO2 

Split Ring 
Resonator 

Absorption peak - 

Chen, et al. [30] 1000 – 4500 nm Au, SiO2 Nano-rings Reflection minima - 

Ni, et al. [31] 700 – 1300 nm Au, SiO2 Dimer (square 
brackets) 

Reflection minima 548 

Wang, et al. [32] 0 – 6 THz Cu, Rogers 
RT5880 

Corrugated rings Transmission 
peaks 

161.6 

Danaie, et al. [33] 1000 – 2000 nm Ag, Air 8-shaped resonator Transmission 
peaks 

247.4 

Chau, et al. [34] 300 – 1300 nm Ag, dielectric Combination of 
nanosphere and 

nanorod 

Transmission 
minima 

- 

Liu, et al. [35] 140 – 200 THz MgF2, Au, SiO2 Nano-disks Absorption peak - 

Rakhshani and 
Mansouri-Birjandi 
[36] 

1000 – 4000 nm Ag, Air Nanorods Transmission 
peaks 

- 

Kabashin, et al. [37] 400 – 1400 nm Au, SiO2 Nanorods Reflection minima - 

Wu, et al. [38] 633 nm Au, SiO2, 
graphene 

Layered films Resonance angle - 

Xi, et al. [39] 400 – 800 nm Ag, SiO2 Triangle Transmission peak - 
Mesch, et al. [40] 1000 – 2200 nm Au, SiO2 Rectangular 

nanoantennas 
Transmission 

minimum 
- 

This work 480-490 nm Au, SiO2 Nanocylinders Absorption peaks 245 

 

2. Design and Analysis 
The proposed nanostructure design is shown in Figure 1. The structure consists of  a metal-

dielectric-metal base. The metal-dielectric boundary serves as the resonant cavity that supports plasmon 
modes. Metal-dielectric-metal structures can provide higher sensitivity and much better resolution. 
Gold (Au) nano-cylinders are mounted onto the base. The metal used in the base is gold while SiO2 is 
the dielectric. The figure also shows the geometrical dimension labels. Table 2 provides the values for 
the geometrical dimensions. These dimensions have been finalized after a considerable number of  trial 
simulations. The relative permittivity of  SiO2 is considered equal to 2.1. The plasmonic optical 

properties, predicted by the Drude model, have been used for Au. In Eq. 1, 𝜀 and 𝜔 denote relative 

permittivity and angular frequency, respectively. The plasma frequency, 𝜔𝑝 equals 13.8 x 1015 rad/s 

whilst the damping constant, 𝛾 is 0.011 x 1015 rad/s for the specific case under consideration (i.e. gold) 
[41].    

ε(ω) = (1 − 
ωp

2

ω2+ γ2) + j (
γωp

2

ω(ω2+ γ2)
)                                              (1) 
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(a)                                           (b) 

Figure 1.  
(a) Nanostructure sensing element. (b) Simulation setup. 

 
Table 2. 
List of  geometrical symbols and their values.  

Dimension Value Dimension Value 
P (PX, PY) 300 nm R 40 nm 

H1 20 nm H2 70 nm 
H3 110 nm H4 70 nm 

 
Figure 1(b) shows the simulation setup. Perfectly Matched Layers (PMLs) are defined on both sides 

of  the structure. The bottom face of  the upper PML is used as ‘port 1’ to supply electromagnetic waves. 
The upper face of  the lower PML is defined as ‘port 2’. Computational simulations have been performed 
through Finite Element Method (FEM). The Finite Element Analysis (FEA) is implemented in 
COMSOL Multiphysics. The physics used for the simulations is ‘Electromagnetic Waves, Frequency 
Domain’. There is air between lower PML and lower end of  the sensor. The space around the four 
nanocylinders has been allocated for the analyte, the chemical that needs to be sensed. The height of  the 
analyte chamber (in the z direction) is 200 nm. It spans across the sensor in the x and y directions. The 
air gap is 800 nm long on each side of  the structure and the PML thickness in 125 nm. Periodic 
boundary conditions are applied in the x and y directions. The electromagnetic source emits x-polarized 
visible light waves along the negative z axis. The outer surfaces of  both the PMLs have scattering 
boundary conditions applied to them. A wavelength sweep has been used to study the response of  the 
sensor with changing wavelengths. The wavelengths range from 480 nm to 490 nm. 

S parameters are recorded and used to obtain reflectance, transmittance and absorptance of  the 
metasurface in accordance with the expressions mentioned below. 

 

A(ω) = 1 − R(ω) − T(ω)                                                         (2) 

R(ω) =  |S11|2                                                                           (3) 

T(ω) =  |S21|2                                                                           (4) 
In Figure 2, the frequency dependent response of  the sensor has been depicted. A resonance peak is 

evident in the absorption spectrum. The peak appears in the visible light regime. It corresponds to a 
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wavelength of  481.92 nm. This wavelength point belongs to an analyte with refractive index of  1.33. 
When the analyte refractive index changes, the wavelength peak shifts as shown later in the paper.   

 

 
Figure 2.  
Spectral response of  the nanophotonic sensor.  

 
Figure 3 shows the distribution of  electromagnetic fields in the nano-resonator. The electric and 

magnetic field distributions at the upper surface of  the structure, upon which the nanopillars stand, have 
been shown. The Surface Lattice Resonance (SLR) is evident at the resonance peak. The SLR results in 
field confinements around the edges of  the nanostructures. The SLR is a unique phenomenon 
combining the optical field localization effect of  individual plasmonic nanostructures as well as the 
diffraction effect resulting from the interaction of  electromagnetic waves with the metasurface array. 
The confinement of  electromagnetic fields inside individual nanoparticles is referred to as Localized 
Surface Plasmon Resonance (LSPR). Though it provides high sensitivity, the associated quality factor is 
usually of  the order 10. SLR provides a wonderful opportunity to combine the sensitive nature of  
plasmonic resonance with higher Q factors. 

In many applications, higher quality factors are desirable. High Q factor indicates smaller losses. 
When the Q factor is high, there is large amount of  energy concentrated in the resonance. In other 
words, a good Q factor guarantees that the ratio of  energy stored to energy lost is high. Hence, a sensor 
with a higher Q factor will display better spectral selectivity.   
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                (a)                                                                            (b)                    

Figure 3.  
Normalized (a) electric (V/m) and (b) magnetic (A/m) fields’ distribution plots at the resonant wavelength.  

 
The proposed design can be employed in biosensing applications by using a visible light transceiver. 

Visible light wavelengths can be incident on the structure and reflectivity can be measured. A reflection 
dip can be spotted for each refractive index being sensed. The shifts in the two reflection dips can be 
tracked to detect refractive index.  
 

3. Application 
Next, the performance of  the sensor has been gauged and recorded. Very minute refractive index 

changes have been introduced in the analyte medium to see the effect on resonant wavelength. The step 
size for refractive index variation is 0.005. The resonance spectrum tends to shift towards the right 
(higher wavelengths) with increasing refractive index. The resonant wavelengths for 5 different 
refractive index media have been plotted. Subsequently, linear regression analysis has been applied. 
Figure 4 (a) and (b) depict the above-mentioned details. Figure 4 (a) shows the spectra for different 
refractive indices while (b) provides linearized response of  the sensor in the given refractive index 
range. Figure. 4 (c) provides a similar linearized response. The variables in Figure 4 (c) are resonant 
wavelength and concentration of  aqueous potassium ion concentrations. The case of  potassium ion 
concentration holds a lot of  significance from a clinical perspective. For example, accurate detection of  
potassium ion concentration in blood/ serum/ urine can be a critical step in determining if  a patient has 
hyper/ hypokalemia.    

𝑛 = 1.3352 + 0.0016167
𝐶𝑘

529.8
− 0.0000004 (

𝐶𝑘

529.8
)

2
                                  (5) 

Equation (5) describes the relationship between the concentration (C in mg/dL) of  potassium ion 
solution and the refractive index (n). The constant, k, is the concentration element. Its value is 50 for K+ 
solutions. The values of  the refractive indices for different concentrations have been calculated through 
Eq. 5 and fed into the simulation model. The resulting simulation data have been used to plot Figure 4 
(c). 

Besides the high Q factor, the sensor provides good sensitivity and very linear response. The 
correlation coefficients (R values) for Figure 4 (a) and Figure 4 (b) are 0.9999502842624352 and 
0.9998633442553864, respectively. These values serve as evidence of  sensor linearity. The constants m1 

and m2 are equal to 338 nm/ RIU and 484 nm/ (mg/dL), respectively. RIU stands for Refractive Index 
Unit. Both constants signify the sensitivity of  the nanophotonic structure. The constants c1 and c2 are 
y-intercepts of  the regression lines of  best fit.   
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                                 (a) 

 
(b)                                         (c) 

Figure 4. 
(a) Resonance spectra for different refractive indices of  the analyte. (b) Resonant wavelength plotted against 
the refractive index of  the analyte. Data points have been extracted from the spectra in (a). (c) Resonant 
wavelength plotted against concentration of  potassium ion solutions.  magnetic (A/m) fields’ distribution 
plots at the resonant wavelength. Regression analyses have been applied to calibrate the responses in (b) and 
(c). 

 

5. Conclusion 
In this paper, we have provided a quick overview of  the recent works on plasmonic sensors, 

especially in the context of  their Q factors. It has been identified that the achievement of  high Q factors 
through plasmonic devices is an area of  potential improvement. Therefore, a novel design has been 
presented that utilizes Surface Lattice Resonance (SLR) in the visible region to achieve a Q factor of  
245. This is significantly higher than Localized Surface Plasmon (LSP) sensors. High Q factors can 
provide better selectivity in biosensing applications.   
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