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Abstract: This study aims to enhance the modeling of heat transfer under uncertainty by representing 
thermal diffusivity as an intuitionistic triangular fuzzy number (ITFN) and comparing various 
defuzzification methods. The methodology involves fuzzifying the nominal thermal diffusivity of copper 

(approximately 1.11×10⁻⁴ m²/s) into an ITFN, followed by the application of three defuzzification 
techniques—weighted average, score function-based, and centroid methods—to derive crisp values. 
Numerical simulations of the heat equation were conducted using these DE fuzzified values to assess 
their impact on temperature distribution predictions. Findings indicate that the weighted average and 

centroid methods yield nearly identical values (1.113×10⁻⁴ m²/s), whereas the score function-based 

method produces a slightly higher value of 1.158×10⁻⁴ m²/s. Although differences in predicted 
temperature profiles are minimal for copper, the study highlights that for materials with greater 
variability, the choice of defuzzification method may significantly influence simulation outcomes. These 
results suggest that employing ITFNs in heat transfer modeling provides a robust framework for 
capturing material uncertainties, thereby improving the reliability of engineering analyses in 
uncertainty-sensitive applications. 

Keywords: Defuzzification methods, Heat equation, Intuitionistic fuzzy numbers, Thermal diffusivity. 

 
1. Introduction  

In Bertone, et al. [1] it was rigorously demonstrated that fuzzy solutions—constructed from 
analytical solutions of partial differential equations (PDEs)—exist via the application of the Zadeh 
Extension Principle. This foundational result has paved the way for incorporating fuzzy logic into 
various areas of applied mathematics, particularly in the modeling of systems where uncertainty plays a 
critical role. Heat conduction, a phenomenon central to thermal engineering [2] material science [3] 
and applied mathematics [4] is traditionally modeled by the classical heat equation. This equation 
presupposes a precise, deterministic thermal diffusivity. However, real-world scenarios are seldom ideal; 
uncertainties arising from material heterogeneities, measurement errors, and environmental fluctuations 
necessitate a more robust representation of such parameters [5]. 

Fuzzy set theory, as introduced by Zadeh [6] and further extended by Bellman and Zadeh [7] has 
provided the conceptual basis for representing uncertainty. More recent studies have employed the 
Zadeh Extension Principle to construct fuzzy analytical solutions to PDEs [1] thereby establishing a 
rigorous framework for uncertainty quantification in heat transfer problems. In this context, 
intuitionistic fuzzy numbers (IFNs) have emerged as an advanced tool by incorporating both 
membership and non-membership degrees, offering a more nuanced description of uncertainty [8]. The 
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integration of fuzzy methodologies in various computational domains, including machine learning, has 
demonstrated their efficacy in handling uncertainty and improving model robustness [9-14]. 

The application of Fuzzy Intuitionistic Fuzzy Numbers (IFNs) in thermal diffusivity modeling 
remains relatively rare compared to their use in other fields, such as control systems and signal 
processing [15-18]. Most existing studies focus on conventional fuzzy models, while IFN-based 
approaches are only beginning to be explored in the context of heat transfer. The scarcity of research in 
this area highlights the need for further investigation into the applicability and advantages of IFNs in 
thermal modeling. 

While Bertone, et al. [1] laid a robust theoretical foundation for constructing fuzzy solutions to 
partial differential equations using Zadeh’s extension principle, their work primarily focused on 
converting analytic solutions into fuzzy ones through conventional fuzzy numbers. In contrast, our 
research extends this framework by employing intuitionistic fuzzy numbers (IFNs) to fuzzify the 
analytic solution of the heat equation. This approach not only mirrors the methodology of Bertone, et al. 
[1] but also introduces a significant innovation—by incorporating both membership and non-
membership degrees, IFNs offer a richer and more nuanced representation of uncertainty. Such a dual 
representation is particularly advantageous in accurately modeling thermal diffusivity in situations 
where experimental data are sparse or highly variable. Thus, our work fills a critical gap by 
demonstrating how the analytic fuzzy solution, when constructed with IFNs, can enhance the predictive 
accuracy and reliability of thermal simulations in engineering applications. 

 
2. Theoretical Background 

Definition 1. Nguyen [19] The Zadeh extension principle of a function 𝑓: 𝑋 →  𝑍 where 𝑋 and 𝑍 are non-

empty metric spaces, defines, 𝑓  as a function that, when applied to a fuzzy set 𝐷 ⊂ 𝑋, produces a fuzzy set 𝑓(𝐷) 
in 𝑍, whose membership function is given by 

𝜇�̂�(𝐷)(𝑍) = {
sup 

{𝑥:𝑓(𝑥)=𝑧}
 𝜇𝐷(𝑥)  𝑗𝑖𝑘𝑎 {𝑥: 𝑓(𝑥) = 𝑧} ≠ ∅,

0, 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
 

where 𝑓(𝐷) = 𝑓(𝐷) if 𝐷 is a classical set in 𝑋  
As a consequence of Zadeh’s extension principle, the following proposition is obtained: 
Proposition 2. De Barros, et al. [20] and Goo and Park [21] Let X and be non-empty metric spaces, let 

D be a fuzzy set in 𝑋 and let 𝑓: 𝑋 → 𝑍 be continuous. Then, for each 0 ≤ 𝛼 ≤ 1. [𝑓(𝐷)]
𝛼
= 𝑓([𝐷]𝛼). 

Definition 3. Liu, et al. [22] An intuitionistic fuzzy number �̃� on the universe 𝑋 is defined as a set: 

�̃� = {(𝑥, 𝜇�̃�(𝑥), 𝜈�̃�(𝑥)) ∣ 𝑥 ∈ 𝑋} 
subject to the constraint: 

0 ≤ 𝜇�̃�(𝑥) + 𝜈�̃�(𝑥) ≤ 1, ∀𝑥 ∈ 𝑋. 
Where: 

• 𝜇�̃�(𝑥) is the membership function, indicating the degree to which 𝑥 belongs to �̃�. 

• 𝜈�̃�(𝑥) is the non-membership function, indicating the degree to which 𝑥 does not belong to �̃�. 

• The uncertainty function is defined as: 

𝜋�̃�(𝑥) = 1 − 𝜇�̃�(𝑥) − 𝜈�̃�(𝑥). 

This represents the degree of hesitation or uncertainty regarding the membership of x in Ã. 

 
3. Solution of  Heat Transfer Equation  
3.1. Classical Heat Transfer Equation 

The classical one-dimensional heat transfer equation is given by 
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{
 

 𝜑0𝑐𝑡
𝜕𝑢

𝜕𝑡
=
𝑘0
𝜇

𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
) , (𝑥, 𝑡) ∈ (0, 𝐿) × (0, 𝑡0),

𝑢(𝑥, 0) = 𝑢0(𝑥) = sin(𝜋𝑥) , 𝑥 ∈ (0, 𝐿),

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 untuk 𝑡 ∈ (0, 𝑡0)

 

Where: 

• 𝜑0 and 𝑐𝑡 are material-specific parameters (initial thermal capacity and specific heat), 

• 𝑘0 is the thermal conductivity coefficient, 

• 𝜇 is the mass density, 

• 𝑢(𝑥, 𝑡) represents the temperature at position 𝑥and time 𝑡, 

• The initial temperature distribution 𝑢0(𝑦) = sin(𝑥𝜋). 
The analytical solution for the heat equation is obtained using the method of separation of variables and 
is expressed as: 

𝑢𝑑(𝑥, 𝑡) =  ∫ 𝑢0(𝑦)∑ sin(
𝑛𝜋𝑥

𝐿
) sin (

𝑛𝜋𝑦

𝐿
) exp(−

𝑑𝑛2𝜋2

𝐿2
𝑡) 𝑑𝑦 

+∞

𝑛=1

𝐿

0

 

where 𝑑 = 1.15 × 10−4 𝑚/𝑠2 represents the heat diffusion coefficient. Given that u the solution 
becomes: 

𝑢𝑑(𝑥, 𝑡) =  ∫ sin(𝑥𝜋)∑ sin (
𝑛𝜋𝑥

𝐿
) sin (

𝑛𝜋𝑦

𝐿
) exp(−

𝑑𝑛2𝜋2

𝐿2
𝑡) 𝑑𝑦 

+∞

𝑛=1

𝐿

0

 

The series solution above can be approximated numerically. The computed result for 𝑢(𝑥, 𝑡) over 

the interval (0, 𝐿) × (0, 𝑡0) is visualized in Figure 1. This figure represents the temperature distribution 
over time, demonstrating the typical diffusion process where heat gradually spreads out until it reaches 
a stable state. 

 

 
Figure 1.  
Heat transfer simulation. 
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3.2. Fuzzy solution 

The fuzzy solution is obtained by considering the coefficient in the partial differential equation as a 

fuzzy number 𝐷 with level zero, denoted as [𝐷]0 . Here, (𝑥, 𝑡) represents the domain of the partial 

differential equation, and the function fungsi 𝑆(𝑥,𝑡): [𝐷]
0 → ℝ provides the analytic solution value 

𝑆(𝑥,𝑡)(𝑑) at point (𝑥, 𝑡) for each parameter 𝑑 ∈ [𝐷]0 [1]. 

Let �̂�(𝑥,𝑡)(𝐷)  be the extension of 𝑆(𝑥,𝑡)(𝑑) for 𝑑 ∈ [𝐷]0 using Zadeh’s extension principle. The 

fuzzy solution is then defined as: ⋃ �̂�(𝑥,𝑡)(𝐷),(𝑥,𝑡)  This represents the fuzzification of the analytic 

solution through Zadeh’s extension. Subsequently, 𝐷 is assumed to be a triangular fuzzy number [1]. 
In this approach, the coefficient is not only treated as a triangular fuzzy number but also further 

extended and modeled as an intuitionistic triangular fuzzy number. Mathematically, an intuitionistic 
triangular fuzzy number is represented as a tuple: 

𝐷 = ((𝑎, 𝑏, 𝑐), 𝜇𝐷 , 𝜈𝐷)  
Where: 

• (𝑎, 𝑏, 𝑐) are the parameters of the triangular fuzzy number, with 𝑎 ≤ 𝑏 ≤ 𝑐. 

• 𝜇𝐷: [𝑎, 𝑐] → [0,1] is the membership function. 

• 𝜈𝐷: [𝑎, 𝑐] → [0,1] is the non-membership function, satisfying 0 ≤ 𝜇𝐷(𝑥) + 𝜈𝐷(𝑥) ≤ 1 for all 𝑥 ∈
[𝑎, 𝑐]. 

To apply fuzzification in a real-world scenario, we consider copper as the material, where the 
thermal conductivity is modeled as an intuitionistic fuzzy triangular number. The nominal thermal 

conductivity diffusivity of copper at room temperature is approximately 𝑑 = 1.11 × 10−4𝑚2/𝑠, with 
slight variations depending on purity and temperature. 

We define the triangular intuitionistic fuzzy number for copper’s thermal conductivity as: 
where: 

• 1.05 × 10−4𝑚2/𝑠  (Lower bound) 

• 1.11 × 10−4𝑚2/𝑠 (Modal value) 

• 1.18 × 10−4𝑚2/𝑠 (Upper bound) 

• The membership function is defined as: 𝜇𝑑 = 0.85 

• The non-membership function 𝑣𝑑 = 0.10 
intuitionistic fuzzy thermal diffusivity as. 

𝑑∗ = (1.05, 1.11,1.18; 𝜇𝑑 = 0.85, 𝑣𝑑 = 0.10) 
This representation allows uncertainty in the thermal conductivity of copper to be incorporated into the 
heat transfer model, making the solution more robust under real-world conditions. Thus, the fuzzy 
solution of the heat equation is. 

𝑢𝑑(𝑥, 𝑡) =  ∫ sin(𝑥𝜋)∑ sin (
𝑛𝜋𝑥

𝐿
) sin (

𝑛𝜋𝑦

𝐿
) exp(−

𝑑∗𝑛2𝜋2

𝐿2
𝑡) 𝑑𝑦 

+∞

𝑛=1

𝐿

0

 

 
4. Defuzzification Methods 

Defuzzification is the process of converting an intuitionistic fuzzy number into a crisp value for 
practical applications. In this section, we describe three widely used defuzzification techniques applied to 
the intuitionistic fuzzy thermal diffusivity. 
 
4.1. Weighted Average Defuzzification 

The weighted average method calculates a crisp value based on a weighting factor λ\lambda derived 
from the intuitionistic fuzzy membership and non-membership degrees. The formula is: 

𝑑∗ =
𝑑𝐿 + 𝜆𝑑𝑀 + 𝑑𝑈

𝜆 + 2
, 𝜆 =

𝜇𝑑
1 − 𝑣𝑑

.  
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Substituting the given values for thermal diffusivity: 

𝜆 =
0.85

0.90
= 0.944. 

𝑑∗ =
(1.05 + 0.944 × 1.11 + 1.18) × 10−4

2.944
 . 

𝑑∗ = 1.113 × 10−4𝑚2/𝑠 
This method ensures that the output value is weighted based on the relative importance of the modal 
value, making it robust for applications where the central tendency is emphasized. 
 
4.2. Score Function-Based Defuzzification 

The score function method utilizes the difference between the membership and non-membership 
degrees to determine a crisp value. The score function is defined as: 

𝑆(�̃�) = 𝜇𝑑 − 𝑣𝑑   
For the given intuitionistic fuzzy thermal diffusivity: 

𝑆(�̃�) = 0.85 − 0.10 = 0.75.  
The defuzzified value is then calculated as: 

𝑑∗ = 𝑑𝑀 +
𝑆(�̃�)(𝑑𝑈 − 𝑑𝐿)

2
 .  

Substituting values: 

𝑑∗ = 1.11 × 10−4 + 0.75 ×
(1.18 − 1.05) × 10−4

2
. 

 𝑑∗ = 1.158 × 10−4 𝑚2/𝑠.  
This approach ensures that the DE fuzzified value accounts for both uncertainty and the central 
tendency of the data. 
 
4.3. Centroid Defuzzification 

The centroid method calculates the crisp value by averaging the three key values of the fuzzy 
number. It is defined as: 

𝑑∗ =
𝑑𝐿 + 𝑑𝑀 + 𝑑𝑈

3
.  

Substituting the given values: 

𝑑∗ =
(1.05 + 1.11 + 1.18) × 10−4

3
. 

 𝑑∗ = 1.113 × 10−4 𝑚2/𝑠.  
This method provides a balanced approach by giving equal weight to all three values, making it suitable 
for cases where the intuitionistic fuzzy representation is symmetrically distributed. 
 
4.4. Comparative Analysis of  Defuzzification Methods 

The results from the three methods indicate slight variations in the DE fuzzified values: 
 
Table 1.  
Comparation of defuzzification method. 

No Defuzzification method 𝒅∗ value 
1 Weighted average defuzzification 1.113 × 10−4𝑚2/𝑠 
2 Score function-based defuzzification 1.158 × 10−4 𝑚2/𝑠 
3 Centroid defuzzification 1.113 × 10−4 𝑚2/𝑠 
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While the weighted average and centroid methods provide similar results, the score function-based 
method produces a slightly higher value due to its consideration of  membership and non-membership 
differences. The choice of  method should be based on the application context, where the centroid 
method is preferred for symmetric distributions, the weighted average method for practical 
approximations, and the score function-based method for uncertainty-sensitive applications. This result 
differs from the findings in Bertone, et al. [1] where the defuzzification results matched the analytical 
solution value. The use of  intuitionistic fuzzy numbers leads to distinct solution values for the heat 
equation, highlighting the impact of  fuzzification in thermal modeling. 

 
5. Simulation Outcomes 

To evaluate the effect of  these defuzzied values on heat transfer predictions, a numerical simulation 

was conducted for the heat equation. Figure 1 shows the temperature distribution 𝑢𝑑(𝑥, 𝑡) at 𝑡 = 1 for 

the three distinct values of  𝑑. Notably, the curves overlap almost perfectly, indicating that in the case of  
copper—where thermal properties exhibit relatively small variations—the impact of  different defuzzied 
values is minimal. These modest discrepancies reflect the inherent robustness of  copper’s thermal 
behavior when subject to slight parameter fluctuations. 
 

 
Figure 2.  

2D plot of  𝑢𝑑(𝑥, 𝑡) at 𝑡 = 1 for different 𝑑 values. The three curves overlap, indicating minimal 
differencein predicted temperature distribution for copper. 

 
Despite the similarity observed in this simulation, the results may differ considerably for materials 

with greater variability or higher sensitivity to temperature changes. In such cases, the choice of  
defuzzification method could significantly alter the predicted temperature field, potentially affecting 
design decisions in engineering applications. Consequently, although the present results suggest 
minimal differences for copper, they highlight the broader utility of  intuitionistic fuzzy numbers and 
defuzzification techniques in capturing and propagating uncertainties for materials and systems where 
parameter variations are more pronounced. 
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6. Conclusion  
This study explored the impact of different defuzzification methods on the numerical solution of the 

heat equation when the thermal diffusivity is modeled using intuitionistic fuzzy numbers. Three widely 
used techniques—weighted average, score function-based, and centroid defuzzification—were analyzed 
to assess their influence on the resulting crisp value of thermal diffusivity. The results demonstrated 
that while the weighted average and centroid methods produced similar DE fuzzified values, the score 
function-based method yielded a slightly higher value due to its explicit consideration of both 
membership and non-membership degrees. 

These findings highlight the importance of selecting an appropriate defuzzification approach based 
on application-specific requirements. The centroid method is preferable for symmetric distributions, the 
weighted average method offers practical approximations, and the score function-based method is 
advantageous in scenarios requiring sensitivity to uncertainty. The differences in DE fuzzified values 
indicate that the choice of method can influence the computed temperature distribution in heat transfer 
problems. Future research can extend this analysis by incorporating time-dependent intuitionistic fuzzy 
parameters and evaluating the stability and convergence of numerical schemes under varying degrees of 
fuzziness. 
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