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Abstract: This paper presents a model using deep learning techniques which includes Multi-scale 
processing, Channel attention, Feature enhancement, and anomaly Classification layers, referred to as 
MCFCNN, for bearing fault diagnosis in noisy industrial environments. The MCFCNN network 
combines multi-channel parallel convolution, effectively capturing spatial information, and introduces 
channel attention mechanisms to adaptively recalibrate channel-level feature responses. Secondary 
neurons are introduced to enhance the model’s ability to capture complex nonlinear patterns related to 
bearing faults. The model was tested and compared to other models using a publicly available data set. 
In a simulated high-noise environment, the proposed model outperforms existing models in fault 
diagnosis, with accuracy greater than 80% even at high signal-to-noise (SNR) ratio. At SNR = -6, the 
MCFCNN records higher accuracy (83%), precision (89%), and recall rates (84.5%) as compared to prior 
models. The proposed model can be integrated into the maintenance management system to enhance 
bearing health assessment and prediction, improving machine prognostics. 

Keywords: Bearing fault diagnosis, Channel attention, Multi-scale processing, Quadratic convolutional neural. 

 
1. Introduction  

Rotating machines are core parts of equipment in power plants and industrial production. Bearings 
are key components that support and maintain rotating parts and are vital in ensuring the smooth 
operation and long-term reliability of machinery. However, owing to the complex working 
environment, high loads, and continuous operation of the rotating machinery, the failure rate is high. 
Faults in components of mechanical equipment may cause the entire system inoperable and failures of 
critical components can lead to significant casualties and economic losses (Rai & Upadhyay, 2016). 
Bearing failures account for a significant proportion of mechanical equipment failures (Qiu et al., 2023). 
Bearing fault signals can be collected by installing various types of sensors to monitor the working 
conditions of bearings, including vibration (H.-Y. Chen & Lee, 2020; Z. Chen, Wang, Zhou, Yang, & 
Liu, 2024) temperature (Eang & Lee, 2024; Gunerkar, Jalan, & Belgamwar, 2019) rotational speed (Eang 
& Lee, 2024) and electrical current (Bouras, Bennedjai, & Bouras, 2020) among others. 

Vibration-based signal acquisition has been extensively researched and applied owing to its 
independence from the mechanical structure and simplicity of testing. However, the complexity of the 
environment and variability of the load result in the interference of noise in the collected vibration 
signals during the fault diagnosis process, increasing the difficulty of fault diagnosis. Figure 1 illustrates 
a vibration signal without noise and with noise. 
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Figure 1.  
Sample of vibration signals: (a) Top graph – vibration data without noise; (b) Bottom  
graph – vibration data with noise. 

 

For bearing fault diagnosis in a noisy environment, traditional methods struggle to extract fault 
characteristic frequencies directly (Cerrada et al., 2018). Frequently, fault feature extraction is achieved 
through time-domain (Bousseksou, Bessous, & Mahmoud, 2024; Zhao, Zhu, & He, 2024) frequency-
domain, and time–frequency signal processing methods, followed by inputting the extracted features 
into a diagnostic model for fault classification. Common feature-extraction methods include the short-
time Fourier transform (T. Wang, Liang, Li, & Cheng, 2014) fast Fourier transform (G. Chen, Liu, & 
Chen, 2020) Hilbert transform (Dai et al., 2020) and wavelet transform (Duong & Kim, 2018). Common 
machine-learning diagnostic models include logistic regression (Shang et al., 2017) k-nearest 
neighbours (Lu et al., 2021) and support vector machines (M. Wang et al., 2021). However, traditional 
methods have some limitations: 1) They rely on manual feature extraction, which results in complex 
signal processing designs and a heavy reliance on expert experience. When the operating conditions are 
complex, these methods fail to address the problem of differences in data distribution, posing significant 
challenges for fault diagnosis. 2) The diagnostic model requires laborious design steps and different 
model structure parameters are required for different fault types. When signals are contaminated by 
noise, the diagnostic performance is suboptimal. 

Therefore, current research on bearing fault diagnosis in noisy environments focuses on deep 
learning methods. Deep learning has deep structures and effective nonlinear feature-extraction 
capabilities, enabling it to extract fault features directly from raw data and achieve end-to-end fault 
diagnosis, avoiding the tedious feature-extraction and classification steps of traditional methods. Deep 
learning methods can handle large-scale datasets and complex signal conditions and exhibit robustness 
and generalisation performance. The vibration signals collected for bearing diagnostics are generally 
one-dimensional time series signals. Currently, two methods are used for bearing diagnostics based on 
the input dimensions of the network. 

One approach is to directly process one-dimensional data. The 1DCNN model proposed in Eren, 
Ince, and Kiranyaz (2019); Ozcan, Devecioglu, Ince, Eren, and Askar (2022) and Huan Wang, Liu, Peng, 
and Qin (2019) has been proven to have highly generalizable performance for bearing fault diagnosis. 
Another approach involves the transformation of one-dimensional data into two-dimensional data for 
further processing. Some studies converted the time-domain vibration signals of bearings into grayscale 
images containing fault features, which were then input into a 2DCNN model (Wan, Chen, Li, & Li, 
2020; Y. Wang, Ding, Zeng, Wang, & Shao, 2020; Xu, Liu, Jiang, Söffker, & Shen, 2019). The trained 
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model can effectively recognise the types of faults and their severity. In comparison, the 1DCNN 
network that directly processes one-dimensional data is simpler, whereas converting from one-
dimensional to two-dimensional data may result in some information loss.  

Therefore, a W1DCNN model was proposed in Zhang, Peng, Li, Chen, and Zhang (2017) and it has 
two main characteristics. The first layer uses a wide 64-channel convolutional kernel, whereas the other 
layers use a network structure with small 3×3 convolutional kernels. A high accuracy was achieved with 
this model. Based on the success of the W1DCNN in diagnostics, researchers have proposed several 
improved versions of it Y. Wang et al. (2020) and Shenfield and Howarth (2020). Recently, owing to the 
effective feature-representation capabilities of quadratic neural networks (Fan, Xiong, & Wang, 2020; J.-
X. Liao et al., 2023), the traditional linear neural network convolution in the W1DCNN network has 
been replaced with quadratic neural elements, resulting in a QCNN model. Many researchers have 
introduced attention mechanisms into bearing fault diagnosis tasks, enabling traditional CNN models to 
achieve higher classification accuracy (Huan Wang et al., 2019; Hui Wang, Xu, Yan, Sun, & Chen, 
2020). 

Although deep learning has achieved significant success in bearing fault diagnosis research, current 
deep learning models have some limitations. Many deep learning models perform well on clean signals 
with consistent data distributions. However, when the signals contain a large amount of noise, the 
classification performance of the models decreases significantly. For example, when a signal-to-noise 
ratio (SNR) of -6 is added to the CWRU dataset, the classification accuracies of AResNet (Zhong, 
Wang, & Ban, 2022) W1DCNN (Zhang et al., 2017) and QCNN (J.-X. Liao et al., 2023) are 61.2%, 
66.5%, and 71.1%, respectively. These models require further improvements in their classification 
accuracy in noisy environments. Noise is ubiquitous in industrial settings, making it crucial to efficiently 
diagnose signals that contain multiple sources of noise. 

Based on the aforementioned problems, this paper proposes a new network architecture called 
MCFCNN. The network model contains multi-scale processing, channel attention, feature 
enhancement, and anomaly classification layers, which are used for the efficient diagnosis of bearing 
faults in multi-noise environments. 
 

2. Methods 
This paper utilises time-series vibration data collected during the operation of bearings for fault 

diagnosis. The diagnostic problem can be defined as follows: the input is 𝑋𝑡  ∈  𝑅𝑘, where 𝑡 =
 (0, 1, 2, … , 𝑇 ). Here, 𝑇 is the time step, and 𝑘 is the data type, which includes both fault data and 

healthy data of the bearings. The corresponding output is the fault type 𝑌𝑡, for model fault diagnosis. 

The goal is to achieve fault diagnosis by establishing a mapping relationship between 𝑌𝑡 and the dataset, 
as follows: 

𝑌𝑡  = 𝑓(𝑋)           (1) 

where 𝑋 is the bearing operation data, 𝑓 is the mapping function, and 𝑌𝑡 is the fault classification 

result of 𝑓 diagnosis. 

The proposed bearing fault diagnosis network is shown in Figure 2. The entire network consists of 
four layers: multi-scale processing, channel attention, feature enhancement, and anomaly classification 
layers. 
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Figure 2.  
MCFCNN network architecture. 

2.1. Multi-scale Processing Layer 
The multi-scale processing layer comprises a parallel convolution operation that utilises multiple 

parallel convolution branches to extract different features. Each branch can use different convolution 
kernels to process input data and generate a set of  feature maps. These feature maps extract features 
from different aspects and are then fused to obtain a more comprehensive feature representation.   

Assuming the input data are 𝑿, the number of  convolution kernels is 𝑵, the size of  the convolution 

kernel is 𝑲 × 𝑲, the number of  channels in the input data is 𝑪, and the number of  channels in the 

output feature maps is 𝑴. For each convolution kernel 𝒊 (𝟏 ≤  𝒊 ≤  𝑵), its weight matrix is 𝑾𝒊 with a 

shape of  𝑲 × 𝑲 × 𝑪, and the bias term is 𝒃𝒊. The output of  the multi-branch convolution operation for 

the m-th feature map of  the input data 𝑿 can be calculated using the following formula: 

𝑌𝑚 = ∑  𝑛
 𝑓(𝑐𝑜𝑛𝑣(𝑊𝑛, 𝑋) + 𝑏𝑛)                                                (2) 

where 𝒄𝒐𝒏𝒗(𝑾𝒏, 𝑿) represents the convolution operation between the input data 𝑿 and the 

convolutional kernel 𝑾𝒏; 𝒃𝒏 represents the bias term of  the 𝒏-th convolutional kernel; and 𝒇 represents 
the rectified linear activation function (ReLU) function. 

In bearing fault diagnosis, different types of  faults exhibit different fault characteristic frequencies, 
which result in different sensitivities of  different scales of  features to different types of  faults. Through 
multi-branch convolutional operations, the vibration features at different scales can be captured 
simultaneously, thereby improving the detection and diagnostic capabilities of  the model for bearing 
faults. This enhances the adaptability and generalisation ability of  the model for bearing faults. 
Additionally, feature fusion at different scales can acquire a more comprehensive and rich feature 
representation. This aids the model in better understanding the vibration signals at different scales and 
improves its discriminative power for bearing faults. 
 
2.2. Channel Attention Layer 

The channel attention network by Bahdanau, Cho, and Bengio (2014) won the championship in the 
ImageNet competition for classification tasks in 2017. It can be used to enhance the attention 
mechanism of  convolutional neural networks. It improves network performance by adaptively adjusting 
the importance of  features across channels. 

The channel attention module consists of  two key steps i.e. squeezing and excitation (Figure 3). 
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Figure 3.  
Channel Attention Module 
Source: Hu, Shen, and Sun (2018). 

 
Squeezing involves global pooling on the input feature map along the channel dimensions to obtain 

global information regarding the channels. Assuming that the size of  the input feature map is (𝑯, 𝑾, 𝑪), 

the squeeze operation performs a global average pooling on the input feature map, resulting in a 𝑪-
dimensional vector that represents the global average value for each channel. This vector represents the 
overall importance of  each channel in the input feature map. The resulting output Z can be expressed as 

𝑍 = F𝑠𝑞(X) =
1

𝐻×𝑊
∑   𝐻

𝑖=1 ∑  𝑊
𝑗=1 𝑋(𝑖, 𝑗)        (3) 

Excitation then uses a learned nonlinear function to transform the squeezed features into channel 
attention weights, which are used to adjust the importance of  each channel in the input feature map. 
The excitation operation generates the channel attention weights by learning a nonlinear mapping 
function. This mapping function can be learned using either fully connected or one-dimensional 

convolutional layers. Given an input feature vector 𝒁, the result of  the excitation operation 𝑺 can be 
expressed as 

𝑆 =  𝜎(𝑊2 ∗  𝛿(𝑊1 ∗  𝑍))        (4) 

𝑆 is a 𝐶-dimensional vector representing the attention weights for each channel; W1 and W2 are 

weight matrices; δ represents the ReLU activation function; and σ is the sigmoid function. 

Scale: By performing an element-wise multiplication between 𝑆 and 𝑋, the channels of 𝑋 can be 

reweighted. Therefore, the value of the weighted feature map 𝑌 is 

𝑌 =  𝐹𝑠𝑐𝑎𝑙𝑒(𝑆, 𝑋)  =  𝑆 ∗ 𝑋                 (5) 
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The channel attention layer can adaptively learn the correlations between feature channels and 
enhance the important features in bearing vibration signals. In bearing fault diagnosis, samples of  faulty 
cases are often limited, which means that the model must learn from limited data and generalise to 
unseen fault scenarios. The channel attention module can enhance the sensitivity and discriminability of  
the model for bearing fault samples. By adaptively adjusting the weights of  the feature channels, the 
model can focus more on features relevant to bearing faults, enabling a more accurate identification and 
classification of  faulty samples. 
 

2.3. Feature Enhancement Layer 
Traditional neural network models commonly use activation functions such as ReLU and sigmoid to 

capture non-linear relationships. However, these functions can only capture first-order features. Fan et 
al. (2020) proposed a novel neural network that used quadratic neurones to enhance the expressive 
power of  a model and capture higher-order nonlinear features. This promotes neuronal diversity in deep 
learning. The distinctive feature of  this approach is the integration of  the two inner products of  the 
input vector and the power term before the activation function. If  the input vector is x, the output of  

the quadratic neuron, denoted as 𝒇(𝒙), is 

𝜎(𝑓(𝑥)) = 𝜎 ((∑  

𝑛

𝑖=1

𝑤𝑖
𝑟𝑥𝑖 + 𝑏𝑟) (∑  

𝑛

𝑖=1

𝑤𝑖
𝑔

𝑥𝑖 + 𝑏𝑔) + ∑  

𝑛

𝑖=1

𝑤𝑖
𝑏𝑥𝑖

2 + 𝑐) 

  

= 𝝈((𝒙⊤𝒘𝒓 + 𝒃𝒓)(𝒙⊤𝒘𝒈 + 𝒃𝒈) + (𝒙 ⊙ 𝒙)⊤𝒘𝒃 + 𝒄)                 (6)   

σ represents the activation function; ⊙ denotes the Hadamard product; 𝒘𝒓, 𝒘𝒈, and 𝒘𝒃 are weight 

matrices; 𝒃𝒓, 𝒃𝒈, and 𝒄 are bias vectors. 

Quadratic neural networks have higher feature-extraction capabilities Fan et al. (2020). J.-X. Liao et 
al. (2023) explained that the mathematical formulation of  quadratic neurones can derive a module 
similar to an attention mechanism, which aids the network in focusing more on local information. 
Bearing fault signals, which are generally high frequency, short range, and high amplitude, belong to 
local feature information. Therefore, in bearing fault diagnosis tasks, particularly in complex noisy 
environments, we choose to replace traditional linear convolution operations with quadratic neural 
network convolutions.       
 
2.4. Anomaly Classification Layer 

 After a series of  feature extractions, the vibration signal of  the bearing is mapped to the sample 
label space using an anomaly classification layer to achieve fault classification. The MCFCNN model 
employs two linear layers to reduce the dimensionality of  the features to 10 and then performs fault 

feature classification using the 𝑺𝒐𝒇𝒕𝑴𝒂𝒙 function. Specifically, assuming that the input vector is 𝒙, the 

linear layer 𝒉(𝒙) can be expressed as 

ℎ(𝑥) = 𝑓(𝑤𝑥 + 𝑏)             (7) 

The output of the anomaly classification layer 𝑌(𝑥) of the MCFCNN can be expressed as 

𝑌(𝑥) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑓(ℎ(𝑥)𝑤1 + 𝑏1))                     (8) 
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where 𝒘 and 𝒘𝟏 are weight matrices, 𝒃 and 𝒃𝟏 in equations (7) and (8) are bias vectors; and h(x) 
represents the output of  the first layer. 
 

3. Experiments 
A publicly available bearing dataset is used to validate the performance of  the MCFCNN model. 

The proposed method is compared with other methods under different noise conditions. 
 
3.1. Dataset Description 

The Case Western Reserve University Bearing Dataset (CWRU) (Achen/Case, 2024) is a publicly 
available dataset for bearing fault diagnosis, created in 2003 by Dr. James T. Allison and colleagues from 
the Department of  Mechanical Engineering at Case Western Reserve University in the United States. 
This dataset consists of  accelerometer signals from four bearings, each containing data from normal 
operation as well as various types of  fault conditions. The fault types include inner race faults, outer 
race faults, and rolling element faults. This dataset is utilised for research and experimentation in 
mechanical fault diagnosis and predictive analytics by many other researchers such as in Jalayer, Jalayer, 
Mor, Orsenigo, and Vercellis (2024); (Y. Liao et al., 2023); Rosa, Braga, and Silva (2024) and Yoo, Jo, and 
Ban (2023). It contains extensive time-series signals suitable for studying the performance of  vibration 
analysis and signal processing algorithms. 

The test rig consisted of a 2-horsepower motor, a torque sensor/encoder, and a dynamometer. The 
tested bearings supported the motor shaft. Faults of different sizes were induced on the inner race, 
rolling elements, and outer race using electrical discharge machining. The vibration data were collected 
at two sampling rates, 12 and 48 kHz, from both the fan and drive ends of the motor. Additionally, the 
data included four load conditions (0, 1, 2, and 3 HP), with motor speeds varying between 1730 and 
1797 rpm, depending on the load. In this study, we utilized vibration signals collected at the fan end at a 
sampling rate of 12 kHz. The dataset consists of acceleration signals from four bearings, each containing 
data for the normal state and different types of fault states. The fault types include inner race, outer 
race, and rolling element faults. Each fault type has three diameters. Therefore, the dataset includes nine 
types of faulty bearings and one healthy bearing. The fault types and labels are summarized in Table 1. 

 
Table 1.  
Ten classes of  bearing condition in CWRU data set. 

Label Fault Mode Label Fault Mode 

0 Ball (Slight) 5 Inner Race (Serious) 
1 Ball (Medium) 6 Outer Race (Slight) 
2 Ball (Serious) 7 Outer Race (Medium) 
3 Inner Race (Slight) 8 Outer Race (Serious) 
4 Inner Race (Medium) 9 Healthy 

 
3.2. Experimental Setup 

CWRU dataset contains very long vibration signals, thus each sample was defined as a sequence 
with a length of 2048. Data augmentation techniques were applied to randomly crop 1000 samples to 
form a dataset for each sample. The total number of samples was 10,000. All samples were normalised. 
Finally, the dataset was split into training, validation, and testing sets at a ratio of 0.5:0.25:0.25. 

The loss function used for training was cross-entropy, and the network was optimised using a 
stochastic gradient descent (SGD) optimiser. The gradient clipping technique was applied during the 
iteration to prevent a gradient explosion. The batch size for all the networks was set to 64, the learning 
rate was 0.1, and the momentum was 0.9. Through the iterative training of the model, the specific 
architecture of the MCFCNN network was defined, as shown in Table 2. 
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Table 2.  
The architecture configuration of MCFCNN. 

Layer Type Kernel Channel Stride Padding Output 

0 Input - - - - 1x2048 
1 Conv+BN+ReLU(4) 3x1 4 1 1 4x2048 

2 Conv+BN+ReLU 3x1 32 1 1 32x2048 

3 Squeeze - - - - 32x1 

4 Excitation - - - - 32x2048 

5 QConv+BN+ReLU 64x1 16 8 28 16x256 

6 MaxPool 2x1 - 2 - 16x128 
7 QConv+BN+ReLU 3x1 32 1 1 32x128 

8 MaxPool 2x1 - 2 - 32x64 
9 QConv+BN+ReLU 3x1 64 1 1 64x64 

10 MaxPool 2x1 - 2 - 64x32 
11 QConv+BN+ReLU 3x1 64 1 1 64x32 

12 MaxPool 2x1 - 2 - 64x16 
13 QConv+BN+ReLU 3x1 64 1 1 64x16 

14 MaxPool 2x1 - 2 - 64x8 

15 QConv+BN+ReLU 3x1 64 1 - 64x6 

16 MaxPool 2x1 - 2 - 64x3 

17 Linear+ReLU - - - - 192x100 

18 Linear - - - - 100x10 
19 Output 10 classes 

 
The feature enhancement layer consisted of six layers: the first layer used a large convolutional 

kernel with a width of 64, and the remaining five layers used small convolutional kernels with a width of 
3. This architecture was obtained from the W1DCNN (Zhang et al., 2017). 

All experiments were conducted on a Windows 10 operating system equipped with an Intel i5-
12490F CPU and an NVIDIA RTX 3060 12 GB GPU. Our code was written using Python 3.8 and 
PyTorch. 

In this study, three performance metrics (accuracy, precision, and recall) were employed to evaluate 
the diagnostic performance for faults. Their definitions are as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
× 100%         

 (9) 

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%           

     (10) 

    𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%          

      (11) 

TP, FP, TN, and FN mean true positive, false positive, true negative, and false negative, 
respectively. 

Gaussian white noise was added to the dataset and the performance metrics of the model under 
noisy conditions were evaluated. The SNR is defined as follows: 

SNRdB = 10 log10 (
Psignal 

Pnoise 
)            

     (12) 
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𝑷𝒔𝒊𝒈𝒏𝒂𝒍 and 𝑷𝒏𝒐𝒊𝒔𝒆 are the powers of the signal and noise, respectively. 

 
3.3. Comparison with Other Models 

Accuracy: Performance of the MCFCNN model in different SNR environments is compared with 
the W1DCNN and QCNN models using the same data preprocessing techniques. Results presented in 
Table 3 compares the recognition accuracy under seven different SNR conditions, and all the results 
were averages of 10 runs. The best results among the three models are highlighted in bold, indicating 
that the MCFCNN model outperformed the other two models in almost every SNR environment. 
 
Table 3.  
Accuracy of different models at different SNRs. 

 SNR -6 -4 -2 0 2 4 
CWRU (0HP) W1DCNN 66.52% 77.36% 87.12% 94.20% 98.36% 99.52% 

QCNN 71.12% 79.92% 89.28% 95.76% 98.52% 99.64% 

MCFCNN 81.40% 91.04% 96.84% 99.72% 99.92% 99.96% 
CWRU (1HP) W1DCNN 69.68% 72.68% 88.60% 92.28% 98.12% 97.92% 

QCNN 70.80% 81.44% 89.82% 96.24% 98.72% 99.40% 

MCFCNN 81.88% 92.32% 97.44% 96.64% 98.84% 99.16% 
CWRU (2HP) W1DCNN 71.92% 83.72% 90.76% 97.80% 99.08% 99.84% 

QCNN 75.88% 85.16% 93.52% 97.96% 99.64% 100% 
MCFCNN 87.6% 97.28% 96.64% 99.72% 99.88% 100% 

CWRU (3HP) W1DCNN 72.40% 82.64% 90.68% 96.60% 99.68% 99.88% 
QCNN 73.96% 84.44% 92.68% 97.56% 99.52% 100% 

MCFCNN 87.66% 92.84% 98.12% 99.72% 100% 100% 

 
Based on the diagnostic results in Table 3, we calculate the average accuracy of each model for the 

four operating conditions and plotted them as line graphs, as shown in Figure 4.  
 

 
Figure 4.  
Average accuracy of the model under different SNRs. 
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Figure 4(a)-(d) describes that as the SNR increased from -6 to 6, the diagnostic accuracy of all three 
models improved. This implied that when the noise in the signal is relatively low, and the difference 
between the signal and background noise is more pronounced, the models are more likely to accurately 
identify and classify the faults. Figure 4(c) and (d) demonstrates that the MCFCNN model achieved an 
average accuracy 10-20% higher than the other two models when the SNR was -6. Additionally, when 
considering cases in which the diagnostic results were 100% accurate across all seven SNR levels, the 
W1DCNN achieved this only once, QCNN achieved it four times, and MCFCNN achieved it six times. 
Therefore, it can be concluded that the MCFCNN consistently provides high performance across 
various noise environments. 

Figure 5 shows the training loss graphs for the three models under the 1 HP condition. The graph 
shows that the loss exhibited an overall decreasing trend. As the training progressed, the loss gradually 
decreased, indicating that the models were optimised during the learning process. Specifically, 
W1DCNN had the highest loss value, followed by QCNN, whereas MCFCNN had the lowest loss. This 
suggested that the MCFCNN model performed relatively well in terms of loss. The stability of the 
model can be preliminarily assessed by observing fluctuations in the loss. MCFCNN had relatively 
small fluctuations in loss, indicating that it is a more stable model with better adaptability to input data. 
 

 
Figure 5.  
Losses of different models (1 HP). 

 
t-SNE Visualisation: When a signal is heavily disturbed by noise, the fault recognition of bearings is 

also compromised. For example, when 𝑆𝑁𝑅 =  −6 and the load was 0 HP, the classification accuracy of 
the W1DCNN model was 66.52% and that of QCNN was 71.12%; however, MCFCNN still maintained a 
high recognition rate of 81.40%. Because QCNN and MCFCNN have similar network architectures and 
quadratic neuron networks, the parallel convolution and SE modules in our proposed network 
MCFCNN, play a positive role in recognising fault features. To better compare the patterns learned by 
the three models in the training data, we output the results of the last convolutional layer and then 
reduced the high-dimensional data to 2D. The data as divided into ten fault categories and used t-SNE 
(Pouyet, Rohani, Katsaggelos, Cossairt, & Walton, 2018) for visualisation, as shown in Figure 6. 
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Figure 6.  

Different models' t-SNE visualization results on the CWRU dataset (1HP, 𝑆𝑁𝑅 =  −4). 

 
The visualisation results showed that all three models learned patterns of different categories, and 

the same fault categories were clustered. However, some overlaps occurred in the classification of 
certain categories. For example, in the W1DCNN results, the orange, blue, and green categories were 
not well distinguished at the boundaries, and the green category was scattered in clusters, indicating 
that this model did not learn well for the green category. In the QCNN results, some improvement was 
observed, as the orange category was completely separated, but the blue and green categories were not 
completely distinct, and the purple and dark yellow categories were close to each other at the 
boundaries. In the MCFCNN results, although some points in the blue and green categories were close 
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to the orange category, their numbers were relatively small, and overall, the boundaries of the three 
categories were distinguished. 

Confusion matrix comparison: The classification performance of the fault modes under strong noise 
was analysed in detail by calculating the confusion matrices of the MCFCNN and QCNN models. The 
values on the diagonal of the confusion matrix represent the numbers of correctly identified instances. 
The numbers outside the diagonal represented the number of misclassified instances. Under the 
interference of strong noise, the QCNN model accurately identified four categories. The MCFCNN 
model identified five categories correctly. Both models accurately identified healthy bearings. Both 
models misclassified 52 instances as outer race faults, indicating errors in identifying the size of the 
outer race faults. For inner race faults, the MCFCNN model misclassified 20 instances, whereas the 
QCNN model misclassified 77 instances; the QCNN model mistakenly classified inner race faults as 
rolling element faults.  

The performances of both models in classifying rolling element bearing faults were relatively low, 
primarily because of their inability to accurately identify the fault sizes of the rolling elements. The 
MCFCNN model (475/750 = 63.33%) accurately identified more rolling element faults than the QCNN 
model (333/750 = 44.4%). Finally, we were more interested in the number of misclassified samples for 
fault-type identification. Despite the strong noise interference, the MCFCNN model achieved 100% 
accuracy in recognising fault types, whereas the QCNN misidentified 77 samples of inner race faults as 
rolling element faults. All results indicated that the MCFCNN model performed better.  
 
3.4. Analysis of MCFCNN 

To determine which part of the model has a better ability to extract fault signals from the bearing, 
we decomposed the MCFCNN model. We separately added a multi-scale processing layer and channel 
attention layer to the network for comparison. For ease of identification, the network with only the 
multi-scale processing layer is referred to as MFCNN, and the network with only the channel attention 
layer is referred to as CFCNN. 

According to Table 4, adding these two layers separately improved the classification performance of 
the model. Specifically, adding only the channel attention layer outperformed adding only the multi-
scale processing layer by 3.46%. This indicated that in a noisy environment, the channel attention layer 
has a better capability of extracting fault features and assigning more weights to them. However, in a 
strongly noisy environment, the MCFCNN model exhibited higher accuracy, precision, and recall rates. 
 
Table 4.  
Comparison of model results (SNR = -6). 

Methods Accuracy Precision Recall 
MFCNN 0.7716 0.7933 0.7908 
CFCNN 0.8065 0.8215 0.8192 

MCFCNN 0.8312 0.8899 0.8452 

 
To investigate the patterns learned by the multi-scale processing and channel attention layers in 

network training, we defined them as the first layer of the MCFCNN network. Visualisation techniques 
were applied to observe the information focused on by the first layer of the network when fed noisy, 
healthy, and faulty bearing signals. Figure 6(a) shows the healthy bearing signal and Figure 6(b) the 
faulty bearing signal.  
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Figure 7.  
Output feature map of the first layer of the MCFCNN. 

 
Figure 7(a) shows the original signal, signal with added noise, and output signal after passing 

through the first layer of the MCFCNN. Figure 7(b) shows that despite the severe noise interference in 
the original signal, the network could still capture the location of the fault signal. This also explains 
why the MCFCNN maintained good classification performance even under noisy conditions. 
 

4. Conclusions 
In this article, we proposed a convolutional network called MCFCNN for end-to-end bearing fault 

diagnosis. The proposed model incorporates quadratic neuron convolutional network operations and 
introduces multi-scale processing and channel attention layers to enhance the diagnostic capability of 
the model in the presence of strong noise. The network achieved good classification performance on the 
CWRU-bearing dataset, maintaining an accuracy of over 80%, even in the presence of strong noise 
interference. Furthermore, classification tests were conducted on the multi-scale processing and channel 
attention layers to validate their importance in extracting bearing fault features. Visualisation 
techniques were employed to interpret the output feature maps. In the future, further improvements to 
the network will be required to enhance its practical applications. 
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