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Abstract: This study applies unsupervised learning to multimodal data for analyzing student behavior 
patterns, aiming to discover intrinsic behavioral structures without predetermined categories. The 
research integrates video, audio, digital interaction, and physiological signals across diverse educational 
settings. The framework employs self-supervised representation learning, multi-view clustering, and 
temporal pattern mining to analyze synchronized multimodal data streams from classroom, online, and 
laboratory environments. Five distinct behavioral clusters were identified, showing significant 
correlations with academic outcomes. The temporal stability of behavioral states emerged as a stronger 
predictor of achievement than frequency. The multimodal approach demonstrated superior performance 
compared to single-modality analyses in capturing behavioral transitions and detecting disengagement. 
Unsupervised multimodal analysis effectively reveals naturally occurring behavioral patterns adaptable 
across diverse educational contexts, establishing a methodological foundation beyond predefined 
categories. The approach enables earlier intervention for struggling students, improving upon 
traditional identification methods. These findings support the development of adaptive educational 
technologies that respond to students' behavioral states in real-time, enhancing personalized learning 
experiences. 

Keywords: Intrinsic behavioral structures, Multimodal data, Multi-view clustering, Predefined categories, Student behavior 
patterns. 

 
1. Introduction  

The analysis of student behaviour has become one of the most important facets of educational 
research, considering the fact that behaviour can unlock the processes of learning, performance, and 
achievement. In most cases, behavioural evaluations have been conducted through observation, self-
reporting, and standardised testing, which do not account for the complexity of students' actions in and 
responses to different learning situations [1]. These methods tend to focus on assuming bounded lists 
of behavioural rating scales and checklists, which may not capture the typical patterns that could 
adequately represent learning behaviours [2]. 

The growth of educational technologies and their sensing capabilities have resulted in new avenues 
for the collection of educational data [3]. Researchers are now able to construct sophisticated 
behavioural profiles that integrate actions or behaviours with physiological data as a result of video, 
audio, digital interaction logging, and physical monitoring. Altuwairqi, et al. [4] highlighted the 
inadequacy of unimodal methods in assessing engagement in online learning environments and 
emphasised the importance of multimodal methods through their argument that multimodal approaches 
allow for more accurate assessment of engagement. Most existing work is based on supervised 
paradigms that depend on extensive amounts of labelled data which limits the level of scalability and 
adaptability across educational contexts. 
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The identification of behaviour patterns using Unsupervised Learning Techniques (ULT) has no 
previous reliance on predefined categories and offers a promising alternative for researchers as it 
enables them to identify natural behavioural clusters. Such approaches can adapt to the affordances of 
diversity in how students use the learning materials and environments, capturing patterns beyond what 
is considered in hypothesis-oriented inquiry. In addition to this, unsupervised methods have the capacity 
to analyse data from different modes, providing Yan, et al. [5] claim insights that are not available 
when looking at data from one mode [5]. This is particularly useful in collaborative learning settings 
where the amalgamation of many students generates intricate data streams. 

The aim of this paper is to analyse student behaviour from a newly proposed perspective by 
employing multimodal data and ULT. Meaningful behavioural patterns, capable of guiding educational 
and personalised learning efforts, can be attained through novel clustering, dimension reduction, and 
representation learning techniques. For this purpose, our investigation seeks to solve some primary 
problems like uncontrolled and ingested streams of heterogeneous data, a lack of explanatory models of 
behaviour, and educational practice-informed frameworks of behavioural analytics. Experiments 
performed in different educational settings reveal that the proposed framework captures behavioural 
clusters corresponding to academic and socio-emotional development with regard to privacy and data 
security ethics. 
 

2. Literature Review 
The multi-modal approaches to data collection and the application of machine learning techniques 

have positively influenced the analysis of student behaviour. Initial work on unsupervised multi-modal 
learning was done by Hu, et al. [6] who created deep multimodal clustering for audiovisual learning, 
which fosters subclass discovery without a priori frameworks, thus accommodating the rich variability 
in student behaviours. After this, earlier educational research tried to apply these advanced technologies 
in other fields. In one example, Davalos, et al. [7] reported that large language models could process 
multi-modal data traces and generate actionable reading assessment reports, which could resolve the 
disparity between sophisticated data analytics and educational use. This is an important step forward 
toward enabling teachers who do not have advanced technical training to use multi-modal analysis. 

In the practical context, Kawamura, et al. [8] used multimodal learning analytics to identify drowsy 
learners on e-learning platforms, which allowed for timely engagement interventions. In the same way, 
Boumaraf, et al. [9] used multimodal machine learning enhanced with temporal standard deviation for 
performance analysis in some specialised training contexts, illustrating the use of temporal attributes for 
identifying patterns. These practitioners drew from the work of Sharma and Giannakos [10] who 
thoroughly investigated the affordances of various streams of multimodal data for learning, outlining 
the fundamental strengths and weaknesses of the data streams in educational research analysis. 

The development of behavioural analysis technology has been advanced by ergonomic technologies 
such as ConverSearch by Arakawa, et al. [11] which aids experts in the analysis of conversation videos 
using a multimodal scene search type method. This tool demonstrates the power of multimodality in the 
analysis of complex behaviour data streams. In the same vein, Yuan, et al. [12] proposed a consistency 
teacher model for semi-supervised multimodal sentiment analysis that exploits unlabeled data, which is 
particularly useful in education where behavioural data is often scarce. 

Feature-based applications can also be found, including Junaid and Javaid [13] study of the semiotic 
multimodal reasoning of concept mapping, which can transform mathematics teaching and learning, 
demonstrating the capability of such technologies to deepen pedagogical practices in specific subjects. 
Sharma, et al. [14] suggested employing AI and multimodal analytics within a “grey-box” framework 
for educational data pipeline construction, blending interpretability with high-accuracy models in a way 
that fulfills an educator’s desire for strong yet reasoned analytical insights. This work has also been 
advanced by Guzhov [15] with the study of audio analysis for multimodal learning, which established 
the fundamental role of voice in evaluating students’ attention and understanding of the materials. 



246 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 4: 244-261, 2025 
DOI: 10.55214/25768484.v9i4.5958 
© 2025 by the authors; licensee Learning Gate 

 

The learning behaviour temporality has garnered special interest from Sharma, et al. [16] who 
advanced new modelling techniques using GARCH with multimodal data to capture temporal variation 
in a learner's behaviour. This study helps to resolve temporal issues that static approaches encounter by 
giving a more accurate representation of engagement over the course of different learning activities. For 
the emotional aspects of learning, Vani and Jayashree [17] implemented a multimodal emotion 
recognition system that integrates facial, voice, and text analysis to determine learner sentiment in 
order to monitor emotions, revealing how external factors beyond cognition can be critical to 
identifying engagement levels. 

Collaborative learning approaches are distinctive with regards to the relevance and applicability of 
multimodal analysis. Nasir, et al. [18] discovered multimodal behavioural profiles in social 
constructivist activities and showcased how distinct dance movements support collective knowledge 
construction. This emphasis is on social dynamics in addition to individual behaviours. Equally, Onishi, 
et al. [19] examined the detection of praising activities and showed multimodality allows capturing 
praise from words and actions, which is crucial in analysing the classroom atmosphere as well as 
teacher-student relations. 

The combination of cognitive psychology and multimodal behaviour analysis serves as a promising 
avenue. Hou, et al. [20] studied English classroom teaching behaviour through adaptive deep learning 
frameworks using cognitive psychology informed classroom teaching, which bridged understanding 
theory of learning processes and behavioural analysis. This integration improves ascribed meaning and 
relevance to education by assisting explainable multimodal analytics and preserves learning theory in 
the analysis of technological innovations. All these advances reveal the fast changing environment of 
analysing student behaviour with multiple modes, which is sophisticated both technologically and 
pedagogically. 
 

3. Methodology 
3.1. Data Collection Framework 

With regard to the computational framework of behavioural indicators from student activities, we 
utilise an array of sensors placed in the educational setting. Our system employs multiple streams of 
data captured concurrently such as videos from ceiling and front-facing cameras, audio from specialised 
microphones, recordings of user activity from the educational platform logs, and physiological 
information from portable devices. In order to synchronise disparate data streams, we implemented a 
time-synchronised acquisition system forced using Network Time Protocol (NTP) with sub-millisecond 
accuracy on all recording devices. 

We incorporated several data privacy policies pertaining to sensitive information and the storage 
and transmission of identifiable data within the design of the system’s architecture framework as part of 
an end-to-end encryption scheme. All collected data underwent rigorous quality assessment utilizing 
automated signal quality metrics and manual verification to identify and mitigate artifacts or recording 
failures. 
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Figure 1. 
Multimodal data collection and synchronization framework. 

 
As shown in Figure 1, the framework employs a three-stage processing pipeline for temporal 

alignment of heterogeneous data streams. First, device-level synchronization establishes a common 
timebase. Next, modality-specific preprocessing normalizes sampling rates and formats. Finally, fusion-
level integration combines the streams through interpolation and feature-level alignment techniques, 
producing temporally coherent multimodal data suitable for subsequent unsupervised learning 
algorithms. 
 
3.2. Feature Extraction Techniques 

The proposed framework employs multi-faceted feature extraction techniques to comprehensively 
capture student behavioral patterns across modalities. For computer vision-based analysis, we extract 
spatiotemporal features from video streams using a modified 3D convolutional architecture that 
processes sequential frames to identify behavioral indicators. The extracted visual features at frame t  
can be represented as: 
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where :t k tI −  represents a sequence of 1k +  consecutive frames ending at time t , and CNNf  denotes the 

convolutional feature extractor yielding a d -dimensional representation. 
Audio processing incorporates both acoustic and linguistic features from classroom interactions. 
Spectral features including Mel-frequency cepstral coefficients (MFCCs) are computed using: 

1

log( )cos ( 0.5)
K

i k

k

MFCC S i k
K


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where kS  represents the power spectrum in the k -th Mel filter bank and K  is the total number of 

filter banks. These features capture prosodic elements indicating emotional states and engagement 
levels. 
For digital interaction data, we employ temporal sequence modeling where interaction events 

1 2{ , ,..., }nE e e e=  are encoded through a bidirectional recurrent network architecture. Each event 

vector incorporates action type, duration, and contextual metadata, enabling the capture of learning 
strategy patterns. 
Physiological signal processing focuses on extracting features related to autonomic nervous system 
activity. Heart rate variability is quantified through frequency domain analysis: 
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where ( )PSD f  represents the power spectral density at frequency f , providing insight into stress and 

cognitive load. 
The contextual feature integration mechanism employs a cross-modal attention approach which 

integrates features from various modalities based on their meaning. Attention distributions for modality 
m  at time t  can be computed as: 
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where tF  represents the aggregated feature vector, 
m

tF  is the feature vector from modality m , and qW , 

kW  are learnable projection matrices. This integration mechanism enables the discovery of complex 

behavioral patterns that manifest across multiple modalities simultaneously while preserving modality-
specific characteristics critical for subsequent unsupervised learning. 
 
3.3. Unsupervised Learning Framework 

Our framework integrates and utilises multimodal features with an aim to learn behavioural 
patterns without labels using unsupervised learning. The underlying architecture of our framework 
pertains to self-supervised representation learning that constructs the feature representation using 
context prediction and contrastive learning objectives. The model steps through parallel encoder 
networks for different modalities within a temporal slice, followed by a fusion step which maintains 
modality-specific processes while permitting cross-modality interactions. Such an approach facilitates 
the uncovering of behavioural patterns that would not be possible through defined a priori definitions in 
a supervised manner. 

Using these representations, we apply a multi-view clustering algorithm which exploits the diverse 
structure of a multi-feature space. The cluster assignment problem is solved using a weighted consensus 
strategy which refines cluster assignments in turns, taking into account the context specific strength of 
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different modalities. This provides robust pattern capturing compared to single modality analysis, or 
concatenative approaches. 

To model the student’s behaviour over time and capture the temporal relations in sequence patterns, 
we have designed a novel pattern mining algorithm based on a variable length Markov model tailored 
towards multimodal data. It captures repetitive sequences and transitions between behavioural states, 
giving a quantitative understanding of the dynamics of student behaviour over time. 
 

Multimodal Feature inputs

Self-supervised Representation Learning

Behavioral Embedding Space construction

Multi-view Clustering Temporal Pattern Mining

Interpretable Behavioral Patterns

Visual Features Audio Features
Digital Interaction 

Features
Physiological 

Features

Context Prediction Objectives
Predict missing modalities

Contrastive LearningTemporal 
coherence constraints

Unified latent representation space

Cluster 1    Cluster 2    Cluster 3 Behaviora sequence patterns

 
Figure 2. 
Unsupervised learning framework architecture. 

 
As illustrated in Figure 2, our framework combines these elements into a unified pipeline that 

synthesises raw multimodal features into behavioural patterns. During the embedding space 
construction, the multimodal features are projected onto a latent space where proximity denotes 
similarity in behaviour. This embedding space allows further analysis and visualisation by educational 
stakeholders. 

For practical purposes, we add reconstruction error and density estimation-based anomaly detection 
algorithms to reveal atypical behavioural patterns that may require further investigation. Moreover, 
prototype-based explanations and feature attribution techniques ensure that the identified patterns are 
interpretable for non-machine learning specialists so educators can still make sense of the insights. 
 

4. Experimental Setup 
4.1. Study Environments 

To promote ecological validity and generalisability of findings, our experiment employed diverse 
educational contexts in an evaluation. The collection of primary data took place in four classrooms 
across two urban public schools, where their day-to-day interactions as students were recorded during 
mathematics and language arts classes. Each classroom was outfitted with unobtrusive ceiling cameras, 
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directional microphones, and IoT enabled environmental monitoring devices that allowed them to 
passively measure classroom interactions without interfering with the processes under observation. 
Data from other school locations and online learning environments was collected through a learning 
management system customised for this study, which captured students’ fine-grained digital interaction 
patterns with the system while completing module-based assignments. 

For controlled validation, laboratory studies were carried out in a simulated classroom setting with 
48 participants who completed standardised learning tasks under systemically manipulated social and 
contextual difficulty levels. The closed context allowed for controlled measurement of physiological 
signals such as electrodermal activity and heart rate variability that were not feasible to collect in the 
presence of naturalistic settings. 

This study followed a longitudinal design for one academic semester (16 weeks) and data collection 
was done at four timepoints in order to measure developmental trajectories and behavioural consistency 
across contexts. As shown in Table 1, participant demographics reflected diverse backgrounds across 
age ranges, socioeconomic status, and prior academic achievement levels, allowing for robust analysis of 
demographic factors on behavioral patterns. 
 
Table 1. 
Demographic Characteristics of Study Participants Across Educational Settings 

Demographic Variable Classroom (n=124) Online (n=96) Laboratory (n=48) 
Age range (years) 8-12 9-11 8-11 

Gender    
- Female 52% (64) 48% (46) 50% (24) 

- Male 48% (60) 52% (50) 50% (24) 
Ethnicity    

- Asian 12% (15) 14% (13) 10% (5) 

- Black 24% (30) 18% (17) 21% (10) 
- Hispanic/Latino 28% (35) 31% (30) 25% (12) 

- White 29% (36) 33% (32) 38% (18) 
- Other/Multiple 7% (8) 4% (4) 6% (3) 

Prior achievement    
- Below average 23% (29) 19% (18) 25% (12) 

- Average 52% (64) 54% (52) 50% (24) 
- Above average 25% (31) 27% (26) 25% (12) 

 
4.2. Data Collection Implementation 

The multimodal data collection infrastructure was designed to capture comprehensive behavioral 
data while maintaining ecological validity in educational environments. In classroom settings, we 
deployed an array of four ceiling-mounted 4K resolution cameras (Sony FDR-AX53) with 170° wide-
angle lenses, positioned to provide complete coverage while minimizing blind spots. Audio capture 
utilized a hybrid approach combining room-based array microphones (Shure MXA910) for ambient 
classroom audio and individual lapel microphones (Shure BLX14/CVL) for targeted student 
interactions during group activities. For physiological measurements, participants wore unobtrusive 
wristband sensors (Empatica E4) that captured electrodermal activity at 8Hz, blood volume pulse at 
64Hz, skin temperature at 4Hz, and three-axis acceleration at 32Hz. All devices were time-synchronized 
using Precision Time Protocol (PTP) with sub-millisecond accuracy. 

The software infrastructure implemented a distributed collection architecture comprising device-
specific capture agents orchestrated by a central coordination service. Each capture agent integrated 
device-specific APIs and handled local preprocessing including noise filtering and compression before 
transmission. The coordination service maintained session metadata, monitored device health, and 
ensured temporal synchronization across modalities. Real-time quality monitoring algorithms detected 
data anomalies (signal loss, excessive noise) and triggered alerts for researcher intervention when 
necessary. 
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For data storage and management, we implemented a multi-tier architecture with edge processing 
servers providing local buffering and preliminary anonymization, followed by transmission to a secure 
central repository for long-term storage. The repository used a hybrid structure with a PostgreSQL 
database for metadata and a distributed file system for high-volume sensor data. All transmitted data 
was encrypted in transit using TLS 1.3 and at rest using AES-256 encryption. 

Our sampling strategy employed adaptive temporal sampling to balance data volume with 
comprehensive behavioral capture. For continuous streams, we applied a non-uniform sampling 

approach where the sampling rate ( )s t  at time t  was calculated as: 

1

( ) ( )
n

base i i

i

s t s s w f t
=

= +     

where bases  represents the baseline sampling rate, s  is the maximum sampling rate increase, iw  

are importance weights, and ( )if t  are detector functions identifying potential events of interest (e.g., 

increased motion, voice activity). This approach concentrated data collection during behaviorally 
significant periods while reducing redundancy during inactive periods. 

The study protocol received approval from both university and school district ethics committees. 
Our consent procedure implemented a multi-layered approach including administrative consent from 
school principals, detailed parental informed consent with opt-out provisions, and age-appropriate 
assent from student participants. All participants and guardians received comprehensive information 
about data collection, storage practices, anonymization procedures, and their right to withdraw data at 
any point without consequences. 
 
4.3. Preprocessing Procedures 

Rigorous preprocessing of multimodal data was essential to ensure the reliability and validity of 
subsequent analyses. Our preprocessing pipeline addressed five critical challenges: noise filtering, 
missing data, normalization, temporal segmentation, and feature selection. 

For noise filtering, we implemented modality-specific approaches. Video data underwent spatial 
filtering using adaptive Gaussian kernels where kernel size   was dynamically adjusted based on local 
motion estimation: 

2( , , ) (1 ( , , ) )basex y t I x y t  =  +  ‖ ‖  

where ( , , )I x y t  represents the spatiotemporal gradient at position ( , )x y  and time t , and   

controls sensitivity to motion. Audio signals were processed using spectral subtraction with 
environmental noise profiles estimated during classroom silence periods. For physiological signals, we 
applied wavelet-based denoising with soft thresholding, where coefficients below the threshold 

2logn =  were attenuated, with   representing noise standard deviation and n  the signal 

length. 
Missing data handling employed a hierarchical approach based on the extent and pattern of 

missingness. For brief gaps (<5s), we applied cubic spline interpolation. For extended gaps in 
physiological data, we implemented a multiple imputation technique using a Gaussian process model 
with a Matérn covariance function: 

1 | | | |2
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x x x x
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l l
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
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where   controls smoothness, l  is the characteristic length scale, and K  is the modified Bessel 

function. For systematic missingness in video data (e.g., occlusion), we leveraged information from 
alternative camera angles when available. 
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Normalization was applied to accommodate inter-individual differences and varying baseline states. 
Physiological signals underwent z-score normalization relative to individual baseline periods. For 
environmental measures, we applied min-max scaling to standardize classroom-specific variations. 
Digital interaction features required specialized treatment using log-transformation followed by robust 
scaling: 

log( ) median(log( ))

IQR(log( ))
norm

x X
x

X

 



+ − +
=

+
 

where   is a small constant preventing logarithm of zero values. 
Temporal segmentation divided continuous data streams into meaningful analytical units using a 

multi-scale approach. At the finest granularity, fixed-width windows (5s with 50% overlap) captured 
momentary behaviors. At intermediate levels, activity-based segmentation used change-point detection 

with Bayesian online changepoint detection algorithm computing the run-length distribution 1:( | )t tP r x  

recursively. At the coarsest level, pedagogical activity boundaries from classroom observation protocols 
provided context-aware segmentation. 

Feature selection employed a two-stage process combining domain knowledge with data-driven 
approaches. Initial candidate features were identified through literature review and expert consultation. 
These were subsequently refined using a stability-based selection approach with repeated subsampling, 
retaining features with selection frequency exceeding a minimum stability threshold of 0.75 across 
iterations. 
 

5. Results and Analysis 
5.1. Discovered Behavioral Patterns 

Our unsupervised analysis revealed five distinct behavioral clusters that consistently emerged 
across educational contexts. These clusters were characterized by unique multimodal signatures 
spanning physical movements, verbal participation, digital interaction patterns, and physiological 
indicators. The most prevalent cluster (C1, 38.2% of observations) demonstrated high task engagement 
with moderate social interaction, while cluster C2 (22.7%) exhibited exploratory behavior with frequent 
transitions between activities. Cluster C3 (17.6%) was characterized by sustained focus and minimal 
movement, cluster C4 (12.9%) by social-collaborative engagement, and cluster C5 (8.6%) by 
disengagement indicators including fidgeting and off-task gaze. 

Sequential pattern analysis revealed significant temporal structures in behavioral transitions. As 
shown in Figure 3, the transition probability matrix demonstrates strong self-reinforcing tendencies for 
clusters C1 and C3, indicating behavioral stability once established. Conversely, clusters C2 and C5 
showed higher transition probabilities to other states, suggesting these represent more transient 
behavioral patterns. 
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Figure 3. 
Behavioral State Transition Probabilities. 

 
Demographic analysis revealed significant relationships between behavioral patterns and student 

characteristics. Age was positively correlated with cluster C3 prevalence (r=0.42, p<0.001), suggesting 
developmental increases in sustained attention capacity. Gender differences were observed in the 
distribution of clusters C2 and C4, with female students showing higher representation in collaborative 
engagement patterns. Prior achievement levels were most strongly associated with clusters C1 and C3, 
though the moderate correlation (r=0.36, p<0.01) indicates these behavioral patterns are not simply 
proxies for academic ability. As shown in Figure 3, the transition probability matrix provides critical 
insights into how students navigate between different behavioral states during learning activities. 
 
5.2. Modality Contribution Analysis 

Quantitative assessment of modality contributions revealed substantial variation in the predictive 
power of different data streams across behavioral clusters. Feature importance analysis using 
permutation-based methods indicated that video-derived movement patterns contributed most 
significantly to overall cluster discrimination (mean decrease in accuracy: 0.37±0.04), followed by audio 
features (0.29±0.05), digital interaction patterns (0.21±0.03), and physiological signals (0.13±0.02). 
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However, as shown in Figure 4, this importance distribution varied markedly across behavioral clusters, 
with physiological signals providing crucial information for distinguishing cluster C3 (sustained focus) 
despite their lower overall contribution. 
 

 
Figure 4. 
Modality Contributions to Behavioral Cluster Identification. 

 
Mutual information analysis demonstrated significant complementarity between modalities, with 

the combination of any two modalities providing an average of 27.3% additional information beyond 
their individual contributions. Particularly strong complementarity was observed between physiological 
signals and video features (37.9% gain), while audio and digital interaction features showed the highest 
redundancy (46.2% shared information). Minimum viable modality subset analysis indicated that 91.2% 
of cluster discrimination power could be achieved using only video and physiological signals, suggesting 
potential for resource-efficient deployment in educational settings with limited sensor availability. As 
Figure 4 illustrates, context-dependent modality importance was particularly evident for cluster C3, 
where physiological signals contributed 34% of discriminative power compared to their 8-13% 
contribution for other clusters. This finding underscores the necessity of multimodal approaches for 
comprehensive behavioral pattern discovery, as single-modality analysis would potentially overlook 
critical patterns related to internal cognitive and affective states. 
 
5.3. Correlation with Educational Outcomes 

Analysis of the relationship between the identified behavioral clusters and educational outcomes 
revealed significant correlations across multiple dimensions. Academic performance, measured through 
standardized assessment scores, demonstrated strong associations with clusters C1 (r=0.53, p<0.001) 
and C3 (r=0.48, p<0.001), while negatively correlating with cluster C5 (r=-0.41, p<0.001). 
Interestingly, the temporal stability of behavioral states, rather than merely their frequency, emerged as 

a stronger predictor of performance outcomes (β=0.37 vs. β=0.24). Socio-emotional development 
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indicators, derived from teacher assessments and peer interaction analyses, showed strongest 
association with cluster C4 (collaborative engagement), particularly for dimensions of empathy (r=0.45, 
p<0.001) and conflict resolution (r=0.39, p<0.01). 

Regression analysis employing behavioral cluster distributions as predictors accounted for 64% of 
variance in subsequent academic achievement and 52% in socio-emotional development metrics. As 
shown in Figure 5, the relationship between engagement stability (measured by mean duration in 
clusters C1 and C3) and academic outcomes follows a nonlinear pattern, suggesting a threshold effect 
where benefits plateau beyond certain stability levels. Notably, prediction accuracy for identifying 
students requiring educational interventions reached 78.3% sensitivity and 81.5% specificity when 
combining behavioral markers with baseline performance data, representing a 23.4% improvement over 
traditional identification methods. 
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Figure 5. 
Relationship between Behavioral Patterns and Academic Outcomes. 

 
This analysis also identified specific behavioral transitions as early indicators of learning challenges, 

with increased frequency of C1→C5 transitions (engagement to disengagement) serving as a 
particularly robust marker (AUC=0.83). Furthermore, the entropy of behavioral state distributions, 
reflecting unpredictability in behavioral patterns, negatively correlated with both academic (r=-0.38, 
p<0.01) and socio-emotional outcomes (r=-0.32, p<0.01). As Figure 5 demonstrates, behavioral clusters 
contribute differentially to intervention prediction accuracy, with clusters C1 and C5 providing the 
strongest predictive signals. These findings underscore the value of multimodal behavioral analysis in 
developing proactive educational support systems that can identify intervention needs before traditional 
performance metrics would trigger remediation. 
 
5.4. Comparative Analysis 

To evaluate the effectiveness of our unsupervised multimodal approach, we conducted systematic 
comparisons against alternative methodologies commonly employed in student behavior analysis. When 
benchmarked against supervised classification using identical feature sets but with expert-provided 
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labels, our approach achieved comparable accuracy (84.7% vs. 87.3%) despite operating without 
predefined categories. This performance gap narrowed further to just 1.2% when evaluating 
generalization to new classroom contexts, suggesting superior context-adaptability of unsupervised 
patterns. More striking differences emerged in comparison with single-modality analyses, where 
performance degraded substantially. Video-only analysis achieved 68.3% concordance with multimodal 
clusters, while audio-only and physiological-only analyses achieved 59.7% and 42.5% concordance 
respectively. 

Traditional behavioral assessment methods, including standardized observation protocols (BOSS) 

and teacher rating scales, showed moderate alignment with our discovered clusters (Cohen's κ = 0.61 
and 0.58 respectively). However, these methods demonstrated lower temporal resolution and higher 
observer variability (ICC = 0.72) compared to our automated approach (ICC = 0.91). As shown in 
Figure 6, our unsupervised multimodal framework outperformed all comparative methods in detecting 
subtle behavioral transitions, with particularly strong advantages in capturing brief disengagement 
episodes (F1 score: 0.83 vs. 0.47) and detecting off-task behaviors in technology-enhanced learning 
environments. 
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Figure 6. 
Comparative analysis showing superior performance of unsupervised multimodal approach, particularly for disengagement 
detection and generalization. 

 
Ablation studies further demonstrated the critical contribution of each framework component, with 

removal of the cross-modal attention mechanism reducing cluster stability by 24.3% and elimination of 
temporal pattern modeling decreasing predictive power for academic outcomes by 31.7%. As Figure 6 
illustrates, our approach maintained performance advantages across multiple dimensions including 
accuracy, generalization capability, temporal resolution, and disengagement detection. Notably, while 
traditional methods incurred lower implementation costs, their performance deficits were substantial in 
technology-enhanced learning environments. The radar visualization in Figure 6 highlights the 
comprehensive superiority of multimodal approaches, with unsupervised techniques offering particular 
advantages in contextual generalization – critical for educational applications spanning diverse 
classroom environments. This comparative analysis underscores the value of unsupervised multimodal 
frameworks for capturing the complex, multifaceted nature of student behavior in authentic educational 
settings. 
 

6. Discussion 
Our analysis of student behaviours using unsupervised multimodal analysis methods has far-

reaching consequences. The five behavioural clusters identified offer distinct patterns with significant 
educational relevance. Academic outcomes were strongly correlated with the high-engagement clusters 
(C1 and C3), and it was noted that temporal stability within these states was a stronger predictor than 
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frequency alone. This implies that students in these states may be more consistently engaged without 
intermittently high engagement, indicating that consistency in engagement is more telling than high, 
but sporadic, engagement. The contextual variability observed in behavioural manifestations across 
different educational settings underscores the need for more flexible adaptive assessment strategies as 
opposed to rigid ones based on set predetermined criteria. 

The differences in behavioural profiles showcased developmental pathways that run counter to 
prevailing assumptions of engagement. Interestingly, younger students demonstrated perpetually high 
levels of frequent transitions between behavioural states, which is more appropriate considering the 
developmental stage rather than suggestive of attention deficit. It was clear that the incorporation of 
multiple modalities was the only way to capture such complex behaviours, as aside from physiological 
signals, observation alone would not yield insight into the states that were hidden. This demonstrates 
the drawback of using unsupervised methodologies that seek to impose structure onto complex patterns 
within human behaviour instead of allowing patterns to emerge devoid of imposed categorizations. 

Even with all these developments, some limitations deserve attention. The available computational 
resources pose challenges to implementation in budget-constrained educational settings. Moreover, the 
lack of some interpretability alternatives for non-technical users creates gaps in understanding for 
educators. Maintaining privacy comes as a primary concern and must be addressed with consideration of 
the data breakdown versus ethical data collection and processing principles. 

Beyond predicting academic performance, the behavioural pattern insights from this research can be 
used for developing educational technologies. Such technologies could implement early intervention 
strategies to identify underperforming students well ahead of traditional assessment timelines. 
Technologies that adapt to a student’s behavioural state in real time could optimise the challenge and 
modality of educational material content delivery. Instructional feedback based on diverse student 
outcomes and objectively measured effectiveness is invaluable to teacher decision making. Perhaps most 
valuable, though, is helping students recognise and modify their learning behaviours through 
personalised feedback, empowering them to self-regulate their engagement patterns. Greater emphasis 
should be placed on capturing longitudinal patterns and context over development and culture along 
with enhancing real-time processing capabilities. 
 

7. Conclusion 
In this study, the effectiveness of unsupervised multimodal techniques—applied without prior 

instructions—was proven for revealing significant behavioural patterns within educational settings. 
Based on our modelling, we were able to validate five behavioural patterns that were highly predictive 
of specific achievement and socio-emotional outcomes. The integration of video, audio, digital 
interaction, and physiological data streams provided comprehensive insights that would be unattainable 
through single-modality analysis, with temporal stability of engagement patterns emerging as 
particularly significant for predicting educational outcomes. 

The primary contribution of this work lies in establishing a methodological foundation for behavior 
analytics that adapts to diverse educational environments without relying on predetermined behavioral 
categories. By leveraging advanced clustering and representation learning techniques, we have shown 
that naturally occurring behavioral patterns can be discovered and meaningfully interpreted across 
varying contexts, age groups, and instructional settings. These methodological advances extend the 
capabilities of educational technology to capture the multifaceted nature of student engagement and 
learning processes. 

For educational practice, our findings suggest a shift from snapshot assessments to continuous, 
multimodal monitoring that respects the dynamic nature of student behavior. The demonstrated ability 
to predict intervention needs with 78.3% sensitivity represents a substantial improvement over 
traditional methods, potentially enabling earlier and more targeted support for struggling students. 
Beyond immediate applications, this work deepens our understanding of the complex relationship 
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between observable behaviors, internal states, and learning outcomes, laying groundwork for a more 
nuanced approach to student assessment and personalized education. 
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