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Abstract: We investigate the mechanical properties of two-dimensional 1T-MnX2 materials through 
the molecular dynamics finite element method with the Stillinger-Weber potential. The two-
dimensional Young’s modulus, Poisson’s coefficient, maximum stress, and strain of these materials are 
examined for four 1T-MnX2 sheets. The effects of the armchair and zigzag directions on the mechanical 
properties under uniaxial tension are considered and discussed. Under uniaxial tension, we have 

determined the main mechanical properties. For 1T-MnO2, the maximum stress (σt) was 16.794 N/m 
in the armchair direction, and the maximum elastic modulus (Et) was 154.96 N/m in the zigzag 

direction. For 1T-MnTe2, the maximum Poisson's ratio (ν) observed was 0.181 in the armchair 
direction. These materials are considered approximately isotropic and are characterized by brittle 
fracture. Simulation results will help to design and use two-dimensional 1T-MnX2 sheet-based 
nanocomposites and nanodevices. 

Keywords: ITstructures, 2d-materials, Atomistic simulation, Stillinger-weber. Uniaxial tension. 

 
1. Introduction  

This study focuses on determining the mechanical properties of two-dimensional materials that are 
compounds of transition metal Mn with non-metallic elements existing in the form of hexagonal 
structure 1T-MnX2 Jiang and Zhou [1] where X is a non-metallic element. This polymorph can exist in 
nature or be created in the laboratory [1]. The structure of the 1T-MnX2 material is shown in Figure. 1, 
through the orthogonal projection and the axial projection of a basic cell with the corresponding 
numbered atoms. Each basic cell (the rectangle drawn with dashed lines in Figure. 1) with side size a (Å) 
contains 9 atoms including 3 Mn atoms (red) on a plane, each Mn atom is bonded to 6 non-metallic atoms 
X (blue) distributed on two planes symmetrical to the plane containing Mn, the distance between the 
plane containing Mn and X is h; meanwhile, an X atom is bonded to 3 surrounding Mn atoms; X is one of 
the following elements: Oxygen (O), sulfur (S), selenium (Se), tellurium (Te). The material structure is 
more clearly shown through the material parameters including: the bond distance between two Mn and 

X atoms is dMn-X; the bond angle between X-Mn-X atoms is the angle MnXX; Mn-X-Mn is the angle 

XMnMn (see Table 1). 
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Figure 1.  
Schematic illustration of: 1T-MnX2 structures (X= O, S, Se and Te are non-metallic elements). 

 
Table 1.  
Material network parameters of 1T-MnX2 materials. 

No. Materials Lattice constant, a (Å) dMn-X (Å) MnXX (°) XMnMn (°) 

1 1T-MnO2 2.82 1.88 97.181 97.181 
2 1T-MnS2 3.12 2.27 86.822 86.822 

3 1T-MnSe2 3.27 2.39 86.330 86.330 
4 1T-MnTe2 3.54 2.59 86.219 86.219 

Source: Jiang and Zhou [1]. 

 

Various the two-dimensional (2D) materials are existed in many different structural forms such as 
Pucked structure Lê Minh, et al. [2] planar hexagonal graphene Geim [3], low-bucked silicene, BN and 
AlN [4], 1H and 1T structures [1]. These materials exhibit exceptional properties, including high 
electrical and thermal conductivity, and remarkable mechanical strength. They exhibit good mechanical 
properties with high elastic modulus of ~0.5-1 TPa and tensile strength of ~61 GPa [5]. They possess 
distinguishable chemical and thermal stability with high oxidation resistance up to 9000 C in air [6], 
wide band-gaps independent of tube structures [7, 8]. Excellent thermal conductivity [9]. They are also 
an effective violet and ultra-violet light emission material [10, 11]. Interestingly, their mechanical 
behavior at the nanoscale can differ significantly from macroscopic observations, showcasing phenomena 
like a negative Poisson's ratio [2, 12]. And extreme hardness (e.g., graphene being harder than diamond) 
[13]. Furthermore, their bandgap can be tailored through the application of mechanical strain [14-16] 
or external electric fields, without requiring any chemical alterations [16-18]. Their versatility has led to 
their incorporation into electronic devices for manufacturing nanometer-sized transistors [1, 3, 16]. 
electronic storage devices [19, 20]. And applications within the energy [21, 22]. And medical fields [23, 
24]. Such applications require a deep comprehension of the mechanical properties and performance of 
1T-MnX2 materials under various loading conditions. Characterizing the mechanical properties of 
nanoscale materials presents significant experimental challenges due to difficulties in manipulation, high 
costs, and often infeasibility. Consequently, researchers often rely on computational methods like 
experimental simulation (e.g., atomic finite element method (AFEM) [25-27]. Molecular dynamics (MD) 
[28].  First-principles [29, 30]. And ab initio calculations [31] to predict these properties.  

The Mechanical properties of 1T-MnX2 materials seem still unexplored by MDFEM method. It 
should be noted that the Mechanical properties of these materials has been investigated by molecular 
dynamics (MD) method see e. g. Jiang and Zhou [1] and references therein. The present work 
investigates through molecular dynamics finite element method (MDFEM) the mechanical properties of 
two-dimensional 1T-MnX2 materials under uniaxial tension. The effects of the armchair and zigzag 
directions to the mechanical properties of these materials under uniaxial tension are studied and 
discussed. 
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2. Framework for Analysis 
While density functional theory (DFT) calculations and molecular dynamics (MD) simulations are 

time-consuming, molecular dynamic finite element methods (MDFEM), sometime known as atomic-
scale finite element methods or atomistic finite element methods, have been developed to analyze 
nanostructured materials in a computationally efficient way, see e. g. [25, 28]. To achieve the atomic 
positions of the BN-NT under specific boundary conditions, molecular dynamic finite element method 
(MDFEM) is here adopted. In MDFEM, atoms and atomic displacements are considered as nodes and 
translational degrees of freedom (nodal displacements), respectively. Both first and second derivatives of 
system energy are used in the energy minimization computation, hence it is faster than the standard 
conjugate gradient method which uses only the first order derivative of system energy as discussed in 
[32]. The stiffness matrices of these elements are established based upon interatomic potentials. Similar 
to conventional finite element method, global stiffness matrix is assembled from element stiffness 
matrices. Hence, relations between atomic displacement and force can be derived by solving a system of 
equations.  

For each 1T-MnX2 sheet, the atomic interaction potential is determined through the parameters of 
the Stillinger-Weber potential function including the direct binding energy of two adjacent atoms (Er, 

eV) and the binding energy of three adjacent atoms (E, eV) through the following equations: 
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In which, E is total atomic bond energy; E(eV) is total angular bond energy of 3 atoms on the 
entire membrane; Er(eV) is total linear bond energy between two atoms of the membrane; V2(eV) is 
linear bond energy of two adjacent atoms; V3(eV) is angular bond energy of 3 adjacent atoms; m and n 
are number of linear bonds and angular bonds in a calculation model; A(eV) and K(eV) are material 

coefficients; ρ(Å), B(Å4), ρij(Å), ρik(Å), θo (degrees) are geometric parameters of the material; rij(Å), rik(Å) 

are bond length between two atoms i, j and k respectively; ijk (degrees) is bond angle between three 
atoms i, j, k (where i is the middle atom) (Figure. 2). These parameters are summarized in Tables 2 and 
3. 
 

 
Figure 2.  
Element model when using Stillinger-Weber potential function: a) Straight bond between two atoms; b,c) 
Angular bond between 3 atoms. 
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Table 2.  
Stillinger-Weber potential parameters for the straight bond of material 1T-MnX2 [1]. 

No. Materials Bond A, eV , Å B, Å4 rmin, Å rmax, Å 

1 1T-MnO2 Mn-O 9.675 1.212 6.246 0.0 2.635 

2 1T-MnS2 Mn-S 3.127 1.111 13.276 0.0 3.064 

3 1T-MnSe2 Mn-Se 3.422 1.153 16.314 0.0 3.220 

4 1T-MnTe2 Mn-Te 4.007 1.246 22.499 0.0 3.488 

 
Table 3.  
Stillinger-weber potential parameters for angle bond of the 1T-MnX2 [1]. 

No. Materials 
Angular  

bond K, eV 0, (°) 1, Å 2, Å rmin12, Å rmax12, Å rmin13 Å rmax13, Å rmin23, Å rmax23, Å 

1 1T-MnO2 

MnOO 60.755  97.181  1.212  1.212  0.0  2.635  0.0  2.635  0.0  3.852 

OMnMn 60.755  97.181  1.212  1.212  0.0  2.635  0.0  2.635  0.0  3.852 

2 1T-MnS2 
MnSS 19.765  86.822  1.111  1.111  0.0  3.064  0.0  3.064  0.0  4.262 

SMnMn 19.765  86.822  1.111  1.111  0.0  3.064  0.0  3.064  0.0  4.262 

3 1T-MnSe2 
MnSeSe 19.390  86.330  1.153  1.153  0.0  3.220  0.0  3.220  0.0  4.467 

SeMnMn 19.390  86.330  1.153  1.153  0.0  3.220  0.0  3.220  0.0  4.467 

4 1T-MnTe2 
MnTeTe 19.307  86.219  1.246  1.246  0.0  3.488  0.0  3.488  0.0  4.836 

TeMnMn 19.307  86.219  1.246  1.246  0.0  3.488  0.0  3.488  0.0  4.836 

 

For each 1T-MnX2 membrane, the total number of atoms is N; Xi and ui are the initial coordinates 
and displacement of the i-th atom; then, the coordinates of the atom after deformation are xi=Xi+ui. The 
atomic interaction potential of the entire membrane calculated by formula (1) is an equation that depends 
on the coordinates of each atom on the membrane as follows: 

    ( )1 2 NE E , ,...,   = x x x                                         (6) 

On the other hand, when the membrane is subjected to an external force fi on the i-th atom 
(considered as nodes), the atoms in the membrane have displacements ui correspondingly, the potential 
energy of the applied external force is calculated as follows 

  
1

N

ext i i

i

E
=

= f u                                         (7) 

The total potential energy of the membrane is 

                extE E = −                 (8) 

The membrane is in equilibrium when the total potential energy reaches its minimum value according 
to the principle of minimum potential energy. Therefore, the first derivative of the total potential energy 
will be zero as shown in Eq. (9) 

  0; 1
i

i N


= = 


 
u

                       

(9) 
Solving the system of equations (9), the displacement of all atoms in the membrane is determined. In 

the experimental simulation using the atomic finite element method, solving the system of equations (9) 
using the Newton–Raphson iteration method, the use of this method has been clearly shown in [25, 27, 
28], then the equation in the form of finite elements is 

          K(k).u(k)=F(k)                                   (10)  
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 Equations (10) and (11) are the basic equations of the finite element. With K(k) being the global 
stiffness matrix, u(k) being the nodal displacement vector and F(k) being the nodal force vector. If each 
atom is considered as a node, the displacement of the atom is the displacement of the node. Due to the 
structure of the orthogonal hexagonal membrane, two types of elements are formed on the membrane, 
i.e., 3-node elements (Valence) are molecules on the boundary of the membrane, each element has 3 
bonded atoms, 4-node elements (Improper) are elements inside the membrane, and each element is 
bonded by 4 atoms (Figure. 3). Since each atom can move in 3 directions, formula (11) is used to calculate 

the stiffness matrix of each element with dimensions 
( ) ( )

9 9 12 12
;

e e

Val Imp
      x x
K K , corresponding to 3-node 

and 4-node elements. From the element stiffness matrix, calculate the global stiffness matrix  
( )

3 3

k

N Nx
K

which is the composite matrix of the element stiffness matrices over the entire membrane. The 
displacement vectors and force vectors have dimensions corresponding to the global stiffness matrix. 

 

 
                          a)                                                                           b) 

Figure 3.   
Element model using the atomic finite element method: a) the Valence element is formed 
by 3 adjacent atoms; b) the Improver element is formed by 4 adjacent atoms. 

 
The system of equations (10) is solved by using the Newton–Raphson iteration method with 

displacement boundary conditions i.e., atoms on the tensile boundary have displacement equal to u(0), 
and atoms on the retaining boundary (Figure. 4) have no displacement in the tensile direction. This is the 
experimental simulation method using molecular dynamic finite element method (MDFEM). 

The The experimental model of the sheet tensile test is shown in Figure. 4 through the displacement 
method. 
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Figure 4.  
The sheet with displacement boundary conditions under uniaxial tension: a) the armchair 
direction; b) the zigzag direction. 

 
In the simulation, pull the rectangular sheet with approximately equal side dimensions (the rectangle 

is considered to be a square); each sheet has 4200 atoms; each stretching step causes the atoms on the 

stretching edge to move with an increment of = 0.001, repeating until the sheet has a broken bond (the 
sheet is destroyed as shown in Figure. 6). At each step, equation (10) is solved to determine the 
displacement and nodal force of all atoms on the sheet at this step. The position of atoms in the next steps 
is determined as follows: 

                                                    ( ) ( ) ( )1k k kx x u+ = +         (12) 

The iterative process continues until , with a given error, at which point the sheet is considered to 
have failed. The image of the failed sheet is shown in Figure. 6. The data of the entire experimental 
process, of all steps, is synthesized to determine the mechanical parameters that need to be calculated. 

The tensile results of the 1T-MnX2 materials are shown through the stress-strain relationship graph; 
the two-dimensional elastic modulus is determined by linearizing their relationship with strain in the 
range from 0 to 0.1; the Poisson's ratio is determined based on the ratio of transverse strain and axial 

strain; =-y/x; the two-dimensional tensile stress and tensile strain occur at the end of the tensile 
program. The stress-strain relationship when stretching the intact sheet of the four materials is shown in 
Figure. 5. 
 

3. Results and Discussion 
Figure 5 shows the stress-strain curves of the 1T-MnX2 sheets in armchair and zigzag directions 

calculated by molecular dynamic finite element method (MDFEM). It can be seen from Figure 5 that 
the stress increases monotonously with an increase of the strain up to a maximum value and then drops 
suddenly. Therefore, the sheets exhibit a brittle fracture mechanism. Then, the maximum stress and 
strain at the maximum stress location replace the critical stress and critical strain, respectively.  
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Figure 5.  
The stress-strain curves of 1T-MnX2 material sheets under uniaxial tension according to armchair and zigzag 
directions. 

 
Table 4 shows the elastic modulus, maximum stress and maximum strain of 1T-MnX2 material 

sheets according to armchair and zigzag directions calculated by MDFEM method. The results showed 
that maximum stress: t=16.794N/m under uniaxial tension 1T-MnO2 in the armchair direction with 

strain =0.208; minimum stress: t=4.752 N/m under uniaxial tension 1T-MnTe2 in the armchair 

direction with strain =0.256; maximum poisson's ratio: =0.181 under uniaxial tension 1T-MnTe2 in 

the armchair direction; minimum poisson's ratio: =0.121 under uniaxial tension 1T-MnO2 in the zigzag 
direction; maximum elastic modulus: Et=154.96 N/m under uniaxial tension 1T-MnO2 in the zigzag 
direction; minimum elastic modulus: Et=37.385 N/m under uniaxial tension 1T-MnTe2 in the armchair 
direction. These results showed that two-dimensional elastic modulus and poisson's ratio are 
approximately equal value when stretched in two directions armchair and zigzag. They are considered as 
approximately isotropic materials. In Table 4, these results were compared with the research results by 
Jiang under the same experimental simulation conditions but other method [1]. The comparison results 
showed that the errors were good agree. 
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Table 4.  
The mechanical parameters of four 1T-MnX2 materials by MDFEM method. 

No. Materials Directions 
Elastic 

modulus 
Et, N/m 

Poisson's 
ratio 

Maximum 

stress t, 
N/m 

Tensile 
strain 

Evaluations 

1 
1T-MnO2 
 

AC 
 

153.900 0.123 16.794 0.208 Our results 

156.300 0.120 16.800 0.210 by MD at 10 K [1] 

-1.536 2.250 -0.035 -1.190 error (%) with [1] 

ZZ 
 

154.960 0.121 15.883 0.224 Our results 
155.400 0.120 16.200 0.240 by MD at 10 K [1] 

-0.283 1.083 -1.957 -6.667 error (%) with [1] 

2 
1T-MnS2 
 

AC 
 

46.159 0.147 5.468 0.218 Our results 

47.100 0.150 5.500 0.210 by MD at 10 K [1] 
-1.998 -1.800 -0.590 3.571 error (%) with [1] 

ZZ 
 

46.500 0.145 5.143 0.235 Our results 

46.800 0.150 5.300 0.250 by MD at 10 K [1] 
-0.641 -3.400 -2.959 -6.000 error (%) with [1] 

3 
 

1T-MnSe2 
 

AC 
 

42.726 0.162 5.338 0.227 Our results 
43.200 0.170 5.400 0.220 by MD at 10 K [1] 

-1.097 -4.765 -1.147 3.182 error (%) with [1] 

ZZ 
 

43.083 0.160 4.996 0.246 Our results 

42.900 0.170 5.200 0.260 by MD at 10 K [1] 
0.427 -6.059 -3.916 -5.385 error (%) with [1] 

4 
 

1T-MnTe2 

AC 
 

37.835 0.181 5.107 0.239 Our results 
38.500 0.190 5.200 0.240 by MD at 10 K [1] 

-1.727 -4.947 -1.792 -0.417 error (%) with [1] 

ZZ 
 

38.206 0.178 4.752 0.256 Our results 
38.400 0.190 5.000 0.280 by MD at 10 K [1] 

-0.505 -6.105 -4.963 -8.571 error (%) with [1] 

 
Figure 6 shows the destruction of the 1T-MnSe2 sheet when stretching in the armchair direction 

with a strain of  = 0.227; when stretching in the zigzag direction, at the step  = 0.246, many bonds 
were broken and the sheet was destroyed. 
.  
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Figure 6.  
Destroyed shapes of 1T-MnSe2 sheets: a) uniaxial tension according to armchair; b) 
uniaxial tension according to zigzag.  

 

4. Conclusions 
We present the simulation results of the mechanical properties of 1T-MnX2 nanosheets under 

uniaxial tension with the use of MDFEM with Stillinger-Weber potential. We have found  maximum 

stress: t=16.794N/m under uniaxial tension 1T-MnO2 in the armchair direction with strain =0.208; 

minimum stress: t=4.752 N/m under uniaxial tension 1T-MnTe2 in the armchair direction with strain 

=0.256; maximum poisson's ratio: =0.181 under uniaxial tension 1T-MnTe2 in the armchair direction; 

minimum poisson's ratio: =0.121 under uniaxial tension 1T-MnO2 in the zigzag direction; maximum 
elastic modulus: Et=154.96 N/m under uniaxial tension 1T-MnO2 in the zigzag direction; minimum 
elastic modulus: Et=37.385 N/m under uniaxial tension 1T-MnTe2 in the armchair direction. These 
materials generally behave as approximately isotropic substances and exhibit brittle fracture 
characteristics. These results will help to design and use two-dimensional 1T-MnX2 sheets based 
nanocomposites and nanodevices. 
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