
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 
Vol. 9, No. 4, 2395-2404 
2025 
Publisher: Learning Gate 
DOI: 10.55214/25768484.v9i4.6554 
© 2025 by the authors; licensee Learning Gate 

© 2025 by the authors; licensee Learning Gate 
History: Received: 6 February 2025; Revised: 14 March 2025; Accepted: 18 March 2025; Published: 24 April 2025 
* Correspondence:  dwifitrizalslm@telkomuniversity.ac.id 

 
 
 
 
 

Risk measurement model on top 10 cryptocurrency market capitalization 

 
Umar Al Faruq1, Dwi Fitrizal Salim2*, Farida Titik Kristanti3 
1,2,3School of Economics and Business, Telkom University, Bandung-Indonesia; dwifitrizalslm@telkomuniversity.ac.id (D.F.S.). 

 

 

Abstract: This study conducted a large-scale analysis to evaluate the performance of traditional and 
Markov-Switching GARCH (MS-GARCH) models to estimate the volatility of the top 10 
cryptocurrencies by market capitalization. The study compared the performance of the models using 
goodness-of-fit measures, specifically the Deviance Information Criterion (DIC) and the Bayesian 
Predictive Information Criterion (BPC). Secondly, we assess the forecasting accuracy for one-day-ahead 
conditional volatility and Value-at-Risk (VaR). The results obtained show that, in a manner consistent 
with the findings for the broader cryptocurrency market, the time-varying regime-switching model 
exhibits superior performance in capturing the complex volatility patterns observed in cryptocurrencies 
when compared to the traditional GARCH model. 
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1. Introduction  

Blockchain technology that has developed alongside cryptocurrencies, played a crucial role in 
facilitating technological solutions across various fields [1]. The origin of cryptocurrencies traces back 
to 2009 when Bitcoin was created by an individual known as Tripathi, et al. [2]. Bitcoin was the pioneer 
cryptocurrency to function on blockchain, which now underpins all digital currencies.  Cryptocurrencies 
provide a decentralized substitute to the conventional financial system, facilitating peer-to-peer 
transactions with low fees and enhanced security [3]. The expansion of cryptocurrencies has resulted in 
significant market growth with the total market capitalization is approximately at $858 billion USD in 
present time[4, 5].  

Cryptocurrencies display varying degrees of volatility compared to traditional fiat currencies. 
Research by Miglietti, et al. [6] indicates that Litecoin has higher volatility compared to both Euro and 
Bitcoin. Striking price variations within the cryptocurrency market are instigated by factors such as 
market speculation, regulations, technology, and investor sentiment. Furthermore, Zhang, et al. [7] 
demonstrates that regulatory announcements, particularly in China, significantly heighten price 
volatility, liquidity, and returns, with a more pronounced effect observed during the COVID-19 
pandemic. 

In recent years, the cryptocurrency market has encountered significant pressure due to global events, 
including the COVID-19 epidemic, the Russia-Ukraine conflict, monetary policy changes, and the decline 
of speculative markets. As a result, cryptocurrencies offer great profit opportunities but also carry 
significant risks, with volatility being a major challenge in risk measurement. Therefore, robust 
analytical models are required to effectively capture the nature of volatility [8]. 

This research aims to analyze and forecast cryptocurrency volatility by examining the top 10 
cryptocurrencies by market capitalization over the past decade using data obtained from CoinMarketCap. 
The selected cryptocurrencies include Bitcoin, Ethereum, Tether, Binance Coin, Solana, XRP, USD Coin, 
Cardano, Dogecoin, and Avalanche. 
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Recent advancements in financial risk modeling and predictive analytics, such as machine learning 
approaches for financial distress prediction Foroutan and Lahmiri [9] and deep learning models for 
Bitcoin price forecasting Kristanti, et al. [10] and By assessing the volatility of cryptocurrencies through 
Value at Risk, as noted by Jonathan, et al. [11] the most efficient approach for estimating VaR in 
cryptocurrencies is emphasized, showcasing its importance in enhancing financial literacy and crafting 
strong trading strategies. The author will utilize GARCH and its derivatives, including SGARCH, 
EGARCH, TGARCH, and MSGARCH, for measurement.  
 

2. Literature Review 
2.1. GARCH Model and Its Variants in Cryptocurrency Volatility 

The classic GARCH model has limitations in capturing complex volatility patterns, so its extended 
versions such as EGARCH, TGARCH, and MSGARCH are more commonly used. EGARCH and 
CGARCH have proven to be more accurate in estimating volatility for short term. They are able to 
capture asymmetries in price fluctuations that often occur in cryptocurrencies [12]. EGARCH (1,1) also 
performs well in predicting volatility during crisis periods, supporting its use for emerging markets that 
are prone to economic instability [13]. For fiat currencies, research found that TGARCH is more 
suitable for currencies such as yen and ringgit, while GARCH is more suitable for yuan and US dollar 
[14]. This suggests that selecting the GARCH model should be tailored to the financial assets being 
analyzed. 

The TV-MSGARCH model utilizing student-t distribution yields the most effective predictions 
regarding Bitcoin volatility [15]. This model is designed to handle fluctuations in volatility over time. In 
addition, various studies indicate that MSGARCH surpasses single-regime models in forecasting Value-
at-Risk (VaR) [16]. Further investigations reveal that PGARCH is better suited for student-t 
distributions, which tend to provide more precise representations of market movements [17]. Moreover, 
the GARCH (1,1) model with the student-t distribution is recognized for its robustness against changes 
in volatility, making it a great choice for cryptocurrency markets [18]. Simpler models can perform as 
well as more complex ones, provided they are able to capture return distributions with fat tail 
characteristics [19]. Regarding GARCH (1,1), it is the best prior for modeling volatility when combined 
with EGARCH to capture asymmetric effects [20]. 
 
2.2. Effectivity of EGARCH, EGARCH, TGARCH, and MSGARCH Model in Analyzing Volatility  

Several studies compared EGARCH, TGARCH, and MSGARCH models to find the best approach to 
capture crypto market volatility. EGARCH shown to be more accurate in measuring volatility [21]. This 
model can capture the greater impact of bad news than good news on market volatility. However, in 
some cases GARCH and TGARCH provide better results [22]. 

MSGARCH shown more accurate VaR and Expected Shortfall (ES) estimates than single-regime 
models, suggesting cryptocurrency volatility is better explained by models with regime changes [23]. 
While TGARCH (1,1) was found more effective in capturing asymmetric shocks in the crypto market 
[24]. Moreover, complex GARCH models are better at explaining cryptocurrency volatility fluctuations 
than simpler models [25]. Lastly, the EGARCH-M model is employed to study the connection between 
returns and trading volume, indicating that volatility has a variable relationship with market activity 
[9]. 
 
2.3. Impact of External Factors on Cryptocurrency Volatility   

External elements affect the volatility of cryptocurrencies. Although the volatility decreased during 
the COVID-19 pandemic, the correlation among cryptocurrencies has risen [26]. Regulatory actions by 
the Chinese government have notably influenced the price volatility and liquidity of cryptocurrencies, 
especially during uncertainty [7]. Events such as the COVID-19 pandemic, the Russia-Ukraine conflict, 
and global monetary policies exert tremendous pressure on cryptocurrency markets, creating difficulties 
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in measuring and predicting volatility [27]. Among different cryptocurrencies, Ethereum (ETH) 
displays the greatest volatility, demonstrating higher sensitivity to market fluctuations [28]. 
 
2.4. Effectiveness of GARCH Model in Market Analysis and Risk Management 

ARMA-GARCH-VaR models shown to be efficient in assessing risk within the cryptocurrency 
market [29]. The GARCH model effectively estimates Bitcoin's volatility, revealing clustering patterns 
and an inverted leverage effect through the GJR-GARCH (1,1) model, suggesting potential rise in 
volatility even in response to positive news [30]. The GARCH (1,1) model demonstrates volatility 
clustering in the crypto sector, whereas the GJR-GARCH (1,1) version identifies significant leverage 
effects in cryptocurrency returns [31]. However, GARCH is less effective in modeling a few 
cryptocurrencies, indicating that some digital assets might need different modeling approaches [32]. 
 

3. Methods 
This study employs a quantitative methodology utilizing a 5-year time series data analysis to assess 

Value-at-Risk (VaR) for 10 different cryptos. The analytical models applied include GARCH, 
Exponential GARCH (EGARCH), Threshold GARCH (TGARCH), and Markov-Switching GARCH 
(MSGARCH). These models facilitate the examination of shifts in price volatility among crypto assets 
crucial for evaluating risks in unstable markets. 

The dataset utilized in this research comprises daily historical pricing for 10 cryptocurrencies 
gathered from CoinMarketCap. This study spans a decade to effectively capture the various market 
dynamics that unfold over time. By utilizing a wide range of historical data, this research aims to 
uncover significant and pertinent volatility trends that are essential for assessing the risk of crypto 
assets. The analysis in this study used statistical software such as R or Python, which offer specialized 
packages for GARCH, EGARCH, TGARCH, and MSGARCH models. 

The analysis method applied in this study begins with the estimation of volatility models using the 
GARCH Bollerslev [33] EGARCH Nelson [34] TGARCH Zakoian [35] and MSGARCH [36]. With 
each model as below. 
 

GARCH Bollerslev [33]    ℎ𝑘,𝑡 = 𝛼0,𝑘 + 𝛼1,𝑘𝛾𝑡−1 + 𝛽𝑘ℎ𝑘,𝑡−1   (1) 

EGARCH Nelson [34] 𝑙𝑜𝑔ℎ𝑘,𝑡 = 𝛼0,𝑘 + 𝛼1,𝑘(|𝜂𝑘,𝑡−1| − 𝐸[|𝜂𝑘,𝑡−1|]) + 𝛼2,𝑘𝜂𝑘,𝑡−1 + 𝛽𝑘𝑙𝑜𝑔ℎ𝑘,𝑡−1,  (2) 

TGARCH Zakoian [35] ℎ𝑘,𝑡
1/2

= 𝛼0,𝑘 + 𝛼1,𝑘𝐼(𝛾𝑡−1 > 0)𝛾𝑡−1 + 𝛼2,𝑘𝐼(𝛾𝑡−1 < 0)𝛾𝑡−1 +

𝛽𝑘ℎ𝑘,𝑡−1
1/2

  (3) 

MSGARCH Ardia, et al. [36]    ℎ𝑘,𝑡 = ℎ(𝑦𝑡−1, ℎ𝑘,𝑡−1, 𝜃𝑘)  (4) 
Optimal model selection depends on information criteria like the Deviance Information Criterion 

(DIC) and the Bayesian Predictive Information Criterion (BPIC), which assess the model's efficacy in 
capturing the volatility of cryptocurrency asset values. Model selection is essential for statistical 
inference, especially in hierarchical Bayesian models and empirical Bayes models. Conventional metrics 
such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are 
inapplicable to Bayesian models since they depend on maximum likelihood estimation. Instead, DIC 
Spiegelhalter, et al. [37] and BPIC Ando [38] were created to assess model fit and complexity by 
taking into account the Bayesian posterior distribution. 

General Framework for Bayesian Model Selection: 

 Let 𝑦 = (𝑦, … , 𝑦𝑛) be the observed data generated from the true unknown distribution 𝐺(𝑦) with 

density 𝑔(𝑦), and let (𝑓{𝑦 ∣ 𝜃); 𝜃 ∈ Θ ⊂ 𝑅𝑝} be the model to estimate 𝐺(𝑦)  
In Bayesian modeling, a prior distribution is specified for the parameters. The posterior distribution 

is given by: 

                      𝜋(𝜃 ∣ 𝑦) =
𝐿( 𝑦∣∣𝜃 )𝜋(𝜃)

∫ 𝐿( 𝑦∣∣𝜃 )𝜋(𝜃)𝑑𝜃
   (5) 
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Whereas 𝐿(𝑦|𝜃) is the likelihood function. The prediction distribution for future observation z is as 
follow. 

 

𝑞( 𝑧 ∣∣ 𝑦 ) =  ∫ 𝑓 ( 𝑧 ∣ 𝜃 )𝜋( 𝜃 ∣∣ 𝑦 )𝑑𝜃   (6) 
With the aim of evaluating how well the predictive model approximates the true g(z) using BPIC 

Ando [38] and DIC [37]. 
 

DIC is defined as follow:  

𝐷𝐼𝐶 = −2𝐸𝜃∣𝑦[𝑙𝑜𝑔𝐿(𝑦 ∣ 𝜃] + 𝑃𝐷   (7) 

BPIC is defined as follow:  

𝐵𝑃𝐼𝐶 = −2𝐸𝜃∣𝑦[𝑙𝑜𝑔𝐿(𝑦 ∣ 𝜃)] + 2𝑛𝑏𝑦   (8) 

Furthermore, model evaluation is performed by forecasting volatility one step ahead, we use the 
first half of our yt data for initial model estimation and then evaluate the forecast accuracy over the 
remaining half (out-of-sample period). The rolling window approach is used for estimation, where the 
model parameters are re-estimated every 10 observations. Since the actual volatility cannot be observed, 
we use proxies to assess the prediction performance. We compare the predictions of GARCH models 
using two metrics: Mean Squared Error (MSE) and Mean Absolute Error (MAE). 

 
Table 1. 
Descriptive Statistics. 

Symbol Mean Median Std Dev Kurtosis 
ADA 0.0008 -0.0006 0.0467 7.0332 

BNB 0.0032 0.0012 0.0467 33.7472 
BTC 0.002 0.0008 0.0338 12.8558 

DOGE 0.005 -0.0003 0.1002 731.0627 

ETH 0.0023 0.0009 0.043 11.1073 
SOL 0.0054 0.0002 0.0676 8.444 

TRX 0.0023 0.0023 0.0489 70.0946 
USDC -1.592E-06 9.97E-05 0.0032 51.165 

USDT -5.481E-06 -1E-04 0.003 108.1218 
XRP 0.0022 0.0002 0.0544 32.6233 
Note: This table presents summary information for cryptocurrencies with differing levels of market capitalization. 

 
Table 2. 
Price Descriptive Statistics. 

Symbol MeanP StdDevP SkewnesP KurtosisP 
ADA 0.7519 0.5824 1.5795 4.8398 
BNB 259.0137 208.5721 0.3033 1.9370 

BTC 31501.4309 22114.3 0.7671 2.9922 

DOGE 0.0909 0.10039 1.7147 6.6997 
ETH 1682.4769 1244.145 0.2865 1.9842 

SOL 68.6085 67.9654 0.8726 2.4722 
TRX 0.0689 0.04879 1.5191 7.4769 

USDC 1.0010 0.0043 3.1376 24.640 
USDT 1.0008 0.0036 3.3654 30.1581 

XRP 0.5332 0.3488 2.6165 12.6457 
Note: This table presents summary information for cryptocurrencies with differing levels of market capitalization. P for Price. 
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Table 3. 
Return Descriptive Statistics. 

Symbol Mean R Std Dev R Skewnes R Kurtosis R 

ADA 0.0008 0.0466 0.4932 7.0539 
BNB 0.0032 0.0467 1.5818 33.8246 

BTC 0.0020 0.0338 -0.3107 12.8558 
DOGE 0.0050 0.0999 21.4868 735.0901 

ETH 0.0023 0.0429 -0.2793 11.1223 
SOL 0.0054 0.0675 0.5421 8.4644 

TRX 0.0022 0.0488 3.2195 70.5145 
USDC -1.33e-06 0.0029 1.1750 61.3864 

USDT -4.67e-06 0.0028 0.9565 127.0100 

XRP 0.0021 0.0543 2.3467 32.7287 
Note: R for Return 

 
In financial risk modeling, the accuracy of Value-at-Risk (VaR) estimates is critical for risk 

management and regulatory compliance. Two statistical tests used to evaluate the performance of VaR 
models are Conditional Coverage (CC) and Dynamic Quantile (DQ) Test. The CC Test Christoffersen 
[39] tests whether VaR exceptions (violations) occur independently over time, ensuring correct 
conditional coverage. This test combines two hypotheses: Unconditional Coverage (UC), which ensures 
that the observed violation rate corresponds to the expected rate, and independence (IND), which 
ensures that violations occur independently over time. By defining the hit function as: 

𝐼𝑡 = {1, 𝑖𝑓 𝑦𝑡 < 𝑉𝑎𝑅𝑡  (𝑉𝑎𝑅 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛) 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
The UC hypothesis states that the observed frequency of VaR violations should match the expected 

probability as p: 

          �̂� =
1

𝑇
∑     𝐼𝑡 ≈ 𝑝 𝑇

𝑡=1  (9) 

Likelihood Ratio (LR) is used to evaluate this hypothesis.  
UC Test using: 

𝐿𝑅𝑈𝐶 = −2[𝑙𝑜𝑔𝐿(�̂�) − 𝑙𝑜𝑔𝐿(𝑝)] ∼ 𝜒2     (10) 
IND Test using: 

𝐿𝑅𝐼𝑁𝐷 = −2[𝑙𝑜𝑔𝐿(𝜋0, 𝜋1) − 𝑙𝑜𝑔𝐿(�̂�)] ∼ 𝜒2    (11) 
If it is statistically significant, then the VaR model fails to provide correct conditional coverage, 

meaning the violations are not independent and indicate volatility that is not captured by the model. 
Meanwhile, the DQ Test Engle and Manganelli [40] extends the CC Test by testing whether VaR 

violations depend on historical information, ensuring the quantile model is dynamic. The hit deviation 
function is defined as: 

𝐻𝑖𝑡𝑡 = 𝐼𝑡 − 𝑝 
then regression is performed as follows: 

𝐻𝑖𝑡𝑡 = 𝛽0 + ∑ 𝛽𝑗

𝑚

𝑗=1

𝐻𝑖𝑡𝑡−𝑗 + ∑ 𝛾𝑘

𝑛

𝑘=1

𝑋𝑡−𝑘 + 𝜀𝑡   (12) 

where are additional explanatory variables such as past volatility and market conditions, measures serial 
dependence in the offense (should be zero in the correct model specification), and measures dependence 
on market conditions. The null hypothesis of the correct model is defined as: 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚 = 𝛾1 = ⋯ = 𝛾𝑛 = 0   (13) 
Testing is conducted using Likelihood Ratio: 

𝐷𝑄 = 𝑇𝑅2 ∼ 𝜒2(𝑚 + 𝑛)   (14) 
where DQ is the coefficient of determination of the regression. If the DQ test result is significant, then 
VaR violations are influenced by historical factors and market conditions, which means that the VaR 
model is not appropriate. The DQ Test is more robust in evaluating dynamic risk models because it 
considers external factors that affect VaR violations. 
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4. Result 
4.1. Top 10 Crypto Returns 
 

Figure 1. 
Return Cryptocurrency. 

 
Table 4. 
Model selection based on DIC and BPIC. 

Symbol DIC BPIC Both Agree 
ADA TGARCH-T-(3) SGARCH-T (3) - 

BNB SGARCH-T-(2) EGARCH-T-(3) - 
BTC SGARCH-G-(2) TGARCH-G-(3) - 

DOGE SGARCH-T-(3) TGARCH-T-(3) - 
ETH TGARCH-T-(3) EGARCH-T-(3) - 

SOL TGARCH-T-(2) SGARCH-T-(3) - 
TRX SGARCH-T-(3) EGARCH-T-(3) - 

USDC EGARCH-G-(2) EGARCH-G-(2) EGARCH-G (2) 

USDT EGARCH-G-(2) TGARCH-G-(3) - 
XRP TGARCH-T-(1) TGARCH-T-(3) - 
Note: Total number of cryptocurrencies is 10. Values indicate the number of time series that fit the selected model through DIC (panel A), 

BPIC (panel B) and both criteria (panel C). N, S and G are Normal, Student's-𝑡 and GED distributions, respectively. 𝐾 refers to the number of 
regimes in the model. 

 
Table 5. 
Effect of Inverse Leverage. 

Regimes Distribution EGARCH TGARCH 
K=1 N 0 5 
0 Std 0 7 

0 Ged 0 3 

K=2 N 0 6 
0 Std 0 8 

0 Ged 0 3 
K=3 N 0 6 

0 Std 0 8 
0 Ged 0 3 

Note: Total number of cryptocurrencies is 10. Values indicate the number of time series of each model. 
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4.2. B. Out of Sample Analysis 
 
Table 6. 
Model selection based on VaR forecasts. 

Symbol CC DQ 
$ADA SGARCH-G-(2) SGARCH-T-(2) 

$BNB TGARCH-T-(2) SGARCH-T-(1) 

$BTC EGARCH-T-(1) EGARCH-T-(1) 
$DOGE SGARCH-T-(1) SGARCH-T-(2) 

$ETH SGARCH-N-(2) SGARCH-T-(1) 
$SOL SGARCH-N-(2) SGARCH-N-(2) 

$TRX SGARCH-T-(1) EGARCH-T-(1) 
$USDC EGARCH-T-(1) SGARCH-T-(1) 

$USDT EGARCH-T-(3) SGARCH-T-(1) 
$XRP EGARCH-G-(3) SGARCH-N-(2) 
Note: Total number of cryptocurrencies is 10. Values indicate the number of time series corresponding to the model that minimizes CC (panel 

A), DQ (panel B) and both criteria (panel C). N, Std and GED denote the Normal, Student's-𝑡 and GED distributions, respectively. 𝐾 refers to 
the number of regimes in the model. 

 

5. Discussion 
Examining the ten leading cryptocurrencies, we find that generally both performance metrics (MSE 

and MAE) align with the most effective model. Specifically, for BTC and USDT, the two-regime 
TGARCH model with Student's t-distribution offers the best fit. In contrast, ETH is most accurately 
captured by a three-regime GARCH model with a generalized distribution. Despite detecting shifts in 
volatility regimes in some cryptocurrencies, the criteria of MSE and MAE occasionally indicated varying 
optimal models. Furthermore, DIC and BPIC sometimes presented differing opinions regarding the 
optimal number of regimes for a specific cryptocurrency. 

Table 5 indicates a reversal of the leverage effect in at least one environment. N, Std, and GED 
denote the Normal, Student's t, and Generalized Error Distribution, respectively. K denotes the quantity 
of regimes within the model. For most of these cryptocurrencies (BTC, ETH, ADA, SOL, BNB, XRP), 
our model shows a positive asymmetry in volatility. In particular, BTC and ETH show a clear pattern of 
positive asymmetry, reacting more to positive price changes. ADA and SOL also show this characteristic, 
but weaker.  

In this set of ten, only USDT shows a consistent inverse leverage effect across all model 
specifications. Implying positive past returns have a greater impact on volatility than negative past 
returns, which is an unusual finding. For DOGE and TRX, while the EGARCH model suggests that 
negative returns affect volatility more strongly than positive returns, the TGARCH model, at least in 
one of its specifications, indicates a reverse leverage effect. This suggests that the relationship between 
returns and volatility for these two cryptocurrencies may be more nuanced and dependent on the specific 
model used. USDC shows no clear evidence of positive asymmetry or inverse leverage. 

SOL showed the highest volatility among the ten coins, consistently across all models. ETH showed 
moderate volatility, while USDT and USDC showed relatively lower volatility. TRX, ADA, BNB, and 
XRP were somewhere in between, showing moderate levels of volatility but XRP at the end of the 
quarter showed its volatility. DOGE showed more fluctuating volatility, indicating greater sensitivity to 
market changes. 

Based on the behavior of the average and standard deviation across models, these cryptocurrencies 
could be split into some categories. BTC and ETH fall into a group that has relatively consistent 
averages and standard deviations across different model specifications. USDT and USDC also show 
stability. TRX, SOL, ADA, BNB, and XRP show some variation in mean and standard deviation 
depending on the model used. Generally, these ten cryptocurrencies have higher mean than the standard 
deviation, indicating positive average return. However, we observed instances where the standard 
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deviation was higher than the mean for DOGE indicating periods of significant price fluctuations and 
potentially negative average returns over the observed period. 

For Out-of-Sample we examine the one-day forward conditional volatility and (VaR) estimates. By 
using MSE and MAE for volatility forecasts, we find that single-regime models generally outperform 
two- and three-regime models. Particularly for BTC and BNB, the TGARCH model with Student's t-
distribution provides the most accurate volatility forecasts. ADA and SOL are best modeled with a two-
regime GARCH model with the Common Error Distribution. DOGE, and ETH performed better with 
the EGARCH model, while USDT best fit the one-regime SGARCH.  

For forecasting VaR, Christoffersen's CC test indicates that the two-regime TGARCH model with a 
normal distribution is the most efficient for BNB and ADA. In contrast, SOL and ETH are best 
represented by a two-regime GARCH model. TRX and DOGE fit best with a single-regime GARCH 
model, while USDT and USDC demonstrated the highest VaR forecasting accuracy using the EGARCH 
model. XRP is ideally modeled with a three-regime GARCH using a General Error distribution. The DQ 
test yielded somewhat different results, often favoring models with fewer regimes, yet it generally 
aligned with the best performing model type for each cryptocurrency. 

Overall, while MSGARCH models tend to perform better than single-regime models, no model can 
be said to be the best across all ten cryptos. Asymmetric models were often preferred, especially for more 
volatile cryptos. Optimal models for volatility and VaR forecasting varied widely, highlighting the 
importance of considering individual cryptocurrency characteristics. In our Value-at-Risk (VaR) 
forecasting, the traditional GARCH model proved to be the best fit for ETH and USDT. However, for 
most other leading cryptocurrencies, the asymmetric TGARCH model is preferred (see Table 7 for a 
summary of in- and out-of-sample findings across the ten major cryptocurrencies). 
 

6. Conclusions 
Overall, this research shows that there is no model that can universally capture the volatility patterns 

of all cryptos. Each asset has unique characteristics, affecting the selection. GARCH-based models, 
especially TGARCH and EGARCH, are often superior in capturing the complex nature of volatility, 
especially for cryptocurrencies with high price fluctuations such as BTC, ETH, and SOL. In addition, 
asymmetry effects in volatility were found for most cryptocurrencies, with some exhibiting positive 
asymmetry, where volatility is more responsive to price increases than price decreases. However, USDT 
showed an inverse leverage effect, meaning its volatility was more affected by positive than negative 
returns which is an unusual finding in financial assets. 

In the context of Value-at-Risk (VaR) forecasting, TGARCH and EGARCH models are often superior 
to the standard GARCH model, especially in capturing short-term volatility risk. However, the 
MSGARCH model with a multi regime approach shows great potential in adjusting to changes in market 
structure, although the optimal results still depend on the specifics of the cryptocurrencies analyzed. This 
study confirms that the selection of volatility models cannot be generalized for all cryptocurrencies. 
Instead, a more flexible approach tailored to the specific characteristics of each digital asset is required, 
taking into account factors such as asymmetry effects, volatility regime changes, and the corresponding 
return distribution. 
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