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Abstract: The safety and emotional well-being of companion animals, particularly pet dogs, have 
become significant concerns in recent years. Anxiety is a common issue among pet dogs, manifesting in 
behaviors such as excessive barking, pacing, trembling, and even destructive actions. These behaviors 
can profoundly affect both the dog's well-being and its owner's peace of mind. This research proposes a 
novel system that integrates deep learning (DL) algorithms with smart thin-film materials to monitor 
and regulate anxiety in dogs through a smart wearable solution. To analyze and detect anxiety 
regulation in pet dogs, a Tangent Search-driven Stacked Convolutional Neural Network (TS-
StackedCNN) model is applied. Data is sorted into three levels of anxiety severity, where Level 1 is the 
lowest anxiety, Level 2 is moderate anxiety, and Level 3 is high anxiety. In the preparation of raw 
sensor data, a Gabor filter is applied during pre-processing to filter out noise and outliers so only the 
relevant data can be analyzed. Feature extraction was performed using Linear Discriminant Analysis 
(LDA) to find important features distinguishing each anxiety level. The TS-Stacked CNN model was 
able to reach a high level of accuracy after processing these features, where Level 1 had precision equal 
to 0.950, recall equal to 0.949, and F1-score equal to 0.948; Level 2 had precision equal to 0.946, recall 
equal to 0.889, and F1-score equal to 0.919; and Level 3 had precision equal to 0.864, recall equal to 
0.868, and F1-score equal to 0.865. This interdisciplinary approach advances both animal behavioral 
science and functional smart materials, paving the way for real-world applications in pet care, veterinary 
monitoring, and stress intervention technologies. 

Keywords: Anxiety detection, Anxiety regulation, Functional smart materials, Pet dogs, Tangent search-driven stacked 
convolutional neural network (TS-StackedCNN), Thin-film material systems. 

 
1. Introduction  

Animal anxiety is a stress-related emotional state triggered by fear, new experiences, or 
environmental changes, resulting in signs like restlessness, excessive vocalization, hiding, shaking, 
destructive behavior, and changes in appetite and grooming [1]. Animal anxiety regulations are legal 
frameworks designed to ensure the psychological, mental, and emotional well-being of animals, 
preventing them from experiencing excessive stress, anxiety, or distress, similar to human anxiety [2]. 
Animal anxiety regulations exist as part of the wider span that is animal welfare legislation, but there is 
animal anxiety legislation that governs important areas such as life conditions, transport, housing, 
veterinary care, handling, etc. [3]. The regulations address animal anxiety as a condition, addressing 
excessive vocalization, destructive behavior, and restlessness. Psychologists view it as a responsibility to 
encourage anxiety reduction through behavioral modification techniques, similar to teaching people 
methods to reduce their anxiety [4].  In businesses, like an animal zoo, research laboratory, animal farm 
or human domestic, regulatory bodies see acceptable policies, plans and practices utilizing various 
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enrichment strategies, adequate space and positive reinforcement to achieve reductions in the 
psychological suffering of animals [5].  

Veterinarians and pet owners are becoming increasingly concerned about companion animals' 
emotional health and overall well-being, particularly pet dogs. Anxiety is one of the wide variety of 
animal behavioral health concerns that are frequent in dogs and it can be caused by separation, loud 
noises, unusual environments, and changes in habit [6]. One popular category of complementary and 
alternative therapies that make use of interactions with a trained dog is called canine-assisted 
interactions (CAIs). CAIs, like all other animal-assisted interactions (AAIs), aim to enhance the quality 
of life of human participants as measured by certain clinical endpoints (e.g., blood pressure, cortisol, etc.) 
[7]. Smart wearable devices, such as collars, harnesses, or vests, are advanced sensors that monitor and 
enhance the health, behavior, and well-being of pets and livestock by continuously detecting 
physiological and behavioral data [8]. Smart wearables utilize Global Positioning System (GPS) and 
Artificial Intelligence (AI) to monitor animal health, providing real-time feedback and remote 
monitoring, enabling early diagnosis, individualized care, and effective communication between 
veterinarians, pet owners, and animals [9]. Animal anxiety management poses challenges such as not 
being able to correctly identify indicators of anxiety in animals, no standardized practice guidelines, 
limited access to technology, high implementation costs, and weak regulation enforcement, which can 
prevent consistency in delivery care and also affect the success of putting a smart solution in place to 
regulate anxiety [10]. 

The intent of the investigation is to evaluate a smart wearable that can monitor and manage anxiety 
in pet dogs using deep learning (DL) algorithms and piezoelectric thin-film materials. The research 
utilizes the Tangent Search-driven Stacked Convolutional Neural Network (TS-StackedCNN) model to 
analyze and detect anxiety regulation in pet dogs.  

The following sections comprise the research: Section 2 outlines relevant literature, Section 3 
explains methodology, Section 4 gives findings and discussion, and Section 5 concludes the research. 
 

2. Related Work  
Research compared two patient groups: one walking with a dog and a handler, and another taking a 

walk without a dog [11]. Results showed that the dog group reported significantly less anxiety, fear, 
and heart rate levels compared to the other group. Limitation factors included a small sample and a need 
for expanded research to establish the generalization of findings. The role of pet attachment and, more 
specifically, attachment to a dog in decreasing anxiety and depression, in particular with women who 
have a history of childhood abuse, was examined [12]. Limitations of the research include cross-
sectional designs and self-report measures of previous history, highlighting the need for longitudinal 
studies to make firmer conclusions. The importance of gut microbiota for canine anxiety disorders, 
noting the effect of dysbiosis on mental health through multiple biological pathways, was described 
[13].  

However, the research was plagued by limitations, with a notable lack of research specifically aimed 
at dogs. To examine the efficacy of DìRelaxTM, a nutraceutical designed for reducing dog anxiety, Root 
Canal Therapy (RCT)-type research was examined [14]. Results indicated improved cognitive 
performance on solvable tasks and some behavior improvements, and no adverse effects were 
documented. Limitations included the need for more research on the optimal way to administer the 
intervention and improvement during the unsolvable phases was not observed. The impact of 
companion dogs and cats on young adults' mental health was discussed, along with topics on the effects 
of stress, anxiety, and depression [15]. The findings illustrate that pets were a positive factor in 
controlling the symptoms of mental illness and overall wellbeing. The limitations of the research 
included a small sample and possible biases from self-reporting. The research proposed using trauma-
informed care (TIC) in canine behavioral evaluations, especially in fearful-aggressive dogs that could 
have had previous trauma [16]. The research found that a deeper understanding of a dog's negative 
associations through the lens of empathy could enhance treatment. Limitations were the difficulties with 
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obtaining the specific trauma histories, and the limited evidence-based research on TIC with dogs. A 
research model to better understand pet food anxiety, specifically during the COVID period, while 
examining factors like pet owner perceptions, interactions, and prior food insecurity, was examined by 
[17]. TIC found that an emotional bond with their pet and past experiences with food scarcity 
contributed to inflated anxiety, which subsequently affected their behaviors towards feeding and 
shopping.  
 

3. Materials and Methods  
The procedure for gathering data is described in the section. Following compilation, the data is 

subjected to preprocessing using the Gabor filter. The LDA is exercised to extract features from 
detecting anxiety regulation. A TS-StackedCNN model is applied to analyze and detect anxiety 
regulation in pet dogs. Figure 1 provides a visual presentation of the proposed workflow. 
 

 
Figure 1. 
Overall proposed flow. 
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3.1. Data Collection  
In this research, data utilized in the Kaggle dataset [18] depicts the potential behavior of a dog over 

a 60-second duration at a 50 Hz sample rate (50 samples per second) with a simulated sensor reading, as 
well as inferred behaviors based on head and body position. This dataset does include several behaviors 
that can be studied or analyzed for attributes of dog behavior, which can help in several things, such as 
animal behavior analysis, training systems or health monitoring. 
 
3.2. Pre-Processing Using Gabor Filter (GF) 

The purpose of the GF in the research is to preprocess the raw sensor data taken from the dog 
behavior monitoring dataset before use in the DL model. The GF enhances sensor data clarity, reduces 
background noise, and identifies anxiety-related behavior by capturing specific spatial frequencies and 

orientations, enhancing micro-vibrational movements during stress. 𝑤 𝑎𝑛𝑑 𝑍 are the original 

coordinates, while 𝑤′ 𝑎𝑛𝑑 𝑧′ are the transformed coordinate after rotation by angle 𝜃. 𝛾 𝑎𝑛𝑑 𝜎 control 

the shape and width of the gaussian envelope. 𝑒 𝑎𝑛𝑑 𝜔 define the frequency and angular frequency of 

the sinusoidal oscillation. 𝜂 normalizes the function, and 𝑗 is the dogs behavior unit for the oscillatory 
component, as described in equations (1-2). 

𝐺𝑎𝑏𝑜𝑟(𝑤, 𝑧) =
𝑒2

𝜋𝛾𝜂
𝑒𝑥𝑝 (−

𝑤′2+𝛾2𝑧′2

2𝜎2 ) × exp (𝑗. (2𝜋𝑒𝑤′ +  𝜔))     (1) 

𝑤′ = 𝑤 cos 𝜃 + 𝑧 sin 𝜃          (2) 
 
3.3. Linear Discriminant Analysis (LDA) for Feature Extraction 

Through feature extraction, new dimensions are created by mixing with previous dimensions. The 
efficacy is assessed using the outcomes of randomized testing. One method of discriminating based on 
class is LDA. State-of-the-art feature extraction approaches, such as LDA, were combined to improve 
the accuracy of anxiety detection in pet dogs with stackedCNN algorithms to provide an intelligent, 
non-invasive method to measure and control anxiety levels in real-time. This technique aids in the 
discovery of a set of basis vectors using supervised learning. These basic vectors are represented by the 

letter 𝑤𝑘. The 𝑤𝑘vectors are the maximum percentage of the original instance sets inside and between-

class dispersals. The generalized eigenvalue problem for finding 𝑤𝑘 basis vectors is solved. 

𝑋𝑜𝑝𝑡 =  
𝑎𝑟𝑔𝑚𝑎𝑥

𝜔
|𝑋𝑆𝑇𝐷 𝑋|

|𝑋𝑆𝑇𝜐 𝑋|
= [𝜔1, 𝜔2, . . , 𝜔𝐾]       (3)  

Where, 𝐾 = 𝑑𝑢𝑏𝑠𝑝𝑎𝑐𝑒′𝑠𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑇𝐷 = 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑛𝑑 𝑇𝜐 = 𝑤𝑖𝑡ℎ𝑖𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 

𝑇𝐷 =  ∑ 𝑁𝑙
𝑏
𝑙=1 (𝜇𝑙 − 𝜇)(𝜇𝑙 −  𝜇)𝑆        (4) 

𝑇𝑈 =  ∑ ∑ (𝑤𝑣𝑤𝑣∈𝑊𝑙

𝑏
𝑙=1 − 𝜇𝑙)(𝑤𝑣 − 𝜇𝑙)𝑆       (5) 

Where,𝑏 = 𝑛𝑜. 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠, 𝑊 ∈ 𝑄𝑀 = 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑊𝑙 = 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑁𝑙 = 𝑛𝑜. 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑛𝑘, and𝜇 = 𝑚𝑒𝑎𝑛. 

The base vectors 𝑤𝑘 that are needed in Equations (2), (3), and (4) are the first 𝐿 largest 

eigenvalues{Ψ𝑙  | 1 ≤ 𝑙 ≤ 𝐾}, provided that 𝑆𝑉 is not singular. Since the initial vectors of LDA were 
perpendicular to their neighbors, it is estimated into the LDA subspace to obtain its representations by 

applying a simple linear technique𝑊𝑇𝑥. The anxiety detection system with feature extraction and LDA 
was improved to obtain better-performing models in the setting of wearable sensors. 
 
3.4. Detection Using Tangent Search-driven Stacked Convolutional Neural Network (TS-StackedCNN) 

A TS-StackedCNN is designed to carry out deep feature learning while benefiting from 
metaheuristic optimization. Through the use of the TSA to fine tune hyperparameters and stackedCNN 
to layer features hierarchically, the hybrid method is capable of detecting canine anxiety accurately and 
reliably based on physiological signal patterns identified from wearable sensors. 
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3.4.1. Stacked Convolutional Neural Network (StackedCNN) 
The suggested StackedCNN model's structure, which is displayed in Figure 2, has been constructed 

to accommodate real-time dog behavior-conducive processing of physiological signals for identifying the 
minutiae of anxiety. The model was trained with a focus on progressive feature extraction, which was 
integral to the interpretation of sensor-derived dog behavior with real-time changes detailed in muscle 
tension or posture. The CNN is well suited to handle the type of dog behavior since filters can detect 
local and abstracted forms of stress detections and behaviors that are atypical. 
 

 
Figure 2. 
Architecture of StackedCNN. 

 
The model consisted of four Conv2D layers with 32, 64, 128, and 256 corresponding filters, 

respectively, and each layer was followed by Max Pooling to purposefully reduce dimensions while 
minimizing overfitting, yet allowing the retention of spatial hierarchies for representing sensor signals. 
The final feature maps were then flattened into a single row and passed to a dense layer containing 100 
neurons using a sigmoid activation function to develop complex non-linearities for either binary or 
multi-class pet dog anxiety classifications. All training used a 90:10 data split, implementing TS 
optimization to provide a heightened convolutional weight and parameter adjustment strategy, which 
avoided local minima, shifting system outputs towards increased predictive reliability. In StackedCNN, 
Parametric ReLU (PReLU) was used instead of ReLU. PReLU when deciding the activation function 
for the hidden layers, consider the PReLU as the activation function rather than the standard ReLU. 
PReLU takes care of dead neurons (neurons that never activate during training) and can improve 
training dynamics to obtain better model performance. 
 
3.4.2. Tangent Search (TS) Algorithm  

The TS is an optimization algorithm that balances increase and exploration to avoid convergent and 
divergent solutions. The TS is used to refine the parameters of the underlying StackedCNN model to 
improve the accuracy of anxiety detection in dogs, as shown in Figure 3. To increase the pace of 
convergence and the quality of the solutions, TS provides a hybrid technique by combining three 
essential elements: local minima escape, intensification, and exploration. The combination optimizes the 
search process and improves the ability to find high-quality solutions, making it a powerful tool for 
complex optimization problems. 
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Figure 3. 
Flow diagram of TS. 

 
Initial Population Development: The TS process generates an initial population within the search 

space and rand, a function that produces random integers between 0 and 1 that are evenly distributed, 
with the problem dimension. Initial solution is uniformly distributed over the entire search space and 
serves as the starting point for the algorithm. TS first initializes a diverse population of possible 
network parameter configurations, as described in Equation (6). 

𝑊 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑(0,1) × (𝑢𝑏 − 𝑙𝑏)                                                                                             (6) 

𝑊 is the solution vector, 𝑙𝑏 𝑎𝑛𝑑 𝑢𝑏 are lower and upper bounds, 𝑟𝑎𝑛𝑑 (0,1) produces uniformly 
distributed random values.  

Search intensification: In the intensification search, TS first makes a random local walk, which is 
directed by Equation (7). Then, TS replaces some of the variables in the solution obtained in the random 
local walk with the corresponding variable values from the current optimal solution. For problems with 
a higher dimension, the proportion is set at 20%, and 50% is used when problems have less than or equal 
to 4 variables. TS also has been a localized search method as a way to speed up the convergence of the 
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DL model to good-performing parameter sets. The localized search is a way to get the candidate 
solutions closer to the best-observed configuration, which is critical to the ability to accurately detect 
patterns of anxiety from continuously observed real-time physiological signals. 

𝑊𝑗
𝑠+1 = 𝑊𝑗

𝑠 + 𝑠𝑡𝑒𝑝 × tan (𝜃) × (𝑊𝑗
𝑠 − 𝑊𝑗

𝑜𝑝𝑡
)       (7) 

Selected variables can be replaced directly with values from the current optimal solution.𝑊𝑗
𝑠+1 =

𝑊𝑗
𝑜𝑝𝑡

  if variable 𝑗 is selected. To ensure boundary compliance, any out-of-range value is repaired as 

𝑊 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 (0,1) × (𝑢𝑏 − 𝑙𝑏)     𝑖𝑓 𝑤 < 𝑙𝑏 𝑜𝑟 𝑊 > 𝑢𝑏. The phase improves model performance 
locally by utilizing known good solutions. 

Exploration search: TS uses a new global random walk based on the tangent flight principles. The 

tangent function allows the random walk to better search the space. The angle 𝜃 being near 𝑝𝑖/2 will 
allow the tangent to be a larger value and the solution will be far from the current solution, as on the 

contrary, the angle 𝜃 being near 0 will provide smaller values to the tangent and the new solution 
should be very close to the current solution. Thus, the exploration search in Equation (8) includes the 
global and local random walk for exploration.  

𝑊𝑗
𝑠+1 = 𝑊𝑗

𝑠 + 𝑠𝑡𝑒𝑝 × tan (𝜃)                                                                                             (8) 

The angle 𝜃 determined the step size small near (0) and large near 
𝜋

2
, thus providing a flexible 

mechanism to explore the solution space efficiently. 
Escape local minimum procedure: To address the problem of becoming stagnant in local minima 

during the optimization process. TS has a means of dealing with the problem as it uses some specific 
process as shown in equations (9) and (10). The process can be broken down into two components, 

which are carried out with some probability 𝑂𝑠𝑒𝑐 . In addition, sometimes with a 0.01 probability, a 
random solution takes the place of the worst solution. TS employs a stochastic local escape strategy as 
part of the wearable system's deep model training.  

𝑊 = 𝑊 + 𝑟𝑎𝑛𝑑(0,1) × (𝑊𝑜𝑝𝑡 − 𝑊)                                                                            (9) 

𝑊 = 𝑊 + 𝑟𝑎𝑛𝑑(𝜃) × (𝑢𝑏 − 𝑙𝑏)                                                                                    (10) 
An enhanced TS variant in which the algorithm consists of just two parts: intensification and 

exploration components without an escape local method. The TS-StackedCNN will enhance its 
predictive accuracy through TS optimization of the final layer's weights. The post-classification hybrid 
contribution will improve generalization, misclassification, and the eventual robustness in recognizing 
minor physiological variations, and will provide greater accuracy and reliability in detecting anxiety in 
dogs. TS-StackedCNN is described in Algorithm 1. 
Algorithm 1: TS-StackedCNN  
Step 1: Dog behaviour Preprocessing 
For each raw sensor signal: 
        Normalize the sensor data  
Step 2: Define CNN Architecture 

Conv2D Layer 1 (filters=32) → MaxPooling 

Conv2D Layer 2 (filters=64) → MaxPooling 

Conv2D Layer 3 (filters=128) → MaxPooling 

Conv2D Layer 4 (filters=256) → MaxPooling 

Flatten → Dense(100) → Sigmoid Activation 
Step 3: Tangent Search Algorithm Initialization 
Define population size N and dimensions D 

For each individual 𝑖n the population: 

𝑊_𝑖 =  𝑙𝑏 +  𝑟𝑎𝑛𝑑(0,1) ∗  (𝑢𝑏 −  𝑙𝑏) 
Step 4: Model Training with TS  
Repeat for S iterations: 
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    For each solution 𝑊_𝑖: 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑖 =  𝑇𝑟𝑎𝑖𝑛𝐴𝑛𝑑𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐶𝑁𝑁(𝑊_𝑖) 

𝑊_𝑏𝑒𝑠𝑡 =  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
   Intensification (local search) 

    For each 𝑊_𝑖: 
        If rand < intensify_prob: 

            θ = random_angle() 

𝑊_𝑖 =  𝑊_𝑖 +  𝑠𝑡𝑒𝑝 ∗  𝑡𝑎𝑛(𝜃)  ∗  (𝑊_𝑖 −  𝑊_𝑏𝑒𝑠𝑡) 
            Replace out-of-bound values 
   Exploration (global search) 

    For each 𝑊_𝑖: 
        If rand < explore_prob: 

𝜃 =  𝑟𝑎𝑛𝑑𝑜𝑚_𝑎𝑛𝑔𝑙𝑒() 

𝑊_𝑖 =  𝑊_𝑖 +  𝑠𝑡𝑒𝑝 ∗  𝑡𝑎𝑛(𝜃) 
            Replace out-of-bound values 
    Escape from local minima (occasional random jump) 
    If rand < 0.01: 

        Replace worst 𝑊_𝑖 with a random solution 
Step 5: Final Training with Optimized Parameters 

Train final CNN using 𝑊_𝑏𝑒𝑠𝑡 
Evaluate on test set 
Return  
 

4. Results and Discussion  
This section deliberates on the results produced by the implementation of the model, including 

parameter setup, evaluation criteria, and comparative phase. Every experiment was carried out in a 
Windows 10 environment with 16 GB of RAM and a 64-bit Intel(R) Core (TM) i7-7500U CPU. The 
models were implemented using Python v3.8.2 and the PyTorch v1.9.0 package. 
 
4.1. Performance Evaluation  

Figure 4 (a) is a bar plot that displays the frequency distribution of atomic behaviors (Standing, 
Lying, Digging, etc.), with frequencies on the y-axis. Standing is the most frequent behavior, while 
Sniffing and Barking occurred less often. Figure 4 (b) is a heatmap showing the correlation between 
different body parts (the neck and back) along the x, y, and z axes. The correlation values are generally 
low, indicating there are little to no relationships between the movement of the neck segment and the 
movement of the back segment across different axes. 
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Figure 4. 
(a): Atomic behavior frequencies sensor data. 

 

 
Figure 4. 
(b): Correlation of heatmap of neck and back sensor data. 

 
4.2. Comparison Evaluation 

The proposed method, TS-StackedCNN, compared to Two-Layer Stacked LSTM, Stacked Long 
Short-Term Memory (LSTM) with Complex Event Processing (CEP) and fuzzy logic (Fuzzy-CEP) 
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[19] methods for monitoring pet dogs psychological Separation Anxiety (SA) symptoms; the 
comparison was evaluated in terms of precision, recall, and F1-score to measure each activity based on 
levels (Level 1, 2, and 3) recognition performance. 

Precision: Precision demonstrates the number of true anxiety detections compared to all predicted 
anxiety detections. Meaning it displays how well the model works to limit false positives, and thus 
flagged only anxious dogs. The system was good at the task because of the learning and classification of 
features. 

Recall: Recall evaluates the capability of identifying every actual anxiety occurrence. It is primarily 
concerned with how accurately the system can identify true anxiety from the sensor data and, by 
capturing more true cases, reduce the chances of missing a real case. A high rate of recall means the 
model is trustworthy enough to inform a behavioral intervention through physiological monitoring. 

F1-score: The F1-score balances false positives and false negatives by taking the harmonic mean of 
accuracy and recall. It represents the model performance in discerning canine anxiety with accuracy and 
consistency. It is crucial for the hybrid system to have dependable stability in real-time emotional state 
recognition. 

According to Table 1 and Figure 5, the Two Layer Stacked LSTM performed well, achieving an F1-
score of 0.947, an precision of 0.948, and a recall of 0.946. With an precision of 0.950, recall of 0.949, and 
an F1-score of 0.948, the suggested TS-StackedCNN performs marginally better, indicating that it is 
marginally more effective in identifying anxiety in dogs. 
 
Table 1. 
Performance of Level-1 postures. 

Methods Metrics 

Precision Recall F1-score 
Two-Layer Stacked LSTM [19] 0.948 0.946 0.947 

TS-StackedCNN [Proposed] 0.950 0.949 0.948 

 

 
Figure 5. 
Comparison of Level-1 postures. 



2986 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 4: 2976-2989, 2025 
DOI: 10.55214/25768484.v9i4.6703 
© 2025 by the authors; licensee Learning Gate 

 

Table 2 and Figure 6 demonstrate that the Stacked LSTM + CEP method achieves a precision of 
0.945, a recall of 0.886, and an F1 score of 0.915, while the TS-StackedCNN model achieves a slightly 
better precision of 0.946, a recall of 0.889, and an F1 score of 0.919. This indicated that the TS-
StackedCNN model presented a more balanced and somewhat more successful strategy for identifying 
anxiety in companion dogs, given the minor gains in overall precision, recall, and F1 score. 
 
Table 2. 
Precision, recall and f1-score Performance of Level-2 postures. 

Methods Metrics 

Precision Recall F1-score 
Stacked LSTM + CEP [19] 0.945 0.886 0.915 

TS-StackedCNN [Proposed] 0.946 0.889 0.919 

 

 
Figure 6. 
Precision, recall and f1-score comparison of Level-2 postures. 

 
Table 3 and Figure 7 display the performance of the Stacked LSTM + Fuzzy-CEP model, which 

achieves a precision of 0.862, recall of 0.864, and F1-score of 0.863. The proposed TS-StackedCNN 
model has a very slight improvement, with a precision of 0.864, recall of 0.868, and F1-score of 0.865. 
Therefore, it is suggested that the proposed TS-StackedCNN model performed a little bit better in 
terms of precision and recall, validating its performance in detecting anxiety in pet dogs. 
 
Table 3. 
Outcomes of Level-3 postures. 

Methods  Metrics 

Precision Recall F1-score 
Stacked LSTM + Fuzzy-CEP [19] 0.862 0.864 0.863 

TS-StackedCNN [Proposed] 0.864 0.868 0.865 
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Figure 7. 
Representation of Level-3 postures. 

 
DL algorithms are used in smart wearable pet solutions to control and manage anxiety in dogs. The 

Two-Layer Stacked LSTM is proficient in capturing temporal dependencies but limited in its ability to 
extract spatial features, which negatively impacts the overall precision and adaptability to variations in 
input complexity. Stacked LSTM + CEP do improve the context in the data set, but it has been noted 
that the lower recall can arise due to a lack of likelihood of spatial representation. Similarly, Stacked 
LSTM + Fuzzy-CEP incorporated fuzzy logic to help acknowledge uncertainty, while this led to the 
previous method lacking in depth of feature learning and consequently performing moderately. Thus, 
the introduced method, TS-StackedCNN, provides and demonstrates how temporal and spatial learning 
can be integrated, using hybrid architecture to enable continuity in sequential dependence while 
providing localized features. Furthermore, the ability to generalize and learn from both the temporal 
and spatial domains likely contributes to the overall improvement in all key metrics, as well as 
providing more accurate and robust prediction on dynamic strength, developed via additive 
manufactured composite materials. 
 

5. Conclusion 
A novel method utilizing a TS-StackedCNN model integrated with smart thin film sensors to 

detect, and mediate canine anxiety. The data confirms that anxiety was categorized into three levels of 
severity - Level 1 indicates no anxiety, Level 2 indicates moderate anxiety, and Level 3 indicates high 
anxiety. The first step in preparing the raw sensor data for analysis was applying a Gabor filter during 
preprocessing to remove noise and outliers so that features that would be related to the data could be 
further analyzed. Features are then extracted by Linear Discriminant Analysis (LDA), that is, 
identifying the features that separate the different levels of anxiety. With level 1 (accuracy of 0.950, 
recall of 0.949, and F1-score of 0.948), level 2 (precision of 0.946, recall of 0.889, and F1-score of 0.919), 
and level 3 (precision of 0.864, recall of 0.868, and F1-score of 0.865), the TS-StackedCNN model 
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showed high performance following feature extraction. One limitation within this research is the use of 
only a single dataset, which does not represent the full range of dog behaviors in multiple settings. 
Future research should investigate expanding the dataset across various breeds and settings, which 
would allow for improved generalization of the model, as well as adding additional sensors to detect and 
regulate anxiety more fully. 
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