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Abstract: The maritime industry faces increasing pressure to enhance fuel efficiency and reduce 
greenhouse gas emissions. Traditional control methods often fail to adapt dynamically to varying sea 
conditions, leading to suboptimal fuel consumption. This study proposes a fuzzy logic control (FLC) 
system to optimize fuel consumption in ship main propulsion engines by dynamically adjusting engine 
parameters based on real-time operational data. The developed FLC model considers key input variables 
such as engine load, ship speed, and fuel injection timing. The fuzzy inference system comprises 
fuzzification, rule base, and defuzzification stages. A simulation was conducted in MATLAB/Simulink 
to evaluate the effectiveness of the FLC compared to conventional control strategies. Simulation results 
demonstrate that the proposed system significantly improves fuel efficiency. Compared to traditional 
PID controllers, the FLC system achieves a 5-10% improvement in fuel consumption under various 
operating conditions. The adaptability of the FLC allows for better fuel optimization and reduction in 
CO2 emissions. The proposed FLC system effectively enhances fuel efficiency and can be implemented 
in marine propulsion systems to support sustainable shipping operations. Future research will focus on 
integrating machine learning techniques to further refine control precision. 

Keywords: Energy efficiency, Fuel consumption optimization, Fuzzy logic control, Marine engineering, Ship propulsion. 

 
1. Introduction  

The global maritime industry is currently facing significant challenges in terms of energy efficiency 
and greenhouse gas emission reductions. The International Maritime Organization (IMO) has issued 
strict policies such as the Energy Efficiency Existing Ship Index (EEXI) and the Carbon Intensity 
Indicator (CII) as part of its decarbonization strategy for the international shipping sector (IMO, 2021). 
In this context, fuel saving has become a top priority in ship operations. 

The main propulsion engine is the most critical component contributing to a vessel's fuel 
consumption. Most of the traditional control systems currently in use, such as Proportional-Integral-
Derivative (PID) controllers, have limitations in responding to dynamically changing operational 
conditions such as engine load variations, ship speed, and fluctuating sea states. The inability of 
conventional systems to handle uncertainties and nonlinearities in the maritime environment leads to 
suboptimal fuel consumption [1]. 

With the advancement of intelligent control technologies, fuzzy logic control (FLC) systems have 
increasingly been explored and implemented in various industrial applications, including marine 
propulsion systems. FLC is capable of handling uncertainty and system complexity without requiring 
complex mathematical models. The main advantage of FLC lies in its flexibility to respond adaptively to 
input variations and its ability to formulate rules based on expert knowledge or system observations [2, 
3]. 
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However, the implementation of FLC in marine fuel-saving contexts is still limited, especially those 
using real-world operational data from various types of vessels and combining MATLAB/Simulink 
simulations for performance validation. This research gap forms the foundation of the present study. 

This research aims to develop and evaluate a fuzzy logic control system to optimize fuel 
consumption in ship main propulsion engines based on real operational data. The study also compares 
the performance of the fuzzy system with conventional PID control under various operating conditions. 
Hence, this study is expected to contribute to the development of AI-based fuel-saving strategies in the 
maritime sector. 

Several previous studies have explored the application of fuzzy logic in ship propulsion systems. For 
instance, Wang and Chen [1] developed an FLC system for fuel injection control in marine diesel 
engines, achieving an efficiency improvement of up to 8% compared to PID control. Kumar, et al. [4] 
also demonstrated that FLC could reduce fuel consumption in hybrid ship electrical systems by 
adaptively regulating power distribution. 

Zhang, et al. [5] applied a hybrid fuzzy-PID controller to regulate turbocharger pressure in large 
marine engines, resulting in approximately 7.5% fuel savings. Barros, et al. [6] combined FLC with a 
genetic algorithm-based optimization system to enhance propulsion efficiency in variable sea conditions. 

Other approaches have integrated machine learning with FLC to improve control performance, such 
as the study by Lee, et al. [7] which applied an adaptive neuro-fuzzy inference system (ANFIS) for 
energy optimization in marine tankers. However, most of these studies remain theoretical or are limited 
to a single vessel type. 
From these studies, it is evident that: 

• FLC has significant potential for improving ship energy efficiency; 

• The use of real-world data from multiple vessel types in simulations is rare; 

• Comprehensive performance validation of FLC versus PID using MATLAB/Simulink is still 
limited. 

Thus, this study aims to address these gaps by developing an FLC system based on operational data 
from various ship types and evaluating its performance quantitatively through MATLAB simulation, 
comparing the fuzzy system against conventional PID control. 

With the increasing global focus on reducing fuel consumption and emissions in the shipping 
industry, optimizing the operational efficiency of main propulsion engines has become a crucial area of 
research. The International Maritime Organization (IMO) has introduced various regulations, such as 
the Energy Efficiency Existing Ship Index (EEXI) and the Carbon Intensity Indicator (CII), to enforce 
stricter fuel consumption controls and emission reductions. These measures push ship operators and 
engineers to seek more advanced control strategies that enhance energy efficiency while maintaining 
operational reliability [8]. 

Traditional ship propulsion control systems often operate based on static settings, leading to 
inefficiencies when sea conditions, engine loads, and operational parameters fluctuate. These 
inefficiencies contribute to excessive fuel consumption and increased emissions. Various approaches, 
including optimal engine load management, hybrid propulsion systems, and real-time monitoring, have 
been explored to address these challenges. However, conventional control systems, such as PID 
controllers, struggle with nonlinearities and uncertainties inherent in maritime environments [1, 9]. 

Fuzzy logic control (FLC) has gained attention due to its ability to handle uncertainty and provide 
adaptive control solutions. Studies have demonstrated that FLC-based systems outperform traditional 
control methods in optimizing fuel consumption and reducing operational costs [10, 11].  

Several researchers have implemented FLC in energy management and propulsion efficiency 
optimization in marine systems, showing a fuel savings improvement of up to 10% compared to 
conventional methods [12-14]. Furthermore, adaptive control strategies such as machine learning and 
heuristic approaches have been integrated with FLC to enhance real-time decision-making capabilities, 
making them more robust for practical marine applications [15, 16]. 
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This paper presents the development of an FLC system tailored to optimize fuel efficiency in ship 
main propulsion engines. The effectiveness of the proposed approach is validated through simulation 
studies, demonstrating its potential for real-world implementation in the maritime industry. 
 

2. Methodology 
2.1. Fuzzy Logic Control System Design 

The proposed fuzzy logic control (FLC) system is designed to optimize fuel consumption by 
dynamically adjusting critical engine parameters based on real-time data. The fuzzy inference system 
consists of three main components: 
1. Fuzzification: Inputs such as engine load, ship speed, and fuel injection timing are converted into 

fuzzy variables to accommodate uncertainties in operating conditions [17]. 
2. Rule Base: A set of expert-defined rules governs the relationship between input and output 

parameters, ensuring that optimal engine settings are maintained under varying loads and 
operational scenarios [18]. 

3. Defuzzification: The output is converted back into crisp values to adjust engine operations, 
optimizing fuel efficiency while maintaining engine stability [19]. 
 

2.2. Data Collection and Simulation 
Real-time operational data from various ship types were collected, including cargo vessels, 

passenger ships, and fishing boats. The dataset includes engine power, displacement, fuel flow rate, fuel 
injection timing, and air-fuel ratio. Table 1 summarizes the key parameters used in this study. 

 
Table 1.  
Summary of Ship Operational Data. 

Ship Name Ship Type Engine Power 
(kW) 

Fuel Flow 
Rate (L/h) 

Fuel Injection Timing 
(ms) - PID 

Fuel Injection Timing 
(ms) - Fuzzy 

KM Nusantara Cargo 2000 220 22 20 
MV Batavia Passenger 1500 180 18 16 

KM 
Cendrawasih 

Fishing 1000 140 14 12 

KM Garuda Tanker 2500 280 28 25 
MV Rajawali Offshore 

Supply 
3000 320 30 27 

 
The simulation was conducted in MATLAB/Simulink to evaluate the effectiveness of the FLC 

system. The simulation compared the fuel consumption between the conventional PID controller and 
the fuzzy logic control system under varying operational conditions. 

This section outlines the methodology adopted for the development, simulation, and validation of 
the fuzzy logic control (FLC) system used to optimize fuel consumption in ship main propulsion 
engines. 

 
2.3. System Architecture 

The FLC system is designed with three main components: fuzzification, rule base, and 
defuzzification. It processes real-time input parameters and outputs control signals that dynamically 
adjust the fuel injection settings. 
1. Inputs: Engine load (%), ship speed (knots), fuel injection timing (ms). 
2. Outputs: Adjusted fuel injection timing (ms) optimized for fuel efficiency. 
2.4. Data Collection 

Operational data were collected from five ship types: cargo, passenger, fishing, tanker, and offshore 
supply vessels. The dataset includes: 
1. Engine power (kW) 
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2. Fuel flow rate (L/h) 
3. Fuel injection timing (ms) 
4. Air-fuel ratio 
5. Ship speed (knots) 

The data were obtained from onboard monitoring systems and logbooks, verified through engine 
control unit (ECU) records. A total of 300 data entries were gathered per ship type, covering varied sea 
and load conditions. 

 
2.5. Fuzzy Logic Controller Design 

The FLC was implemented in MATLAB/Simulink. The membership functions for each input and 
output were triangular and trapezoidal in shape. The rule base consisted of 27 expert-defined rules 
covering various engine load-speed combinations. 
1. Fuzzification: Converts numerical input values into fuzzy linguistic variables (e.g., Low, Medium, 

High). 
2. Rule Base: Applies conditional IF-THEN logic. Example: 

IF engine load is High AND ship speed is Low THEN reduce fuel injection timing moderately. 
3. Defuzzification: Uses the centroid method to convert fuzzy output back into a crisp control value. 

 
2.6. Simulation Setup 

A Simulink model of the engine fuel control loop was developed. Two controller models were 
simulated: 
1. Baseline: Traditional PID controller. 
2. Proposed: Fuzzy Logic Controller. 

Each controller was tested across a set of 25 different scenarios derived from the operational 
dataset. Output metrics include: 
1. Total fuel consumption (L/h) 
2. System response time 

3. CO₂ emissions (kg/h) estimated from fuel usage 
 

2.7. Validation 
Model accuracy and reliability were validated by: 

1. Comparing FLC output to actual data trends 
2. Statistical analysis (RMSE, MAE) between FLC and PID results 
3. Cross-validation using a 70-30 train-test data split 

The goal of the validation is to ensure that the FLC model is not only theoretically effective but also 
robust across unseen data patterns. 
 
2.8. Fundamentals of Fuzzy Logic Control 

Fuzzy Logic Control (FLC) is a form of intelligent control system rooted in fuzzy set theory 
introduced by Zadeh [2]. Unlike classical binary logic that operates on precise true/false values, fuzzy 
logic enables reasoning with degrees of truth, allowing systems to handle uncertainties and imprecise 
data. This characteristic makes FLC ideal for complex, nonlinear systems like marine propulsion 
engines. A typical FLC system comprises three core stages: 
1. Fuzzification: This process converts crisp input values into fuzzy sets using membership functions 

(MFs). These functions define the degree to which an input belongs to linguistic categories such as 
“Low,” “Medium,” or “High.” 

2. Inference Engine and Rule Base: The fuzzy inference engine applies a set of expert-defined IF-
THEN rules to generate fuzzy outputs based on combinations of input conditions. 

3. Defuzzification: The fuzzy output is converted back into a crisp value using techniques such as the 
centroid or weighted average method. 
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FLC systems are especially effective for control tasks in which the exact mathematical model of the 
process is unknown or highly complex, as is often the case in marine systems where varying sea states 
and engine loads affect performance. 
 
2.9. Comparison: PID vs Fuzzy Logic Control 

PID controllers are widely used in industrial systems due to their simplicity and proven 
performance. However, they rely heavily on fixed gain parameters and assume linearity in system 
dynamics. This makes them suboptimal for systems with time-variant behavior or strong nonlinearities, 
such as marine propulsion systems operating under changing environmental conditions. 
By contrast, FLC offers several advantages: 
1. Adaptability: FLC can dynamically adjust to varying input conditions using rule-based decisions. 
2. Robustness: FLC systems are less sensitive to noise and parameter variations. 
3. No Need for Exact Modeling: FLC does not require precise mathematical models, making it highly 

suitable for complex systems. 
 

2.10. Energy Optimization in Marine Propulsion 
Fuel consumption in ship propulsion is influenced by numerous interdependent variables: engine 

load, ship speed, fuel injection timing, hull resistance, and sea state. Optimizing energy use requires a 
control system capable of integrating these variables in real time. Previous studies [6, 7] have shown 
that AI-based control strategies such as FLC and ANFIS outperform traditional PID in marine energy 
management. These systems allow for: 

1. Real-time adjustments to fuel injection for different sea conditions 
2. Energy savings through load balancing and speed optimization 

3. Reduction of CO₂ emissions through fuel-efficient engine operation 
 

2.11. Application of FLC to Propulsion Engines 
In the context of marine propulsion engines, FLC can be tailored to manage key operational 

variables. For instance, inputs such as engine load and ship speed can be translated into fuzzy linguistic 
terms. A rule such as: 

"IF engine load is High AND ship speed is Low THEN reduce fuel injection timing" 
may reflect operational logic used by experienced engineers. The ability to encode such heuristics 

into the control system allows FLC to perform well even under highly uncertain and varying 
conditions. 

Moreover, when integrated with real-time monitoring systems, the FLC can continuously adapt 
engine control parameters to achieve optimal fuel efficiency across multiple voyage conditions. 

The theoretical foundation of FLC provides a robust and adaptive control mechanism for marine 
energy systems. Its ability to mimic human reasoning and manage nonlinear, time-variant systems 
makes it an ideal candidate for optimizing ship fuel consumption. When compared with PID controllers, 
FLC offers superior adaptability and performance in dynamic environments. 

This theoretical understanding forms the basis for the system design, simulation, and 
implementation outlined in the following sections of this study. 
 

3. Results and Discussion 
3.1. Overview of the FLC-Based Fuel Optimization System 

The fuel optimization system is built around a Fuzzy Logic Controller (FLC) designed to 
dynamically regulate fuel injection timing in marine propulsion engines. The system accepts real-time 
input parameters such as engine load and ship speed, applies fuzzy inference rules, and outputs 
optimized fuel injection values. The system was modeled and tested using MATLAB/Simulink. 
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3.2. MATLAB/Simulink Environment Setup 
MATLAB/Simulink was chosen due to its strong support for fuzzy logic modeling and real-time 

system simulation. The fuzzy inference system (FIS) was constructed using the Fuzzy Logic Toolbox. 
The Simulink model incorporates real-time input variables and simulates their impact on fuel 
consumption. Key components of the simulation model: 

1. Engine Dynamics Block 
2. PID Controller Block (for comparison) 
3. FLC Block (custom rule base and MFs) 
4. Monitoring & Data Logging Module 

 
3.3. Membership Function Design 

Each input and output variable in the FLC system is defined with three to five membership 
functions (MFs). Triangular and trapezoidal MFs are used for simplicity and computational efficiency. 
Inputs: 
1. Engine Load (%): {Low, Medium, High} 
2. Ship Speed (knots): {Slow, Moderate, Fast} 
Output: 
1. Fuel Injection Timing (ms): {Reduce, Maintain, Increase} 

 
3.4. Rule Base Development 

The FLC rule base consists of 27 IF-THEN rules derived from expert knowledge and operational 
behavior of ship engines. 
Example Rules: 
1. IF Engine Load is High AND Ship Speed is Slow THEN Reduce Fuel Injection 
2. IF Engine Load is Medium AND Ship Speed is Moderate THEN Maintain Fuel Injection 
3. IF Engine Load is Low AND Ship Speed is Fast THEN Increase Fuel Injection 
These rules aim to capture the heuristic strategies used by marine engineers for achieving optimal fuel 
efficiency. 
 
3.5. Integration with Operational Data 
Operational data from five types of ships were used: 
1. Cargo 
2. Passenger 
3. Fishing 
4. Tanker 
5. Offshore Supply 
 
Data points included: 
1. Engine power (kW) 
2. Fuel flow rate (L/h) 
3. Ship speed (knots) 
4. Fuel injection timing (ms) 

The data were preprocessed for outliers, normalized, and split into training and validation datasets 
(70%-30%). 
 
3.6. Simulation Execution 

The Simulink model was executed under 25 different load-speed scenarios to simulate realistic 
voyage conditions. Each scenario was run twice: 

1. First with a PID controller 
2. Then with the FLC system 
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Performance indicators captured: 
1. Fuel Consumption (L/h) 
2. Response Time (ms) 

3. CO₂ Emission Estimate (kg/h) 
 

3.7. Design Justifications 
1. FLC over ANN or ANFIS: FLC was chosen for interpretability and ease of rule development. 

While ANFIS provides learning capabilities, it requires larger training datasets and lacks 
transparency in rule inference. 

2. Triangular MFs: Balances simplicity and performance. 
3. MATLAB/Simulink: Allows rapid prototyping and accurate modeling of dynamic control 

systems. 
 
3.8. Fuel Consumption Comparison 

Simulation results demonstrate that the proposed fuzzy logic controller consistently outperforms 
the conventional PID controller in reducing fuel consumption across all ship types. Table 1 summarizes 
the comparative fuel consumption performance. 

 
Table 2.  
Fuel Consumption Comparison (L/h). 

Ship Type PID Controller FLC System Improvement (%) 
Cargo 230 210 8.7% 

Passenger 190 170 10.5% 
Fishing 150 130 13.3% 

Tanker 290 260 10.3% 
Offshore Supply 330 300 9.1% 

 

3.9. CO₂ Emission Reduction 

The fuel savings achieved by the FLC system lead to a proportional decrease in CO₂ emissions. 
Table 2 displays the estimated emission reductions based on fuel usage data. 

 
Table 3.  

Estimated CO₂ Emissions (kg/h). 

Ship Type PID Controller FLC System Reduction (%) 
Cargo 600 550 8.3% 

Passenger 500 450 10.0% 
Fishing 400 350 12.5% 

Tanker 750 680 9.3% 
Offshore Supply 850 770 9.4% 

 
3.10.  Statistical Evaluation 

To validate the robustness of the FLC system, statistical metrics including Root Mean Square Error 
(RMSE) and Mean Absolute Error (MAE) were calculated between actual data and the predicted 
control outputs. Results showed that the FLC system had significantly lower RMSE and MAE 
compared to the PID controller. 
 
3.11. Comparative Analysis with Previous Studies 

Compared to Wang and Chen [1] who reported 8% fuel savings using FLC, this study achieved up 
to 13.3%, attributed to more comprehensive rule base and multi-ship data integration. Similarly, Barros, 
et al. [6] combined FLC with a genetic algorithm to achieve 10% savings, while our system reached 
higher efficiency using standard FLC due to better tuned membership functions and validation models. 
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4. Discussion 
The results support the hypothesis that FLC can dynamically optimize fuel injection timing, thus 

improving fuel economy and reducing emissions. The flexibility of the fuzzy rule base allows the system 
to adapt better to varying operational conditions than PID controllers. Future work could integrate 
adaptive learning algorithms into the rule base, such as ANFIS or reinforcement learning models, to 
further refine system performance. 
 
4.1. Fuel Consumption Analysis 

The data collected indicate that the fuzzy logic control system consistently outperforms traditional 
PID controllers in reducing fuel consumption. Table 4 presents the comparison of fuel consumption 
between PID and FLC for different ship types. 
 
Table 4.  
Fuel Consumption Comparison Between PID and Fuzzy Logic Control. 

Ship Name Fuel Consumption (L/h) - PID Fuel Consumption (L/h) - Fuzzy Improvement (%) 

KM Nusantara 230 210 8.7% 
MV Batavia 190 170 10.5% 

KM Cendrawasih 150 130 13.3% 
KM Garuda 290 260 10.3% 

MV Rajawali 330 300 9.1% 

 
4.2. Environmental Impact and CO2 Reduction 

The reduction in fuel consumption directly contributes to lower CO2 emissions, aligning with the 
global maritime industry's goal of sustainable shipping. Based on fuel consumption improvements, the 
estimated CO2 reduction per ship type is shown in Table 5. 

 
Table 5.  
Estimated CO2 Emission Reduction Using FLC. 

Ship Name CO2 Emission (kg/h) - PID CO2 Emission (kg/h) - Fuzzy Reduction (%) 
KM Nusantara 600 550 8.3% 

MV Batavia 500 450 10.0% 
KM Cendrawasih 400 350 12.5% 

KM Garuda 750 680 9.3% 

MV Rajawali 850 770 9.4% 

 
To rigorously evaluate the performance of the FLC system compared to the PID controller, an 

extended statistical analysis was conducted. Metrics such as fuel consumption reduction, CO₂ emission 
reduction, system response time, and controller accuracy were examined in detail. In addition, graphical 
visualizations were created to support interpretation and highlight performance trends. 

 
4.3. Fuel Consumption Analysis 

Fuel consumption data for each ship type were collected and compared for both control methods. 
Box plots were used to visualize distribution and variance. 
The FLC system consistently showed lower median fuel consumption and reduced variance compared to 
PID, indicating more stable and efficient control. 
 

4.4. CO₂ Emission Trends 

Since CO₂ emissions correlate directly with fuel burned, emission trends followed similar patterns.  

The FLC system yielded CO₂ reductions of up to 12.5% in fishing vessels and 9–10% in other ship 
categories. 
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4.5. Response Time and Stability 
System response time was analyzed to evaluate how quickly each control system reacted to changes 

in load or speed. The FLC system demonstrated slightly longer initial response but better long-term 
stability and fewer oscillations. 

 
Table 6.  
Average Response Time (ms). 

Ship Type PID Controller FLC System 
Cargo 210 230 

Passenger 190 215 
Fishing 170 200 

Tanker 220 240 
Offshore Supply 230 250 

 
Although FLC had slightly longer response times, it avoided overcorrection and system instability. 
 
4.6. Error Metrics: RMSE and MAE 

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were used to quantify the 
accuracy of predicted fuel injection values against observed values. 
 
Table 7.  
Error Metrics Comparison. 

Metric PID Controller FLC System 
RMSE 5.12 2.87 
MAE 3.46 1.94 

 
Lower RMSE and MAE values for the FLC confirm better prediction and control accuracy. 
 
4.7. Multi-Scenario Evaluation 

To ensure generalizability, simulations were repeated across 25 randomized operational conditions 
per vessel type. The FLC consistently outperformed the PID in: 
1. Fuel economy 
2. Emission control 
3. System stability 

 
4.8. Summary of Findings 

1. The FLC system offers superior fuel efficiency and CO₂ emission reduction. 
2. It maintains better control stability with slightly increased but acceptable response time. 
3. Statistical results (RMSE/MAE) strongly favor the FLC approach. 
4. Visualization confirms lower fuel usage and higher system reliability. 

These findings reinforce the practical advantages of fuzzy control in dynamic marine environments. 
 
4.9. Case Studies per Vessel Type 

This section presents detailed case studies of the fuzzy logic control system performance across five 
representative vessel types. Each case study analyzes fuel consumption, emission trends, and controller 
behavior under realistic operational scenarios. 
 
4.10. Case Study: Cargo Vessel – KM Nusantara 

Operational Profile: Medium-speed cargo ship, operating on coastal trade routes. 

• Scenario: Engine load varied between 60%–90%, ship speed fluctuated between 9–14 knots. 

• Results: 



498 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 5: 489-500, 2025 
DOI: 10.55214/25768484.v9i5.6928 
© 2025 by the authors; licensee Learning Gate 

 

• Fuel consumption reduced from 230 L/h (PID) to 210 L/h (FLC) 

• Emission reduction: 8.3% CO₂ 

• RMSE improved by 45%; MAE by 47% 
Analysis: The FLC system adapted effectively to changing cargo loads and tidal influences, 

maintaining steady control during acceleration and deceleration. 
 
4.11. Case Study: Passenger Vessel – MV Batavia 

Operational Profile: High-speed vessel with frequent docking cycles. 

• Scenario: Engine load fluctuated rapidly due to docking maneuvers; speeds between 10–18 knots. 

• Results: 

• Fuel consumption reduced from 190 L/h to 170 L/h 

• Emission reduction: 10.0% CO₂ 

• System stability improved during stop-start conditions 
Analysis: FLC demonstrated robustness during transient operating modes, minimizing fuel spikes 

during docking and departure. 
 
4.12. Case Study: Fishing Vessel – KM Cendrawasih 

Operational Profile: Small vessel with highly variable load conditions, frequent idling. 

• Scenario: Mixed operation between trawling, idle, and transit modes. 

• Results: 

• Fuel reduced from 150 L/h to 130 L/h 

• Emission reduction: 12.5% CO₂ 

• Response time slightly slower, but with more stable fuel regulation 
Analysis: The FLC system was particularly effective during variable-speed operations and idling, 

where PID tended to overshoot. 
 
4.13. Case Study: Tanker – KM Garuda 
Operational Profile: Heavy-load, deep-sea tanker with long-duration voyages. 

• Scenario: High engine load (80%–100%), speed held constant at 12 knots. 

• Results: 

• Fuel reduced from 290 L/h to 260 L/h 

• Emission reduction: 9.3% CO₂ 

• RMSE and MAE lower than PID despite consistent load 
Analysis: Even under steady-state conditions, the FLC outperformed PID in regulating fuel 

injection more precisely. 
 
4.14. Case Study: Offshore Supply Vessel – MV Rajawali 
Operational Profile: Multi-role ship with variable missions (supply, towing, standby). 

• Scenario: Load varied between 40%–85%; frequent speed changes from 6–14 knots. 

• Results: 

• Fuel reduced from 330 L/h to 300 L/h 

• Emission reduction: 9.4% CO₂ 

• Strongest improvement in load-to-speed adaptation 
Analysis: The FLC effectively balanced fuel delivery with demand during mission shifts and standby 
modes. 
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4.15. Summary of Case Studies 
Across all vessel types: 

• The FLC system outperformed PID in fuel savings and emission control. 

• It adapted better to variable conditions such as speed fluctuation, docking, and idling. 

• Improved accuracy and stability were consistent across diverse operational contexts. 
These real-world case evaluations affirm the broad applicability and robustness of FLC in marine 

propulsion efficiency. 
 

5. Conclusion 
This study presents the development and validation of a fuzzy logic control (FLC) system for 

optimizing fuel consumption in ship main propulsion engines. By utilizing real-world operational data 
from various ship types and simulating performance using MATLAB/Simulink, the FLC system 
demonstrated significant improvements over conventional PID control. Key findings include: 

• An average fuel consumption reduction of 8.7% to 13.3%, depending on ship type. 

• Corresponding CO₂ emission reductions of 8.3% to 12.5%. 

• Statistically superior performance in terms of RMSE and MAE metrics. 
These results confirm the effectiveness of FLC in dynamically adjusting engine parameters under 

varying operational conditions. The implementation of such control strategies supports the maritime 
industry's shift toward greener and more energy-efficient operations. Future research should explore 
the integration of adaptive machine learning models, such as ANFIS and reinforcement learning, to 
enhance the intelligence and autonomy of maritime control systems. 

This study demonstrates that fuzzy logic control is an effective approach for optimizing fuel 
consumption in ship propulsion systems. The proposed FLC system provides significant fuel savings 
and CO2 emission reductions compared to conventional PID controllers. Future research should focus 
on real-world implementation and integration with machine learning techniques to further enhance 
performance and adaptability. 
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