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Abstract: This study compares RMS, EDF, and LLF on synthetic datasets for hard and soft real-time 
systems to assess their feasibility and effectiveness in supporting real-time systems for various 
utilization levels. It has been designed to give each algorithm's various strengths, limits, and 
applicability in real-time application scenarios through total utilization computation and schedule-up-to-
do ability analysis. It has been concluded that RMS is not schedulable due to its overutilization, while 
EDF is infeasible at Total > 1.0 for hard and soft real-time. LLF has limitations due to overutilization 
and frequent preemptions, making it suitable for soft real-time systems, unlike hard systems, because of 
the limitations of overutilization and frequent preemptions. RMS and EDF cannot meet deadlines under 
hard and soft real-time conditions. Future work should focus on hybrid algorithms or load balancing to 
overcome these limitations and process data in real time without tasks going beyond the time available 
to them in the CPU. 

Keywords: Early deadline first, Feasibility, Utilization, Least Laxity First, Rate Monotonic Scheduling, Real time system, 
Synthetic datasets. 

 
1. Introduction  

Growing demand for them, which has led to the quick development of various techniques for 
scheduling simple multiprocessor tasks [1]. However, these systems have trouble keeping in 
synchronization when accessing shared resources. Real-time systems consist of two types. Missing a 
deadline can have serious consequences due to real-time systems' extremely tight timing constraints, 
including equipment damage or human injury. For crucial jobs, these systems usually need to respond in 
a certain amount of time and exhibit deterministic and predictable behavior. Soft Real-Time Systems 
prioritize timely processing, allowing for late processing without causing system failure or loss of life or 
property [2].  

In this study, several scheduling techniques and multi-processor environments are systematically 
reviewed to evaluate current synchronization protocols for shared resources in real time [3]. A 
comparison of several scheduling methods and algorithms is also included in the publication, along with 
a multi-metric-based analysis of resource scheduling on a synthetic job dataset. Rate Monotonic 
Scheduling (RMS), Early Deadline First (EDF), and Least Laxity First (LLF) are the three suggested 
scheduling methods [4]. Multi-processor platforms and various systems, including hard and soft real-
time systems, are required for the implementation of real-time systems. The two most significant issues 
in multi-processor environments are scheduling and synchronization, as well as system usage and 
practicality [5]. The nature of processors in embedded real-time systems is also evolving regularly.  

The popularity of multi-core real-time systems in recent years has led to the quick development of 
various scheduling strategies for core multi-processor tasks; however, these systems have limitations 
when it comes to synchronization for shared resource access [6].  
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This study compares RMS, EDF, and LLF on synthetic datasets for hard and soft real-time 
systems. Also, LLF has limitations due to overutilization and frequent preemptions, making it suitable 
for soft real-time systems on synthetic datasets. 

The study's remaining sections are structured as follows: Section 2 examines earlier research related 
to this study. The work strategy, standards, algorithms, and methodology are explained in Section 3. 
Experimental results, processing algorithm results, suggested criteria, and standard values were all 
provided and reviewed in Section 4. Section 5: Talk about the results and how to evaluate them. 
Information on the conclusions drawn is provided in Section 6. 
 

2. Related Work 
In Ismail and Jawawi [7] Ismail and Jawawi proposed a weakly hard scheduling approach for real-

time systems, focusing on multiprocessor environments. The approach uses partitioned multiprocessor 
scheduling techniques, hyper period analysis, and deadline models to guarantee task timing 
requirements. The study uses a MATLAB simulation tool to validate the results, and the results show 
that the proposed approach outperforms existing approaches in terms of task deadline satisfaction. This 
approach is particularly useful for multiprocessor environments where task allocation is even harder 
than in uniprocessor cases. 

In Deming, et al. [8] and Salih and Younis [9] the authors explored real-time task scheduling for 
optimizing energy use in renewable energy integration into smart grids. It analyses fluctuations in 
renewable energy, evaluates optimization methods, and identifies obstacles. Findings show renewable 
energy fluctuations impact power system stability, requiring advanced prediction methods and energy 
storage. Policy implications include supporting advanced technologies, encouraging real-time 
scheduling, and enhancing grid infrastructure for a reliable smart grid and sustainable future. 

In Abolhassani Khajeh, et al. [10] and Alsammak and Mohammed [11] the Internet of Things 
(IoT) is a rapidly evolving telecommunication network that has significantly impacted various aspects of 
life. It includes hardware, telephony, communications, storage, secure platforms, software, and data 
processing platforms. This article reviews real-time scheduling in IoT from 2018 to 2022, focusing on 
practical applications such as healthcare, infrastructure, industrial applications, smart cities, commercial 
applications, environmental protection, and general IoT applications. The study analysed 162 articles 
published between 2018 and 2020, with 35 focusing on real-time IoT scheduling with the RMS 
algorithm. The study found that industrial energy efficiency had the highest percentage of implemented 
approaches, followed by healthcare, commercial sales systems, smart buildings, urban, traffic 
monitoring, smart homes, and smart farms. The cost had the highest rate of real-time scheduling in IoT 
at 19%, and this result motivated us to work more on RTS scheduling and search for better techniques.  

In Wang and Li [12] discovered that, multiple tasks with certain timing requirements make up a 
real-time system (RTS). A system whose response time is a key factor in determining proper operation 
is referred to as an RTS.  without and with deadlines, Periodic or aperiodic, all the immediate tasks in an 
RTS can be scheduled using either fixed or dynamic priorities, including least laxity first (LLF) and 
earliest deadline first (EDF), using pre-emptive or non-pre-emptive schemes. This chapter examines 
these traditional scheduling systems using an RTS example. For real-time systems, real-time 
reconfiguration is crucial because it can be used to identify potential safe execution sequences if the 
system cannot be scheduled. To save the entire system in the event of sporadic disruptions, a 
reconfiguration scenario could involve adding, removing, or updating tasks at runtime. One popular 
online reconfiguration approach that primarily reconfigures the periods of real-time jobs is the elastic 
period model. The elastic period model mostly influences the RTS reconfigurations throughout the 
remainder of this work. 
 

3. Methodology 
The study compares three real-time scheduling algorithms: Earliest Deadline First (EDF), Rate 

Monotonic Scheduling (RMS), and Laxity First (LF) on a synthetic dataset. The focus is on their 
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utilization feasibility and ability to meet task deadlines in hard and soft real-time systems. Key metrics 
analysed include processor utilization, feasibility checks, and missed deadlines [13]. The comparative 
analysis provides insights into algorithm suitability for different real-time scenarios, highlighting trade-
offs between predictability, flexibility, optimization [14] and computational complexity as in Figure 1. 

 

 
Figure 1. 
Comparing real-time system scheduling algorithms. 

 
A synthetic dataset of 10 periodic tasks was designed with attributes such as execution times, 

periods, and deadlines. The dataset ensures varied levels of utilization and system load to test algorithm 
efficiency. The least common multiple of the task periods was calculated to determine the simulation 
timeline. MATLAB applies the algorithms to simulate task execution over the hyper period. 
 
3.1. Rate Monotonic Scheduling (RMS) 

One priority approach that falls within Real Time Operating Systems' static priority scheduling 
category is rate monotonic scheduling. The nature of it is pre-emptive. The cycle time of the involved 
processes is used to determine the priority. The process has the highest priority if its task duration is 
short [15]. As a result, the process with the highest priority will start execution before the other 
processes. A process's priority is inversely related to how long it will take. Only when a group of 
processes meets the following criteria can they be scheduled [16]: 

U=∑
𝐶𝑖

𝑇𝑖
𝑛
𝑖=1  <= n(21/n-1) (1) 
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where U is the processor utilization, Ti is the time for the process to execute, Ci is the calculation 
time of the process, and n is the number of processes in the process set. 
 
3.2. Earliest Deadline First (EDF) 

It is a dynamic priority scheduling algorithm used in real-time systems for static and dynamic 
scheduling. assigns tasks based on absolute deadlines, with the closest deadline receiving the highest 
priority. EDF is efficient, allowing CPU utilization to be around 100% while maintaining task deadlines. 
It also includes kernel overload, ensuring all tasks meet deadlines [17]. EDF does not require periodic 
tasks or processes and allows preemption if a previous periodic instance with an earlier deadline 
becomes active. If the system is overloaded (total utilization > 100%), EDF might not guarantee that 
deadlines are met [18]. 
 
3.3. Least Laxity First (LLF) 

It is a dynamic, prioritized algorithm for real-time scheduling. All the system's duties in LST are 
given priority based on their free time. The highest priority task is the one with the least amount of free 
time, and vice versa [19]. The tasks' priorities are changed on the flight. The following formula can be 
used to determine slack time [20]: 

Slack_ time = (D - t - e') (2) 

Where D: Deadline of the task, t: Real time when the cycle starts, and e: Remaining Execution Time 
of the task. The Least Slack Time scheduling algorithm is different from Earliest Deadline First due to 
its need for task execution times, which can be impractical in real-time systems. It may underutilize the 
CPU, decreasing efficiency and throughput. Tasks with similar slack time are dispatched first [19]. 
 
3.4. Synthetic Dataset 

Information that is created artificially; rather, the term "synthetic data" refers to data that is derived 
from genuine events. It's generated using an algorithm. serves as a substitute for test sets of operational 
or production data to train machine learning (ML) models and validate mathematical models for real-
time scheduling. While gathering high-quality data from the real world is difficult, expensive, and time-
consuming, synthetic data technology enables users to quickly, simply, and digitally synthesize the data 
in any quantity they choose, customized to meet their own needs [21]. 
 

4. Experimental Result 
Synthetic data was used to generate 10 tasks because of real events with synthetic data to test 

operational or production data and validate the mathematical models for real-time scheduling for each of 
the RMS, EDF, and LLF algorithms. Synthetic data technology allows data to be synthesized quickly, 
easily, and digitally. The algorithmic results for all tasks are tested and compared within the CPU to see 
if this data is valid for the real-time instance on the three algorithms, as well as their implementation 
potential for real-time systems, whether the system is hard or soft. A strong framework for 
methodically assessing and contrasting real-time scheduling algorithms is provided by synthetic data, 
which also offers insights into the algorithms' advantages and disadvantages in a controlled and 
repeatable way [22]. Using the MATLAB language, each algorithm is represented by its sequential 
steps and mathematical model to implement the proposed tasks and compare them in soft and hard real 
time. 
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Table 1.  
Synthetic dataset with 10 tasks. 

Task ID Execution Time (C) Deadline (D) Period (T) 

T1 1 3 5 

T2 2 4 7 

T3 1 5 10 

T4 3 8 15 

T5 2 9 12 

T6 4 10 20 

T7 1 12 15 

T8 2 14 18 

T9 1 16 20 

T10 3 20 25 

 
Depending on Table 1, the dataset includes a mix of shorter, longer deadlines, and periods. Now we 

can start to work on this program to determine whether deadlines are fulfilled within the hyper period 
(the LCM of periods) by applying RMS, EDF, and LLF, then analysing utilization in a repeatable way. 
 
4.1. RMS Task Set 

Table 2 shows the Gantt Chart (Visualization Over a 20-Unit Period) under RMS and how 
operations are performed inside the CPU. 
 
Table 2.  
Gantt chart RMS. 

Time Task Executing 
0-1 T1 

1-3 T2 
3-4 T1 

4-5 T5 
5-6 T3 

6-7 T2 

7-9 T4 
9-10 T3 

10-11 T2 
11-12 T5 

12-14 T4 
14-15 T7 

15-16 T2 
16-17 T8 

17-18 T6 
18-19 T9 

19-20 Idle 

 
4.2. EDF Task Set 

The Gantt Chart (Visualization Over a 20-Unit Period) under EDF and the way operations are 
carried out inside the CPU are displayed in Table 3. 
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Table 2.  
Gantt chart EDF. 

Time Task Executing 

0-1 T1 
1-3 T2 

3-4 T1 
4-5 T5 

5-6 T3 
6-7 T2 

7-9 T4 
9-10 T3 

10-11 T2 

11-12 T5 
12-14 T4 

14-15 T7 
15-16 T2 

16-17 T8 
17-18 T6 

18-19 T9 
19-20 Idle 

 
4.3. LLF Task Set 

Figure 2 shows the Gantt Chart (Visualization Over a 20-unit Period) under LLF and how 
operations are performed inside the CPU. The results of the 3 algorithms bring out some very marked 
characteristics of the algorithms. RMS favors fixed periods, which brings simplicity at the probable 
infeasibility at high loads. EDF adjusts dynamically depending on the deadlines to ensure maximum 
schedule ability but requires more computation. LLF focuses on urgency through laxity, thereby 
minimizing missed deadlines, but risks frequent preemptions with possible consequences of affecting 
system stability under load. 
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Figure 2. 
Least laxity first Gantt chart. 

 

6. Conclusion 
The study compares RMS, EDF, and LLF on synthetic datasets for hard and soft real-time systems. 

RMS is not schedulable due to its overutilization for hard and soft RTS, while EDF is infeasible at total 
> 1.0. This failure points out the well-recognized limit of RMS and EDF in handling overloads, where 
deadlines can't be guaranteed by hard real-time systems. LLF has limitations due to overutilization and 
frequent preemption, making it suitable for soft real-time systems on synthetic datasets. LLF can handle 
overload conditions for soft real-time systems somewhat better because it adapts, whereas hard real-
time systems cannot handle such a high level of overload. Future work should focus on hybrid 
algorithms or load balancing to overcome these limitations and optimal handling of real-time synthetic 
datasets. 
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