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Abstract: This paper aims at a new approach for finding the solution of neutrosophic fuzzy fractional 
differential equations (NFFDEs) based on the Zadeh’s Extension Principle method. NFFDEs combine 
fractional-order systems with uncertainty, which deals with truth, indeterminacy, and falsity 
information. This approach competently addresses the challenges modeled by both the fractional 
derivatives and the indeterminate constructions characteristic of neutrosophic systems. The paper 
frames the theoretical framework, advances the solution process, and validates the usefulness of the 
method. Theoretical and numerical results validate that the Extension Principle method conserves vital 
properties of the fundamental systems while providing flexible and inclusive representations of 
uncertainty. 
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1. Introduction  

Differential equation is very important techniques for theoretical Cooke [1] and Ross [2]  as well 
as modelling Braun and Golubitsky [3] and Sobczyk [4] based study. If formed in continuous system. 
Several modifications and variation are already done in the wide field of research involving differential 
equations. In that context the order of any differential equation need not always be integer, it may be 
fractional order [5-8]. A fractional differential equation includes derivatives of non-integer (fractional) 
order which encompassing the concept of classical calculus. It models systems with memory and 
hereditary belongings, apprehending complex behaviours better than traditional differential equations 
ideology. These types of equations are extensively used in fields like physical sciences [9] biology 
inspired model [10] and financial analysis [11]. The solutions methodology is quite different and it 
needs more specialized techniques [12-15]. 

Theory based on uncertainty play important role for real world modelling now a days. There is 
several well know ideology to capture the uncertainty when modelling. Few concepts such as interval 
quantification [16] fuzzy set theory [17] intutionistic fuzzy set [18] theory etc. Fuzzy set consider the 
degree of belonging ness where as intuitionistic fuzzy set capture both the belongingness and non-
belongingness [19, 20].  Apart from the previously mention settings neutrosophic set [21, 22] capture 
uncertainty than others. The idea of a neutrosophic set is significant because it spreads classical fuzzy 
set philosophies by letting the depiction of truth, indeterminacy and falsity by making it ideal for 
manage uncertain, incomplete, and inconsistent info. Contrasting traditional models that might strict 
boundaries or membership where as neutrosophic sets offer better flexibility and pragmatism in 
complex decision-making problem like site selection problem [23, 24] mathematical biology [25] 
Inventory control problem [26]. Transportation problem [27]. Graph theory [28] etc . This makes it 
mostly powerful in settings in uncertainty modelling. 

Differential equation with uncertainty is not new. The most popular differential equation with 
uncertainty is fuzzy differential equation, which have importance both in theoretical [29, 30]  and  
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modelling [31, 32] purposes. Although fuzzy differential equation have different variation like fuzzy 
fractional differential equation [33, 34] fuzzy delay differential equation [35, 36]. In other hand the 
neutrosophic  differential equation [25, 37-44]. Is taken and solved by few researchers whereas 
neutrosophic fractional differential equation work is very rare [45]. The details comparative analysis is 
of published paper based on neutrosophic differential equation show in table 1. 

In that context we propose the neutrosphic fractional differential equation by neutrosophic 
extension principle. The structure of the paper is are follows: Section 1 describes preliminary 
introduction of related keyworks, Section 2 describes the preliminary ideas. Neutrosophic extension 
principle is defined in Section 3. The formulation of neutrosophic differential equation is addressed in 
Section 4. Section 5 stands for the solution strategy of neutrosophic fractional differential equation. 
Numerical example is illustrated in Section 6. Section 7 stand for conclusion and future research scope.  
 
Table 1.  
Comparative study of published neutrosophic differential equation 

Sl. 
No. 

Paper details Approaches used Type of differential equation Applications/ 
Theory 

1 Sumathi and Antony 
Crispin Sweety [37] 

Generalized neutrosohic 
hukuhara differentiability 

Second order linear differential 
equation 

Theory 

2 Mondal, et al. [38] (𝛼, 𝛽, 𝛾)-cut of neutrosophic 
function method 

First order system of 
differential equation 

Application 

3  Sumathi and Priya [39] 
[39] Sumathi et al. 

(𝛼, 𝛽, 𝛾)-cut of neutrosophic 
function method 

First order linear 
homogeneous differential 

equation 

Theory and 
application both 

4 Parikh and Sahni [40] 
[40] Parikh et al. 

Generalized Hukuhara 
neutrosophic differentiability 

First order linear differential 
equation 

Application 

5 Rahaman, et al. [41] 
[41] Rahaman et al. 

generalized Neutrosophic 
derivative 

System of linear differential 
equation 

Theory and 
applications both 

6 Acharya, et al. [46] [42] 
Acharya et al. 

Generalized Hukuhara 
neutrosophic differentiability 

First order linear non 
homogeneous differential 

equation 

Applications 

7 Acharya, et al. [25] Generalized neutrosophic 
derivative 

System of linear non 
homogenous differential 

equation 

Applications 

8 Kamal, et al. [42] Generalized Hukuhara 
Differentiability 

Second order linear 
homogeneous 

Theory 

9 Mera, et al. [43] [45] Neutrosophic mathematical 
transform 

First order linear 
homogeneous 

Theory 

10 Momena, et al. [44] generalized neutrosophic 
derivative; 

generalized neutrosophic 
derivative 

Application 

 

2. Preliminaries and Basic Concepts 

Fuzzy Set: Zadeh [17] A fuzzy set �̃� is well-defined as a set of ordered pair, notationaly  as 

(𝑟, 𝜇�̃�(𝑟)), where 𝑟 ∈ 𝑋,  where 𝑋 is nonempty universal set. The function  𝜇�̃�(𝑟): 𝑋 → [0,1], is called 
membership function.  

Zadeh’s extension principle: Zadeh [47] Let 𝐽 be a crisp set and �̃� be a fuzzy set in  𝐽.  The function 

𝑔: 𝐽 → 𝐾 is defined by 𝑘 = 𝑔(𝑗), then the extension principle introduces a fuzzy set �̃� in 𝐾 as �̃� =

{(𝑘, 𝜇�̃�(𝑘)|𝑘 = 𝑔(𝑗), 𝑗 ∈ 𝐽)} where, 𝜇�̃�(𝑘) = {
(𝜇�̃�(𝑗)), 𝑖𝑓𝑓 𝑔

−1(𝑘) ≠ 𝜙
𝑗∈𝑔−1(𝑘)

𝑠𝑢𝑝

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
. 

Note: Zadeh's Extension Principle permits crisp functions to work on fuzzy sets uncertainty. It 
encompasses functions by mapping fuzzy inputs functions to fuzzy outputs functions whereas 
conserving membership grades. The output's membership functions are resolute using the supremum of 
input memberships function that map to respective output value. This ideology is introductory in fuzzy 
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arithmetic operations and fuzzy based decision-making. It permits applying in models to capture 
imprecise data. 

Example: Let, �̃�𝑓 be a fuzzy set given by the membership function as follows:  

𝜇�̃�𝑓
(𝑗) =

{
  
 

 
 
 

0 𝑖𝑓 𝑗 ≤ 2
𝑗 − 2

4
 𝑖𝑓 2 ≤ 𝑗 < 6

1 𝑖𝑓 𝑗 = 6
10 − 𝑗

4
 𝑖𝑓 6 < 𝑗 ≤ 10

0 𝑖𝑓 𝑗 ≥ 10

 

Let us choose a function 𝐹(𝑗) = 3𝑗 + 2. Using the concept of Zadeh’s extension principle, another 

fuzzy set 𝐹(�̃�𝑓) can be determined. The membership function of 𝐹(�̃�𝑓) is obtained as follows:  

𝜇𝐹(�̃�𝑓)
(𝑘) =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑘 ≤ 8
𝑘 − 8

12
 𝑖𝑓 8 ≤ 𝑘 < 20

1 𝑖𝑓 𝑘 = 20
32 − 𝑘

12
 𝑖𝑓 20 < 𝑘 ≤ 32

0 𝑖𝑓 𝑘 ≥ 32

 

Note: The above concepts define that how we construct a fuzzy function by considering a parameter 
or variable as fuzzy in nature. Since the resulting function also obey the fuzzy rules. 
Neutrosophic Set: The extension of fuzzy sets is neutrosophic fuzzy sets. Here in the neutrosophic set 
Smarandache [48] one step forward of the Intuitionistic fuzzy set theory ideology. There exists several 

form of the said set. One of them is  single-valued neutrosophic set. Consider an neutrosophic set �̃�𝑁𝑒  

on universal set 𝑈 is defined as �̃�𝑁𝑒 = {(𝑇𝑁𝑒(𝑘), 𝐼𝑁𝑒(𝑘), 𝐹𝑁𝑒(𝑘)) ∶ 𝑘 ∈ U}, where 

𝑇𝑁𝑒(𝑘), 𝐼𝑁𝑒(𝑘), 𝐹𝑁𝑒(𝑘) ∶ U → [0,1] are considered as the degree of truthness, degree of indeterministic 

and degree of falsity function respectively for 𝑘 ∈ U, such that 0 ≤ 𝑇𝑁𝑒(𝑘), 𝐼𝑁𝑒(𝑘), 𝐹𝑁𝑒(𝑘) ≤ 3.  
 
Table 2. 
Comparison between Fuzzy, Intutitionistic fuzzy and Neutrosophic fuzzy set idea 

Sl. No. Set Associated functions Conditions Advantage Disadvantage 
1 Fuzzy set Membership function 

(𝜇𝐴(𝑥)) 
0 ≤ 𝜇𝐴(𝑥) ≤ 1 Simple and for 

vague 
concepts. 

No way to 
represent 

contradiction in 
data. 

2 Intutitionistic 
fuzzy set 

Membership and non-
membership 

(𝜇𝐴(𝑥), 𝜗𝐴(𝑥)) 

0 ≤ 𝜇𝐴(𝑥) + 𝜗𝐴(𝑥)
≤ 1 

Captures 
hesitation 

Conditions 
restricts 
handling 

inconsistent or 
contradictory 

data. 
3 Neutrosophic 

fuzzy set 
Truth, 

Indeterminacy 
and Falsity 

(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐼𝐴(𝑥)) 
 

0
≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥)
+ 𝐼𝐴(𝑥)
≤ 1 𝑜𝑟, 2 𝑜𝑟, 3 

deal with 
incomplete, 

indeterminate, 
and 

inconsistent 
information, 

 

More complex 
computation 

and 
interpretation. 

Note: Here in table 2 the comparison between fuzzy set, intuitionistic fuzzy and neutrosophic fuzzy set. 
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Triangular neutrosophic number: Wang, et al. [22] A Triangular neutrosophic number is taken as 

�̃� = (𝑚01,𝑚02,𝑚03;  𝑚11,𝑚12,𝑚13;  𝑚21,𝑚22, 𝑚23), where the truth membership, indeterminacy and  
falsity function is fixed as follows:  

𝑇𝑁𝑒(𝑘) =

{
  
 

  
 
𝑘 −𝑚01

𝑚02 −𝑚01
 𝑤ℎ𝑒𝑛 𝑚01 ≤ 𝑘 < 𝑚02

1           𝑤ℎ𝑒𝑛 𝑘 = 𝑚02

𝑚03 − 𝑘

𝑚03 −𝑚02
 𝑤ℎ𝑒𝑛 𝑚02 < 𝑘 ≤ 𝑚03

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐼𝑁𝑒(𝑘) =

{
 
 

 
 
𝑚12 − 𝑘

𝑚12 −𝑚11
 𝑤ℎ𝑒𝑛 𝑚11 ≤ 𝑘 < 𝑚12

0           𝑤ℎ𝑒𝑛 𝑘 = 𝑚12

𝑘 −𝑚12

𝑚13 −𝑚12
 𝑤ℎ𝑒𝑛 𝑚12 < 𝑘 ≤ 𝑚13

1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐹𝑁𝑒(𝑘) =

{
 
 

 
 
𝑚22 − 𝑘

𝑚22 −𝑚21
 𝑤ℎ𝑒𝑛 𝑚21 ≤ 𝑘 < 𝑚22

0           𝑤ℎ𝑒𝑛 𝑘 = 𝑚22

𝑘 −𝑚22

𝑚23 −𝑚22
 𝑤ℎ𝑒𝑛 𝑚22 < 𝑘 ≤ 𝑚23

1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where,  0 ≤ 𝑇𝑁𝑒(𝑘) + 𝐼𝑁𝑒(𝑘) + 𝐹𝑁𝑒(𝑘) ≤ 3 and 𝑦 ∈  �̃�.  

Parametric form of triangular neutrosophic number or, (𝛼, 𝛽, 𝛾)-cut: The parametric setting of the 

above number or the (𝛼, 𝛽, 𝛾)-cut is  

[�̃�]𝛼,𝛽,𝛾 = {[𝑀𝛼
𝐿 ,𝑀𝛼

𝑅]; [𝑀𝛽
𝐿 ,𝑀𝛽

𝑅]; [𝑀𝛾
𝐿 ,𝑀𝛾

𝑅]}  

Where            

{
 
 
 

 
 
 
𝑀𝛼
𝐿 = 𝑚01  +  α(𝑚02  − 𝑚01)

𝑀𝛼
𝑅 = 𝑚03 −  α(𝑚03  −  𝑚02)

𝑀𝛽
𝐿 = 𝑚12  −  β(𝑚12 − 𝑚11)

𝑀𝛽
𝑅 = 𝑚12 +  β(𝑚13 − 𝑚12)

𝑀𝛾
𝐿 = 𝑚22  −  β(𝑚22 − 𝑚21)

𝑀𝛾
𝑅 = 𝑚22 +  β(𝑚23 − 𝑚22)

  

with 0 <  𝛼, 𝛽, 𝛾 ≤  1   and 0 <  𝛼 +  𝛽 +  𝛾 ≤ 3. 
Note: Its is need not necessary that we have to take triangular neutrosophic number. There exist 

different variation of neutrosophic number such as trapezoidal neutrosophic number, pentagonal 
neutrosophic number etc.  
 

Mittag-Leffler function: If 𝐷𝑏
𝛿𝑐 𝑦(𝑡) = 𝑦(𝑡), with 𝑦(0) = 𝑦0 then the solution is 𝑦(𝑡) = 𝑦0𝐸𝛿(𝑡

𝛿), 

where 𝐸𝛿(𝑡
𝛿) is called Mittag-Leffler function and it expressed as, 

𝐸𝛿(𝑡
𝛿) = ∑

𝑢𝑝

Γ(𝑝𝛿 + 1)

∞

𝑝=0

, 𝛿 > 0 

Note: The Mittag-Leffler function have a vital role in fractional calculus. It generalizes the 
exponential function and arises in the solutions of fractional differential equations. In particularly those 
problems involving Caputo or Riemann–Liouville derivatives. Dissimilar the exponential, which defines 
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memoryless progressions, the Mittag-Leffler function imprisonments power-law based decay and 
memory-based effects for making it perfect for modelling real-world spectacles such as anomalous 
diffusion, fluid dynamics, biological systems with hereditary properties. It appears when solving the 
fractional differential equation by using Laplace transform also.  

Caputo Derivative: For a function ∇(𝑟) the Caputo derivative of order 𝜌 ∈ (𝑛 − 1, 𝑛) where 𝑛 ∈ 𝑁, 
is defined as, 

𝐷𝑐 𝑟
𝜌
∇(𝑟) =

1

Γ(𝑛 − 𝜌)
∫

∇(𝑛)(𝑦)

(𝑟 − 𝑦)𝜌−𝑛+1
𝑑𝑦

𝑟

0

 

Where Γ(. ) is the Gamma function and ∇(𝑛) denoted the nth derivative of ∇. 

So, for 0 < 𝜌 < 1, the above definitions become 

𝐷𝑐 𝑟
𝜌
∇(𝑟) =

1

Γ(1 − 𝜌)
∫
∇(1)(𝑦)

(𝑟 − 𝑦)𝜌
𝑑𝑦

𝑟

0

 

Note: The Caputo derivative is very important in fractional calculus theory because it allows 
fractional differential equations with initial conditions which may expressed in terms of classical 
integer-order derivatives. The Caputo derivative particularly suitable for modelling dynamical systems 
in science, engineering, physics and biological science where initial states are known in classical terms. 
Moreover, it conserves key properties like linearity and convulsions naturally into Laplace transform 
methods. It simplifying the analytical solution of fractional differential equations and attractive its real-
world applicability in initial value problems. 

Caputo derivative for initial value problem: Consider the fractional differential equation of type  

𝐷𝑦
𝜌𝑐 𝑦(𝑟) = 𝑚𝑦(𝑟)  with initial value 𝑦(0) = 𝑦0, then the solution is written as 

𝑦(𝑟) = 𝐸𝜌(−𝑚𝑟
𝜌) 

 

3. Neutrosophic Extension Principle 

Extension Zadeh’s extension principle with neutrosophic uncertainty:  Let 𝑉 be a crisp set and �̃� be 

a neutrosophic set in  𝑉.  The function 𝑔: 𝑉 → 𝑄 is defined by 𝑞 = 𝑔(𝑣), then the extension principle 

introduces a neutrosophic set fuzzy set �̃� in 𝑄 as �̃� = {(𝑞, 𝑇𝑐̃(𝑞), 𝐼𝑐̃(𝑞), 𝐹𝑐̃(𝑞)|𝑞 = 𝑔(𝑣), 𝑢 ∈ 𝑈)} where, 

𝑇𝑐̃(𝑞) = {
(𝑇�̃�(𝑣)), 𝑖𝑓𝑓 𝑔

−1(𝑞) ≠ 𝜙
𝑣∈𝑔−1(𝑞)

𝑠𝑢𝑝

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

𝐼𝑐̃(𝑞) = {
(𝐼�̃�(𝑣)), 𝑖𝑓𝑓 𝑔

−1(𝑞) ≠ 𝜙
𝑣∈𝑔−1(𝑞)

𝑖𝑛𝑓

1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

and 

𝐹𝑐̃(𝑞) = {
(𝐹�̃�(𝑣)), 𝑖𝑓𝑓 𝑔

−1(𝑞) ≠ 𝜙
𝑣∈𝑔−1(𝑞)

𝑖𝑛𝑓

1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Note: Neutrosophic extension principle ultimately is the extension of Zadey’s extension principal. 
Our main aim is to use the theory for finding the solution of neutrosophic fractional differential 
equation.  

Example: Let, �̃�𝑔 be a neutrosophic set given by the truth, indeterminacy and falsity  function as 

follows:  
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𝑇𝐵𝑔(𝑥) =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑥 ≤ 80

(
𝑥 − 80

20
)  𝑖𝑓 80 ≤ 𝑥 < 100

1 𝑖𝑓 𝑥 = 100

(
120 − 𝑥

20
)  𝑖𝑓 100 < 𝑥 ≤ 120

0 𝑖𝑓 𝑥 ≥ 120

 

𝐼𝐵𝑔(𝑥) =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑥 ≤ 90

(
100 − 𝑥

10
)  𝑖𝑓 90 ≤ 𝑥 < 100

0 𝑖𝑓 𝑥 = 100

(
𝑥 − 100

10
)  𝑖𝑓 100 < 𝑥 ≤ 110

0 𝑖𝑓 𝑥 ≥ 110

 

and 

𝐹𝐵𝑔(𝑥) =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑥 ≤ 95

(
100 − 𝑥

5
)  𝑖𝑓 95 ≤ 𝑥 < 100

0 𝑖𝑓 𝑥 = 100

(
𝑥 − 100

5
)  𝑖𝑓 100 < 𝑥 ≤ 105

0 𝑖𝑓 𝑥 ≥ 115

 

 

Consider a function 𝐺(𝑥) = 𝑥 + 50. Using the concept of Zadeh’s extension principle, the 

neutrosophic set 𝐺(𝐵𝑔) can be determined. The function of 𝐺(𝐵𝑔) is obtained as follows:  

𝑇𝐵𝑔(𝑥) =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑥 ≤ 130

(
𝑥 − 130

20
)  𝑖𝑓 130 ≤ 𝑥 < 150

1 𝑖𝑓 𝑥 = 150

(
170 − 𝑥

20
)  𝑖𝑓 150 < 𝑥 ≤ 170

0 𝑖𝑓 𝑥 ≥ 170

 

𝐼𝐵𝑔(𝑥) =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑥 ≤ 90

(
150 − 𝑥

10
)  𝑖𝑓 140 ≤ 𝑥 < 140

0 𝑖𝑓 𝑥 = 150

(
𝑥 − 150

10
)  𝑖𝑓 150 < 𝑥 ≤ 160

0 𝑖𝑓 𝑥 ≥ 160

 

and 
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𝐹𝐵𝑔(𝑥) =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑥 ≤ 245

(
150 − 𝑥

5
)  𝑖𝑓 145 ≤ 𝑥 < 150

0 𝑖𝑓 𝑥 = 150

(
𝑥 − 150

5
)  𝑖𝑓 150 < 𝑥 ≤ 165

0 𝑖𝑓 𝑥 ≥ 165

 

Theorem: If �̃�(𝑡): [𝑡0, 𝑇] → 𝐹(𝑅) is a neutrosophic fuzzy function whose (𝛼, 𝛽, 𝛾)- cut are denoted 

by (�̃�(𝑡))𝛼,𝛽,𝛾 = {[𝑦11(𝑡, 𝛼), 𝑦12(𝑡, 𝛼)]; [𝑦21(𝑡, 𝛽), 𝑦22(𝑡, 𝛽)]; [𝑦31(𝑡, 𝛾), 𝑦32(𝑡, 𝛾)]} for 𝛼, 𝛽, 𝛾 ∈ [0,1], 
then 

(i) (�̃�(𝑡))𝛼,𝛽,𝛾 is nonempty compact subset of 𝑅. 

(ii) (�̃�(𝑡))𝛼1 ⊆ (�̃�(𝑡))𝛼2, (�̃�(𝑡))𝛽1 ⊆ (�̃�(𝑡))𝛽2 and (�̃�(𝑡))𝛾1 ⊆ (�̃�(𝑡))𝛾2 for 0 ≤ 𝛼1 ≤ 𝛼2 ≤ 1, 0 ≤

𝛽1 ≤ 𝛽2 ≤ 1, 0 ≤ 𝛾1 ≤ 𝛾2 ≤ 1. 

 
4. Neutrosophic Fractional Differential Equation (NFDE) 

In this section we introduce neutrosophic fractional differential equation. It is obvious that the crisp 
fractional differential equation and NFDE is different in nature. The idea of fuzzy differential equation is 
extended here.  

Let us consider the crisp fractional differential equation of the form 

{
𝐷𝑏
𝛿𝑐 𝑦(𝑡) = 𝐹(𝑡, 𝑘, 𝑦(𝑡))

𝑦(𝑡0) = 𝑦0
                                                                                           (1) 

Where 𝐹: [𝑡0, 𝑇] × 𝑅 → 𝑅 is a real valued function, 𝑦0 ∈ 𝑅, 𝑘 ∈ 𝑅 is constant and 𝛿 ∈ (0,1]. 
The above fractional differential equation (1) is said to be neutrosohic fractional differential equation 

if one of the following conditions holds: 

I. The initial conditions 𝑦0 is neutrosophic fuzzy valued number 

II. The coefficient or constant 𝑘 is neutrosophic fuzzy valued number 

III. Both the initial conditions 𝑦0 and coefficient or constant 𝑘 is neutrosophic fuzzy 
valued number 
Here a question arises that when we consider the above cases ? Basically, for theoretical 
study any one or all three may considered. But for real life model the one has to take which 
is best fit for the model considered.  

In this study we only consider the first cases i.e., the initial condition is neutrosophic fuzzy valued 
number. In future study all cases are considered still the idea for solution strategy is quite similar.  
Since the initial condition is neutrosophic fuzzy valued so the solutions also neutrosophic fuzzy valued, 
so we take the whole equations form as follows and treated as neutrosophic fuzzy fractional differential 
equations: 

{
𝐷𝑏
𝛿𝑐 �̃�(𝑡) = �̃�(𝑡, 𝑘, 𝑦(𝑡))

𝑦(𝑡0) = �̃�0
                                                                                           (2) 

Where �̃�: [𝑡0, 𝑇] × 𝑅𝑓 → 𝑅𝑓 is a real valued neutrosophic function, �̃�0 ∈ 𝑅𝑓, 𝑘 ∈ 𝑅 is constant and 𝛿 ∈

(0,1]. 
Note 1: For 𝛿 = 1, the equation (1) converted to simple crisp ordinary differential equation and (2) 
converted to neutrosophic fuzzy differential equation. Also, it should be noted that in solution if we put 

the integer value of 𝛿 then the solution is quite similar by not fully because we have to use some 
numerical approximation restrictions.  
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5. Solution of Neutrosophic Fractional Differential Equation Using Extension Principal 
Method 

There are several articles where extension principal is used to solve fuzzy differential equation such 
as [1-4]. The idea is very popular since the derivative of fuzzy functions concepts or interval arithmetic 
property is not necessary.  

The solution using the extension principle is very much straight forward. Strating from crisp 
solution, then maximum and minimum consideration with respect to uncertain parameters, then 
submission the corresponding interval ends the solution procedure is completed. It should be noted that 
different method may give different solution.  
Consider the crisp solution of (2), that is the solution of (1) is as follows: 

𝑦(𝑡) = 𝑔(𝑘, 𝑦0, 𝑡)                                                                                                             (3) 

In equation (3) the function 𝑔 is crisp. The idea is that fuzzification have to done by extension 

principal. In the function 𝑘, 𝑦0 may be neutrosophic in nature. In this particular paper we take only the 

initial value as neutrosophic number, so only we have to focus the parameter 𝑦0 for applying Zadeh’s 
extension principle via neutrosophic approach. 

and let the (𝛼, 𝛽, 𝛾)-cut of the neutrosophic initial value of (2) is 

(�̃�0)𝛼,𝛽,𝛾 = {[𝑝1(𝛼), 𝑝2(𝛼)]; [𝑞1(𝛽), 𝑞2(𝛽)]; [𝑟1(𝛾), 𝑟2(𝛾)]}                                           (4) 

This above is parametric representation or in interval form. 

Theorem: If (�̃�(𝑡))𝛼,𝛽,𝛾 = {𝑔(𝑘, 𝑦0, 𝑡)|𝛼; 𝑔(𝑘, 𝑦0, 𝑡)|𝛽; 𝑔(𝑘, 𝑦0, 𝑡)|𝛾} is the solution of (2) then  

𝑔(𝑘, 𝑦0, 𝑡)|𝛼 = [𝑦11(𝑡, 𝛼) = 𝑚𝑖𝑛 {�̂�(𝑘, 𝑦0, 𝑡)}, 𝑦12(𝑡, 𝛼) = 𝑚𝑎𝑥 {𝑔(𝑘, 𝑦0, 𝑡)}| 𝑦0 ∈ [𝑝1(𝛼), 𝑝2(𝛼)]] 

𝑔(𝑘, 𝑦0, 𝑡)|𝛽 = [𝑦21(𝑡, 𝛽) = 𝑚𝑖𝑛 {�̂�(𝑘, 𝑦0, 𝑡)}, 𝑦22(𝑡, 𝛽) = 𝑚𝑎𝑥 {𝑔(𝑘, 𝑦0, 𝑡)}| 𝑦0 ∈ [𝑞1(𝛽), 𝑞2(𝛽)]] 

𝑔(𝑘, 𝑦0, 𝑡)|𝛾 = [𝑦31(𝑡, 𝛾) = 𝑚𝑖𝑛 {𝑔(𝑘, 𝑦0, 𝑡)}, 𝑦32(𝑡, 𝛾) = 𝑚𝑎𝑥 {𝑔(𝑘, 𝑦0, 𝑡)}| 𝑦0 ∈ [𝑟1(𝛾), 𝑟2(𝛾)]] 

For 𝛼, 𝛽, 𝛾 ∈ [0,1] it is obvious that 𝑦11(𝑡, 𝛼) ≤ 𝑦12(𝑡, 𝛼), 𝑦21(𝑡, 𝛽) ≤ 𝑦22(𝑡, 𝛽) and 𝑦31(𝑡, 𝛾) ≤
𝑦32(𝑡, 𝛾). 
 
The above theory shows that how we may find the parametric neutrosophic function with respect to a 
neutrosophic parameter. 

Two cases happen for the 𝑔(𝑘, 𝑦0, 𝑡). 
Case 1: 𝑔(𝑘, 𝑡) is increasing with respect to 𝑦0 
Then by Zade’s extension principle the solutions are written as follows 

 (�̃�(𝑡))𝛼,𝛽,𝛾 = {𝑔(𝑘, 𝑦0, 𝑡)|𝛼; 𝑔(𝑘, 𝑦0, 𝑡)|𝛽; 𝑔(𝑘, 𝑦0, 𝑡)|𝛾}                                                   (5) 

Where {

𝑔(𝑘, 𝑦0, 𝑡)|𝛼 = [𝑔(𝑘, 𝑝1(𝛼), 𝑡), 𝑔(𝑘, 𝑝2(𝛼), 𝑡)]
𝑔(𝑘, 𝑦0, 𝑡)|𝛽 = [𝑔(𝑘, 𝑞1(𝛽), 𝑡), 𝑔(𝑘, 𝑞2(𝛽), 𝑡)]

𝑔(𝑘, 𝑦0, 𝑡)|𝛾 = [𝑔(𝑘, 𝑟1(𝛾), 𝑡), 𝑔(𝑘, 𝑟2(𝛾), 𝑡)]
                                                    (6) 

and another one is 

Case 2: 𝑔(𝑘, 𝑡) is decreasing with respect to 𝑦0 
Then by Zade’s extension principle the solutions are written as follows 

 (�̃�(𝑡))𝛼,𝛽,𝛾 = {𝑔(𝑘, 𝑦0, 𝑡)|𝛼; 𝑔(𝑘, 𝑦0, 𝑡)|𝛽; 𝑔(𝑘, 𝑦0, 𝑡)|𝛾}                                             (7) 

Where {

𝑔(𝑘, 𝑦0, 𝑡)|𝛼 = [𝑔(𝑘, 𝑝2(𝛼), 𝑡), 𝑔(𝑘, 𝑝1(𝛼), 𝑡)]
𝑔(𝑘, 𝑦0, 𝑡)|𝛽 = [𝑔(𝑘, 𝑞2(𝛽), 𝑡), 𝑔(𝑘, 𝑞1(𝛽), 𝑡)]

𝑔(𝑘, 𝑦0, 𝑡)|𝛾 = [𝑔(𝑘, 𝑟2(𝛾), 𝑡), 𝑔(𝑘, 𝑟1(𝛾), 𝑡)]
                                              (8) 

Note 2: Same concept is applicable if only coefficient 𝑘 is neutrosophic number. 

Note 3: Four cases happen if k and 𝑦0 both are neutrosophic valued, and the cases are as follows: 

Case 1: 𝑔(𝑘, 𝑡) is increasing with respect to k and 𝑦0 both 

Case 2: 𝑔(𝑘, 𝑡) is increasing with respect to k but decreasing with respect to 𝑦0  

Case 3: 𝑔(𝑘, 𝑡) is decreasing with respect to k and increasing with respect to 𝑦0  
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Case 4: 𝑔(𝑘, 𝑡) is decreasing with respect to k and 𝑦0 both 
It should be noted that every time the result should be checked whether it is obeying the neutrosophic 
rules or not.  
 

6. Numerical Illustrations 
Example 1: Consider the fractional differential equation with neutrosophic initial value 

{
𝐷𝑏
𝜌𝑐 Ω̃(𝑡) = �̃�(𝑡)

Ω̃0 = (8,12,16;  10, 12,14;  11, 12, 15)
           

Solution:  The solution associated with crisp fractional differential equation is 

   Ω(𝑡) = Ω0𝐸𝜌(𝑡
𝜌) = Ω0 (1 +

𝑡𝜌

Γ(ρ+1)
+

𝑡2𝜌

Γ(2ρ+1)
)   

   (we take the approximated form of Mitag-Lafler function up to third term). 

Now 
𝑑Ω(𝑡)

𝑑𝑡
= Ω0 (1 +

𝑡𝜌

Γ(ρ+1)
+

𝑡2𝜌

Γ(2ρ+1)
) > 0, 

It shows that the function Ω(𝑡) is an increasing function with respect to 𝑡. 
Now the (𝛼, 𝛽, 𝛾)-cut of the initial value of �̃�0 is 

(Ω̃0)𝛼,𝛽,𝛾 = {[8 + 4𝛼, 16 − 4𝛼]; [12 − 2𝛽, 12 + 2𝛽]; [12 − 𝛽, 12 + 𝛽]}            
Using equation (5) in section 5, we get the neutrosophic solution                                                                      

(Ω̃(𝑡))
𝛼,𝛽,𝛾

= {[Ω𝛼
𝐿 (𝑡), Ω𝛼

𝑅(𝑡)]; [Ω𝛽
𝐿(𝑡), Ω𝛽

𝑅(𝑡)]; [Ω𝛾
𝐿(𝑡), Ω𝛾

𝑅(𝑡)]}

= {[(8 + 4𝛼)(1 +
𝑡𝜌

Γ(ρ + 1)
+

𝑡2𝜌

Γ(2ρ + 1)
) , (16 − 4𝛼)(1 +

𝑡𝜌

Γ(ρ + 1)

+
𝑡2𝜌

Γ(2ρ + 1)
)] ; [(12 − 2𝛽)(1 +

𝑡𝜌

Γ(ρ + 1)
+

𝑡2𝜌

Γ(2ρ + 1)
) , (12 + 2𝛽)(1 +

𝑡𝜌

Γ(ρ + 1)

+
𝑡2𝜌

Γ(2ρ + 1)
)] ; [(12 − 𝛾) (1 +

𝑡𝜌

Γ(ρ + 1)
+

𝑡2𝜌

Γ(2ρ + 1)
) , (12 + 𝛾) (1 +

𝑡𝜌

Γ(ρ + 1)

+
𝑡2𝜌

Γ(2ρ + 1)
)]} 

Now the pictorial representation of the solution for ρ = 0.75 and 𝑡 ∈ [0,100] is as follows: 
 

 
Figure 1.  

Solution for ρ = 0.75 and 𝑡 ∈ [0,100] 
Note: Clearly, we that the solution obeys the conditions 
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Ω𝛼
𝐿 (𝑡) ≤ Ω𝛼

𝑅(𝑡), Ω𝛽
𝐿(𝑡) ≤ Ω𝛽

𝑅(𝑡), Ω𝛾
𝐿(𝑡) ≤ Ω𝛾

𝑅(𝑡) 

for particular ρ = 0.75 and 𝑡 ∈ [0,100], 𝛼, 𝛽, 𝛾 ∈ [0,1], therefore it also is a neutrosophic solution. 
Example 2: Consider the fractional differential equation with neutrosophic initial value 

{
𝐷𝑏
𝜌𝑐 Δ̃(𝑡) = −Δ̃(𝑡)

Δ̃0 = (30,50,70;  40, 50,60;  45,50,55)
 

Solution: The crisp solution is Δ(𝑡) = Δ0𝐸𝜌(−𝑡
𝜌) = Δ0 (−1 −

𝑡𝜌

Γ(ρ+1)
−

𝑡2𝜌

Γ(2ρ+1)
) (approximated up to 

third term). 

Now 
𝑑Δ(𝑡)

𝑑𝑡
= Δ0 (−1 −

𝑡𝜌

Γ(ρ+1)
−

𝑡2𝜌

Γ(2ρ+1)
) < 0,   

which is an increasing function with respect to 𝑡. 

The (𝛼, 𝛽, 𝛾)-cut of the initial value of Δ̃0 is 

(Δ̃0)𝛼,𝛽,𝛾 = {30 + 20𝛼, 70 − 20𝛼]; [50 − 10𝛽, 50 + 10𝛽]; [50 − 5𝛽, 50 + 5𝛽]}            
Using equation (6) from section 5 we get                                                                      

(Δ̃(𝑡))
𝛼,𝛽,𝛾

= {[Δ𝛼
𝐿 (𝑡), Δ𝛼

𝑅(𝑡)]; [Δ𝛽
𝐿 (𝑡), Δ𝛽

𝑅(𝑡)]; [Δ𝛾
𝐿(𝑡), Δ𝛾

𝑅(𝑡)]}

= {[(70 − 20𝛼)(−1 −
𝑡𝜌

Γ(ρ + 1)
−

𝑡2𝜌

Γ(2ρ + 1)
) , (30 + 20𝛼)(−1 −

𝑡𝜌

Γ(ρ + 1)

−
𝑡2𝜌

Γ(2ρ + 1)
)] ; [(50 + 10𝛽)(−1 −

𝑡𝜌

Γ(ρ + 1)
−

𝑡2𝜌

Γ(2ρ + 1)
) , (50 − 10𝛽)(−1

−
𝑡𝜌

Γ(ρ + 1)
−

𝑡2𝜌

Γ(2ρ + 1)
)] ; [(50 + 5𝛾) (−1 −

𝑡𝜌

Γ(ρ + 1)
−

𝑡2𝜌

Γ(2ρ + 1)
) , (50 − 5𝛾) (−1

−
𝑡𝜌

Γ(ρ + 1)
−

𝑡2𝜌

Γ(2ρ + 1)
)]} 

 

Now the pictorial representation of the solution for ρ = 0.25 and 𝑡 ∈ [0,100] is as follows: 
 

 
Figure 2. 

Solution for ρ = 0.25 and 𝑡 ∈ [0,100] 
Note: Clearly, we that the solution obeys the conditions 
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Δ𝛼
𝐿 (𝑡) ≤ Δ𝛼

𝑅(𝑡), Δ𝛽
𝐿 (𝑡) ≤ Δ𝛽

𝑅(𝑡), Δ𝛾
𝐿 (𝑡) ≤ Δ𝛾

𝑅(𝑡) 

for particular ρ = 0.25 and 𝑡 ∈ [0,100], 𝛼, 𝛽, 𝛾 ∈ [0,1], therefore it also is a neutrosophic solution. 
 

7. Conclusion and Future Research Scope  
In this paper, we have illustrated neutrosophic extension principal method for efficiently solving the 

neutrosophic fuzzy fractional differential equations (NFFDEs).  By participating the extension principal 
method into the framework of fractional calculus ideology in neutrosophic fuzzy environments a 
complex system formed. The advanced method extends classical solution strategy to handle 
neutrosophic fuzzy initial conditions. Several illustrative examples demonstrated the viability, 
reliability, and flexibility of the proposed method. Overall, the proposed methods provide a systematic, 
reliable, and adaptable tool for dealing with fractional calculus systems influenced by multifaceted 
uncertainties like neutrosophic sets. 

There are various aspects for future research extension based on the present work. One of the 
proposals is to extend the methodology into system of fractional differential equations with 
neutrosophic uncertainty. Another development done for nonlinear systems numerical algorithm 
findings rather than the analytical solutions which may difficult sometimes to obtained.  By considering 
several fractional derivatives like the Caputo–Fabrizio or Atangana–Baleanu derivatives with the 
neutrosophic fuzzy settings which could also improve the model's capability to capture different types of 
memory effects. The uncertainty parameters also change with respect to decision makers need, the 
extension of neutrosophic sets such as cylindrical neutrosophic sets may considered. The core 
applications may be found from the field like engineering science, mathematical biology and economics 
for adopting the fractional calculus theory with uncertainty.  Future research also focusses on by 
integrating optimization methods in the solution methdology, which allowing for parameter 
identification and system optimization in various complex neutrosophic fractional modelling. 
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