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Abstract: The Kalman filter is widely used in different applications, such as signal processing, modem 
control, and communication. It is instrumental in estimating system states with unknown statistics. The 
application can be significant in improving the accuracy and precision of state estimation for both linear 
and non-linear systems. The Extended Kalman Filter (EKF) is one of the important methods for the 
non-linear application of the Kalman filter, among other variations. The resulting expressions exhibit 
unity in that they apply to different situations involving localization procedures. This work presents the 
optimization of an improved EKF for mobile robot navigation by finding the best ways to reduce the 
time taken to complete the job. 
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1. Introduction  

In recent decades, the localization problem has been extensively studied, and many approaches have 
been developed to estimate robots' status [1]. 

Mobile robots are widely used in many fields, including construction, entertainment, medical care, 
planetary exploration, warehouses, agriculture, industrial automation, and product deliveries [2]. 
Several research is being conducted in mobile robotics to improve navigation in challenging and 
complex environments [3]. 

A mobile robot can independently move and complete tasks. It achieves this with perceptual and 
control systems or cognition units coordinating all its subsystems that comprise the task [4]. The 
Kalman Filter (KF) can safely integrate visual annotations for navigational purposes with additional 
information from the sensor and inertial sensors [5, 6]. The KF primarily relies on an iterative 
approach that utilizes store or historical data on noise characteristics to adjust accordingly and filter the 
noise. The KF is better and suitable for linear stochastic processes. Conversely, the Extended Kalman 
Filter (EKF) can be applied to non-linear processes. Regarding both noise estimating and process 
designs, the EKF algorithm can be widely applied in a non-linear system with autonomous noise. Since 
most systems in engineering are non-linear, the EKF is given more attention compared with KF [7]. 
However, there are two major issues with the EKF. Finding the estimate noise covariance matrix and 
the process noise covariance matrix is challenging for the EKF due to its difficulty obtaining previous 
information about the field of operation. If the EKF obtains the fixed noise covariance matrices and the 
prior information of the operation field, it is difficult to fit all of them [7]. 

For issues involving state estimation, the Extended Kalman Filter (EKF) has been a long attractive 
method. when connected equations have directed the system's dynamics for the past sixty years [2]. 
Though the traditional demonstration of EKF is provided in the global coordinate, numerous studies 
have modified the Kalman filter approach to accommodate systems that exist on smooth manifolds. It is 
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possible to use the traditional extended Kalman filter with any choice of local coordinates, which gives  
better benefit for filter operation by reducing linearization error [8].  

The aim of this work is enhancement of mobile robot navigation for non-liner motion by using the 
improved EKF. The rest of this paper as follows: In Section 2, related work presents the relevant 
literature review. Section 3 presents KF. Section 4 presents the Extended Kalman filter configuration. 
Section 5 presents the EKF performance. Section 6 presents the comparison between linear and 
nonlinear navigation. Formulation is presented in Section 7. Finally, the article’s conclusion presents in 
Section 8. 
 

2. Related Work  
The Kalman filter is an effective recursive computational filter that utilizes noisy measurements to 

determine a system's internal state. It is essentially used for linear systems, while its basic formulation is 
only appropriate for linear systems [9]. KF derivatives deal with the first branch of the approaches that 
apply filters [10, 11]. The Kalman filter, known for its reliability, combines the sensory data input and 
estimates the robot's state [12]. The Kalman filter is regarded as the best estimation for uncertain 
systems [13]. 

While the Kalman filter (KF) assumes that Gaussian noises affected the data, mostly in practical 
situations. KFs are primarily designed to handle linear system problems in their most basic form [14]. 
However, KF is now used in various contexts, mainly autonomous robot navigation. It is a system of 
mathematical formulas that provides a practical and effective computational format for estimating a 
process's state to minimize the mean error [15]. KF is essential in several aspects, including its 
estimated, current, and prospective states. Researchers have demonstrated several navigation-related 
Kalman filter applications, including integrated navigation systems [16] and inertial navigation [17]. 

Navigation focuses on tracking and managing a mobile robot's movements [9, 18]. Mobile robot 
navigation techniques can increase the accuracy of state estimates for a linear or non-linear system. 
Accurate localization information is necessary for autonomous mobile robots to navigate in any 
environment [15, 19, 20]. 

The Kalman filter (KF) approach is a robust mathematical technique commonly used to tackle 
estimation problems. RE Kalman devised this technique in 1960. The KF approach combines a series of 
equations that provide a recursive solution to discrete difficulties. The best example of this approach's 
output is the efficient estimation of past and future positions; mobile robots' positions and locations (x, y, 
and u) are the best examples. Because of its benefits of being more practical and straightforward, the 
Kalman Filter (KF) has emerged as one of the most popular estimation approaches used in estimating 
states [21, 22]. 

KF is a type of Bayes filter that uses the Gaussians to represent posteriors [23] for example, the 
distributions of unimodal multivariate that can be effectively represented by reduce some  parameters 
that used in the process. The two nonlinear techniques that are most frequently employed in practical 
engineering are the unscented Kalman filter (UKF) and the Extended Kalman Filter(EKF) [24-26]. 

The Extended Kalman Filter (EKF) considers the most popular used and the most well-known. It is 
frequently utilized the algorithm that applies the first-order Taylor series approximation to the 
conventional linear recursive Kalman filter algorithm [9]. Several algorithms are being developed for 
coordinate position estimation using the Extended Kalman Filter (EKF) [27]. The EKF uses the 
Taylor expansion up to the first order to repress the higher orders and only deals with the linearized 
errors [28, 29]. 

 

3. Extended Kalman Filter (EKF)  
EKF is considered the widely used approach for estimating in various applications. It is an improved 

variant of KF. The Kalman filter (KF) is the ideal and best choice when the system under consideration 
is linear and Gaussian random variables represent the uncertainties [30]. As a linearized system, the 
EKF used to deny the nonlinear terms of its related noise [31, 32]. 
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The Extended Kalman filter (EKF) is a powerful navigation filter that is adept to handle linearized 
errors and restrain higher orders. EKF should be used in nonlinear systems due to its dependence on 
the first-order Taylor expansion. In dynamical systems, the Extended Kalman Filter (EKF) is an 
estimating approach widely utilized in many domains involving the state estimation using physical 
sensor readings [24, 26, 33]. 

The EKF is most effective state estimation approaches, It is frequently used to estimate the system 
state variables and measurement noise when some state information is available [34]. Since the Kalman 
filter can minimize the estimated mean square error variance, it is a popular choice for solving nonlinear 
systems' state variable estimation problems. Several engineering fields, including aerospace, marine 
navigation, control systems, manufacturing, and many more, have effectively used linearized EKF [35]. 
The KF is useful for engineering applications and also for time series analysis. In order to improve 
localization, two distinct distributed and centralized architectures based on the Extended Kalman Filter 
(EKF) data fusion method using integrating multi-sensor data  [35-37]. The two main approaches to 
implementing the EKF are the error state space formulation (indirect formulation) and the total state 
space formulation (direct formulation). Conversely, error state space measurement formulation is nearly 
independent of vehicle motions and consists solely of system error. 

 

 
Figure 1. 
Extended Kalman Filter Computation. 

 

4. Extended Kalman Filter Configuration  
When dealing with sequential localization issues in mobile robots, the extended kalman filter has 

shown to be a popular and standard solution [38]. It solves the estimate problem for a nonlinear model 
[39]. The primary principle behind the Extended Kalman Filter (EKF) configuration for error state 
estimation is to re-linearize each estimate as soon as it is obtained. A best reference state of the 
trajectory is included in the estimation process when it is a new state estimate is created. 

The change of the nominal path to the estimated path is an easy and efficient way to solve the 
deviation problem. The Extended Kalman Filter has some similarity to the linearized Kalman filter, 
except that the linearization occurs around the filter's estimated trajectory rather than a precomputed 
nominal trajectory. The Extended Kalman Filter is comparable to a linearized Kalman filter. The only 
adjustment needed is substituting x^k for x nom k when evaluating partial derivatives. 

In other words, since the filter's estimates are based on measurements, the partial derivatives are 
assessed along an updated trajectory. As a result, the filter gain sequence depends on the sample 
measurement sequence. The linearization assumption is valid if the problem is sufficiently observable, as 
shown by the covariance of the estimation uncertainty. This is because the differences between both 
estimated trajectory and actual trajectory along which the expansion is made will remain minimal. EKF 
implementation has two configurations, such as the error state estimate vs. total state estimate [13]. 
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The EKF implementation's configuration has an incorrect state estimation, as shown in Fig. The 
EKF equations are summarized in the table using an error-state formulation. 

 

 
Figure 2. 
Extended Kalman filter configuration with error state of estimation. 

 

 
Figure 3. 
Extended Kalman filter configuration with total state of estimation. 

 
With the total-state of estimation, the configuration of the extended Kalman filter, it is possible to 

track the overall estimations rather than the incremental ones using the fundamental state variables. 
The EKF's basic linearized measurement equation expresses that the measurement given to the Kalman 

filter when working with incremental state variables is 𝑧𝑥  ℎ 𝛿 𝑥𝑘  ; 𝑘  rather than the entire 

measurement (nonlinear) 𝑧𝑘. The equation for the incremental estimate can be updated at step k.  
 

5. Extended Kalman Filter Performance  
Using a mathematical model to depict the system is essential when employing an EKF. I This 

means the designer for EKFs must understand the system sufficiently to explain its behavior. EKF is a 
challenging type of implementing a Kalman filter. Accurate modeling of the system noise is another 
difficulty for Kalman filter. The functions of the preceding anticipated states are estimated when non-
linear functions are present. 

The covariance of the linear system in the EKF approach is obtained analytically by determining the 
posterior covariance matrices following the linearization of the dynamic equations. The state 
distribution for the EKF is estimated by computing a generalized reduced value (GRV). In this case, the 
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EKF provides "first-order" approximations to the optimal terms, such as gain and prediction. Thus, 
much consideration is given to how these models operate when localized. So, applying linear KF and 
EKF could improve the navigation process [14]. 

 

6. Comparison Between Linear and Nonlinear Navigation 
Table 1 shows the comparison between linear and nonlinear navigation with several factors. 
 

Table 1. 
Comparison between linear and nonlinear navigation. 

Type / Factors Linear navigation   KF[40]  Nonlinear navigation  EKF[41]. 
Power system The Kalman filter (KF) is a potent instrument for 

estimating its current state. advanced versions of the 
filters—which are mostly designed for linear filters—are 
constantly required.  
When it comes to power system applications, the 
efficacy of Kalman filtering approach in enhancing the 
computing performance of the conventional steady-state 
estimate method is undeniable. This is particularly true 
when a linear dynamic system is under the control of 
non-linear functions [42]. 
One typical way to build a recursive of the state 
estimation system is by using Kalman Filter (KF) which 
have numerous variations [19]. These systems use a 
kinematic model of the system and the measurement 
variance with the inputs to estimate an updated state 
[42, 43]. 

When it comes to the fluctuations, the 
extended Kalman filter consider as nonlinear 
type that used to estimate the process and all 
the determination related to its process that be 
linearized [19]. 

Use  The actual systems assist as models for each of these 
estimators. This non-linear filter linearizes concerning 
the covariance and mean at present. 

For GPS and the estimation for nonlinear 
systems, the EKF may consider as the 
standard type. 

Application Kalman filtering, a crucial tool, is widely used for state 
estimation and forecasting system applications in the 
weather, stock market, and other industries. 

EKF might not relish the status of being the 
standard filter [44]. 

Effective KF quickly and effectively solves the challenge of 
processing noisy data with errors and imperfections. 

The Extended Kalman Filter (EKF) provides 
first- and higher-order linearization 
approximations for nonlinear systems [14, 
45]. 

Error  For real-time estimates, KF is useful because it is quick 
and takes little memory. It simply needs to store the 
history of the prior state  [45, 46]. 

The EKF is a suitable option in cases where 
the measurement error values are precisely 
resilient, especially when measurements are 
prone to significant errors [15]. 

Determination Identifying and differentiating arbitrary signals [15]. The EKF's position determination accuracy is 
a critical factor, always needing to be higher 
than the GLSA or GRA accuracy [47, 48]. 

Capacity  The capacity of linear Kalman filtering to handle 
partially deterministic data when process noise is absent. 

Based on linearization, the extended Kalman 
filter (EKF) extends the KF to the nonlinear 
case. The highly "linear" form is unsuitable 
when considering singular covariance matrices 
and nonlinear dynamics [48].  

 

7. Formulation 
In the EKF, the observation state space model and state transition model may contain many non-

linear functions rather than linear functions of the state. 

𝑥𝑘 = 𝑓(𝑥𝑘−1  , 𝑢𝑘−1) + 𝑤𝑘−1 
𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘  

The process noises, denoted by wk and the observation noise by vk , zero mean multivariate 

Gaussian noises with covariance are Qk and Rk, respectively. Additionally, the expected state is used to 
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compute the predicted measurement, and the functions f and h assist in estimating the anticipated state 
by utilizing the prior estimate. However, f and h cannot be applied straight to the covariance. Thus, the 
computation of a matrix of partial derivatives, or the Jacobian, is necessary. The Jacobian is computed at 
each time step using the current expected states as guidance. These matrices are employed in the KF 
equations. In actuality, the non-linear function around the current estimate is linearized by this method. 
 
7.1. The Predict and the Update Equations 

1- The Predicted State                          𝑥𝑘(𝑘−1) = 𝑓(𝑥ℎ−1/𝑘−1.𝑢𝑘−1
) 

a- The predicted estimate of covariance                      𝑃𝑘|𝑘−1 =  𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1 + 𝑄𝑘−1  

b- The innovation or the measurement residual              𝑥𝑘 = (𝑧𝑘 − ℎ(𝑥𝑘|𝑘−1) 

c- The innovation (or the residual) covariance              𝑆𝑘 =  𝐻𝑘 𝑃𝑘|𝑘−1 𝐻𝐾
𝑇 + 𝑅𝑘 

d- The optimal the Kalman gain                𝐾𝑘 =  𝑃𝑘|𝑘−1 𝐻𝐾
𝑇 𝑆𝐾

−1  

2- The Update Step  

a- The updated state of the estimation              𝑥𝑘|𝑘 =  𝑥𝑘|𝑘−1 +𝐾𝑘�̌�𝑘 

b- The updated estimation covariance                               𝑃𝑘|𝑘 = (1 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 

Where the following Jacobians are defined as the state transition and the observation matrices. 

𝐾𝑘−1 =  
𝜕𝑓

𝜕𝑥
|𝑥𝑘−1|𝑘−1,𝑈𝑘−1  

𝐻𝑘 =  
𝜕ℎ

𝜕𝑥
|𝑥𝑘|𝑘−|
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Figure 4. 
Flow chart of improved EKF. 
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Table 2. 
Enhancement of use Extended Kalman Filter. 

Factors EKF 

Accurate More accurate than other localization approaches. The EKF maintains the recursive update version of the 
Kalman filter, which is computationally effective [19].   

Estimation  An improvement in prediction error estimation and the estimated noise covariance matrix. 
Suggested 
algorithm 

By modifying an array's geometry, the suggested algorithm's accuracy could be further increased. 

Use The extended Kalman filter is a valuable tool when dealing with nonlinear systems. 

 
Table 2 shows the enhancement of EKF in different factors where EKF is more accurate compared 

with other navigation processes. 
 

8. Conclusion  
EKF is a good solution for issues involving estimation process. This paper presents an improved 

navigation method according to the Extended Kalman filter which enhances the navigation process. 
This work aims to investigate a mobile robot localization method that uses the EKF to determine an 
accurate mobile robot location. The resulting expressions exhibit unity in that they apply to different 
situations involving investigating localization procedures. The combined observation can approximately 
eliminate measurement errors and improve the accuracy of cooperative navigation. 
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