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Abstract: We explore the bouncing scenario within the 𝑓(𝑄, 𝑇) gravity framework in a Bianchi Type-VI 
backgrounds, utilizing a perfect fluid as the matter content. We take into account the idea of the 
bouncing model as bouncing cosmology circumvents the initial singularity, preventing the universe 
from collapsing into a singular point. To elucidate the bouncing and late-time cosmological scenarios, 
we initially sought the exact solution to the field equations by assuming that the shear scalar (𝜎) is 
proportional to the expansion scalar (𝜃). To demonstrate the bouncing cosmology, we consider a 

bouncing scale factor given by ℛ(𝑡) = [1 + 𝑎0(𝑡/𝑡0)2]𝛽𝑒
[

1

(𝛼−1)
(

𝑡𝑠−𝑡

𝑡0
)

1−𝛼
]
. We also consider specific forms of 

𝑓(𝑄, 𝑇) gravity expressed as 𝑓(𝑄, 𝑇) = 𝑎𝑄𝑘 + 𝑏𝑇, where 𝑄 and 𝑇 denotes the non-metricity scalar and 
trace of the energy-momentum tensor respectively. In this investigation, the Hubble parameter begins 
with a negative value, transitions through 𝐻 = 0, and then exhibits a positive behavior, aligning with 
the outlined bouncing cosmology. Near the bouncing point, it is observed that the Equation of State 
parameter crosses the phantom divide line (𝜔 = −1). Then, we discuss the energy conditions, noting 
that both null and strong energy conditions are violated in the vicinity of the bouncing point. The 
outcomes of this study may enhance our understanding of bouncing cosmological scenarios within the 
context of  𝑓(𝑄, 𝑇) gravity. 

Keywords: Bouncing solution, Dark energy, Energy conditions, EoS parameter, Hubble parameter, 𝑓(𝑄, 𝑇) gravity. 

 
1. Introduction  

The modified gravity theory has been proposed as an alternative to General Relativity (GR) to 
address early and late time acceleration. A plethora of theories have been proposed in literature to 
explain this cosmic acceleration. The General Relativity (GR) has provided the most accurate 
predictions for describing cosmological phenomena by decades of experimentation. The GR assumes a 
Levi-Civita connection and implies zero torsion and non-metricity. One of the geometrical modifications 
to GR is known as the teleparallel equivalent of general relativity (TEGR), which utilizes the 
Weitzenbock connection and elicits vanishing curvature and non-metricity. There also exists another 
possibility, to adopt a connection with vanishing curvature and torsion, which provides another 

equivalent formulation of GR known as symmetric teleparallel equivalent of GR (STEGR) [1-4]. In 

TEGR, the gravitational interaction is defined by the torsion, while in STEGR, non-metricity tensor 𝑄 
describes the gravitational interaction. 

In this paper, we consider the extension of 𝑓(𝑄) theory which is known as 𝑓(𝑄, 𝑇) gravity. It is 

based on the coupling of non-metricity 𝑄, and the trace of energy-momentum tensor 𝑇, which was 

presented by Xu, et al. [5]. The coupling between the non-metricity 𝑄 and the trace of energy- 

momentum tensor 𝑇 leads to the non-conservation of the energy-momentum tensor. Many researchers 

have studied the 𝑓(𝑄, 𝑇) gravity theory in different contexts: Godani and Samanta [6] considered 

Friedmann-Lema𝑖t̂re-Robertson-Walker (FLRW) model and explored the evolution of the universe. 
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Pati, et al. [7] studied the Rip cosmological model in 𝑓(𝑄, 𝑇) gravity. Shiravand, et al. [8] studied 

cosmological inflation in 𝑓(𝑄, 𝑇) gravity, and the results indicate that the proposed model provides 

appropriate predictions that are consistent with the observational data. Koussour, et al. [9] studied 

the existence of bulk viscous FLRW cosmological models in a 𝑓(𝑄, 𝑇) gravity. Loo, et al. [10] 

investigated an anisotropic cosmology in the modified 𝑓(𝑄, 𝑇) gravity theory. Narawade, et al. [11] 

presented an accelerating cosmological model of the universe in 𝑓(𝑄, 𝑇) gravity. They also performed a 

dynamic system analysis to validate the stability of the model. Pati, et al. [12] assumed the hyperbolic 

scale factor and constructed the model, and studied its evolutionary behaviour. Narzary and Dewri 
[13] studied the evolutionary behaviour of the 𝑓(𝑄, 𝑇) gravity theory within the context of Bianchi 

type VI metric. Bekkhozhayev, et al. [14] present a model depicting the LRS Bianchi type-I 
spacetime filled with a viscous fluid, examining the effects of viscosity on cosmic expansion within the 

𝑓(𝑄, 𝑇) gravity framework. Additionally, Das and Mandal [15]; Mishra, et al. [16] and Kausar, et 
al. [17] investigate cosmic evolution using 𝑓(𝑄, 𝑇) gravity in different contexts. 

    In accordance with the principles of Big Bang cosmology, our universe began from a singularity 
but had several cosmological issues, such as the flatness problem, horizon problem, entropy problem, 

and singularity problem. To confront these issues, Inflationary cosmology was introduced by Guth 
[18] where the universe expanded exponentially for an extremely short period of time, about 10−30 
seconds immediately after the Big Bang. Inflationary models can resolve all of the aforementioned 
problems. However, the singularity problem remains unsolved, and therefore, as an alternative to the 
inflationary model, the concept of the bouncing model has been considered. In the context of bouncing 
cosmology, the universe contracts until a minimal radius is attained and then expands. Therefore, the 
initial singularity is avoided because the universe never collapses to a single point. The bouncing 
cosmological scenario has been investigated in the context of several modified gravity theories. The 

classical bouncing behaviour in the framework of 𝑓(𝑅, 𝑇) gravity theories has been studied by 
introducing an effective fluid through defining effective energy density and pressure and obtained 
cosmological scenarios exhibiting a non-singular bounce before and after which the universe lies within 

a de-Sitter phase Shabani and Ziaie [19]. Singh, et al. [20] constructed the bouncing cosmological 

model with a specific form of the Hubble parameter within the context of 𝑓(𝑅, 𝑇) gravity. Skugoreva 
and Toporensky [21] explored the bouncing solution in 𝑓(𝑇) gravity and provided a global analysis 
of the corresponding cosmological dynamics in the cases when bounces and static configurations exist 

by constructing phase diagrams. Sahoo, et al. [22] present a matter bounce scenario in the framework 

of 𝑓(𝑅, 𝑇) gravity where 𝑓(𝑅, 𝑇) = 𝑅 + 2λ𝑇, and it is found that the present model is highly unstable at 
the bounce but the perturbations decay out rapidly away from the bounce safeguarding its stability at 

late times. Caruana, et al. [23] investigated the possibility of reproducing some important bouncing 
cosmology scenario, namely symmetric bounce, super bounce, oscillatory cosmology, matter bounce, 

and Type I–IV singularity cases within the framework of 𝑓(𝑇, 𝐵) gravity. Ilyas and Rahman [24] 

studied bouncing cosmology under consideration of different viable models in 𝑓(𝑅) gravity theory that 
can resolve the difficulty of singularity in standard Big-Bang cosmology, and the stability of the model 

is analyzed with the help of sound speed feature, which illustrates late-time stability. Ahmad, et al. 
[25] explore the possibility of some bouncing Universe in Gauss-Bonnet cosmological model with 

logarithmic trace term. Shamir [26] explored the bouncing cosmological model with the logarithmic 

term in the context of 𝑓(𝐺, 𝑇) gravity, and all the results of the proposed 𝑓(𝐺, 𝑇) gravity model provide 

good bouncing solutions. Odintsov, et al. [27] proposed a unified cosmological scenario of an 

asymmetric bounce to the dark energy in the context of Chern-Simons 𝐹(𝑅) gravity. Nojiri, et al. 
[28] investigated a non-singular cosmological scenario in a ghost-free 𝑓(𝑅, 𝐺) model where the 
universe contracts through an ekpyrotic bounce, and it smoothly connected to the dark energy era. 

Agrawal, et al. [29] presented a bouncing cosmological model of the universe in an extended theory 
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of gravity. The geometrical parameters show the singularity at the bouncing epoch, and the coupling 
parameter has a significant role in avoiding the singularity of the EoS (equation of state) parameter at 

the bouncing epoch. Singh, et al. [30] investigate the bounce realization in the context of 𝑓(𝑅, 𝑇) 
gravity by performing a detailed analysis of the cosmological parameters to explain the contraction 
phase, the bounce phase, and the expansion phase and also using linear perturbations in the Hubble 

parameter as well as the energy density discusses the stability of the model. Zubair and Farooq [31] 
examined the various bouncing cosmological models: symmetric bounce, matter bounce, super bounce, 
and oscillatory bounce in a 4D Einstein Gauss-Bonnet gravity and analyzed that the Gauss-Bonnet 
coupling parameter has a lesser contribution to the dynamics of modified gravity while the bouncing 

parameter has noticeable effects. Singh, et al. [20] explored the bouncing scenario in FLRW space-
time by using the reconstruction technique for the power-law parametrization of the Hubble parameter 
in a modified gravity theory with higher-order curvature terms, and it is found that extremal 

acceleration occurs at the bouncing point. Agrawal, et al. [32] have shown the matter bounce scenario 

of the universe in the 𝑓(𝑄) gravity through the phase space analysis, where both the stable and unstable 

nodes are obtained. Malik, et al. [33] studied a bouncing universe considering FLRW space-time to 

find the solutions of field equations within the framework of 𝑓(𝑅, 𝑇) gravity. Gul, et al. [34] explore 
the feasibility of bouncing cosmological models by using various scale factor forms alongside a perfect 

matter configuration within the context of 𝑓(𝑄, 𝑇) gravity. Sharif, et al. [35] examine non-singular 

cosmic bounce models related to Bianchi type-I spacetime within the framework of 𝑓(𝑄) theory. 
In the present work, we investigate the possibility of bouncing solutions within the framework of 

𝑓(𝑄, 𝑇) gravity. We consider the Bianchi type 𝑉𝐼 geometry in which the particular forms of bouncing 

frameworks emerge through the scale factor. We first introduce the basic formalism of 𝑓(𝑄, 𝑇) gravity 

in section 2. In section 3, we solve the 𝑓(𝑄, 𝑇) field equations for Bianchi type-VI metric in the presence 
of perfect fluid and obtain the exact solutions of the field equations in section 4. In sections 5 and 6, the 
dynamical parameters and energy conditions of the cosmological model have been analyzed, 
respectively. The stability of the model is also analyzed in the section 7. The conclusion of our results is 
summarized in the last section 8. 
 

2. Basic Formalism in 𝐟(𝐐, 𝐓) Gravity 
The 𝑓(𝑄, 𝑇) gravity is constrained with the curvature and torsion-free assumptions, i.e., 𝑅ρ

σμν = 0 

and 𝑇ρ
μν = 0. The general action for 𝑓(𝑄, 𝑇) gravity [4] is given as. 

𝑆 = ∫ √(−𝑔) (
1

16π
𝑓(𝑄, 𝑇) + ℒ𝓂) 𝑑4 𝑥       (1) 

Where 𝑄 stands for the non-metricity scalar, 𝑇 for the trace of the stress-energy momentum 

tensor, ℒ𝓂 for the matter lagrangian and 𝑔 ≡ 𝑑𝑒𝑡(𝑔μν). Here, the energy-momentum tensor can be 

defined as. 

𝑇μν =
2

√𝑔

δ(√𝑔ℒ𝓂)

δ𝑔μν        (2) 

The variation of the energy-momentum tensor with respect to the metric tensor becomes 
δ𝑔μν𝑇μν

δ𝑔αβ
= 𝑇αβ + Θαβ 

and Θμν = 𝑔αβ δ𝑇αβ

δ𝑔μν 

Further, the non-metricity scalar is defined as. 

𝑄 ≡ −𝑔μν(𝐿α
βμ𝐿β

να − 𝐿α
βα𝐿β

μν)     (3) 

Where 𝐿α
βμ is the disformation tensor written as. 

𝐿α
βμ = −

1

2
𝑔αλ(∇μ𝑔βλ + ∇β𝑔λμ − ∇λ𝑔μβ) ==

1

2
𝑔αλ(𝑄μβλ + 𝑄βμλ − 𝑄αβμ)     (4) 
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As for the non-metricity tensor 𝑄γμν is expressed as. 

𝑄γμν ≡ ∇γ𝑔μν = −
∂𝑔μν

∂𝑥γ + 𝑔νσΓσ̃ μγ + 𝑔σμΓσ̃ νγ        (5) 

Where Γσ̃ μγ is known as weyl-cartan connection defined as Γγ̃ μν = 𝐿γ
μν + Γγ

μν 

The non-metricity tensor and its traces are obtained as 𝑄μνα ≡ ∇μ𝑔να and 𝑄α ≡ 𝑄α
β

β   , 𝑄α̃ = 𝑄β
αβ 

respectively. 
The superpotential tensor, known as non-metricity conjugate, can be expressed by 

𝑃α
μν =

1

4
[−𝑄μν

α + 2𝑄(μ
𝛼

𝜈)
+ 𝑄α𝑔μν − 𝑄α̃𝑔μν − δ(𝜇

α 𝑄𝜈)] 

= −
1

2
𝐿μν

α +
1

4
(𝑄α − 𝑄α̃)𝑔μν −

1

4
δ(𝜇

α 𝑄𝜈)       (6) 

Regarding this super potential, the non-metric scalar can be defined as 

𝑄 = −𝑄αβγ𝑃αβγ = −
1

4
(−𝑄αγρ𝑄αγρ + 2𝑄αγρ𝑄ραγ − 2𝑄ρ𝑄ρ̃ + 𝑄ρ𝑄ρ) 

Now, varying the gravitational action (1) w.r.t the metric tensor 𝑔μν the corresponding field equations 

of 𝑓(𝑄, 𝑇) gravity is obtained as. 

−
2

√−𝑔
∇α(𝑓𝑄√−𝑔𝑃μν

α ) −
1

2
𝑓𝑔μν + 𝑓𝑇(𝑇μν + Θμν) − 𝑓𝑄 (𝑃μαβ𝑄ν

αβ
− 2𝑄αβ

μ𝑃αβν) = 8π𝑇μν     (7) 

Where 𝑓𝑄 ≡
∂𝑓

∂𝑄
, 𝑓𝑇 ≡

∂𝑓

∂𝑇
. 

 

3. Bianchi Type VI Universe in 𝐟(𝐐, 𝐓) Gravity 
We consider the universe described by spatially homogeneous, anisotropic, and Bianchi type VI 

space-time as. 

𝑑𝑠2 = −𝑑𝑡2 + 𝐴2𝑑𝑥2 + 𝐵2𝑒−2𝑚𝑥𝑑𝑦2 + 𝐶2𝑒2𝑚𝑥𝑑𝑧2      (8) 

Where the scale factors 𝐴, 𝐵 and 𝐶 are the functions of cosmic time 𝑡 and 𝑚 is a non-zero constant. 
The non-metricity scalar for Bianchi type-VI space-time becomes. 

𝑄 = 2 [
𝐴�̇̇�

𝐴𝐵
+

𝐵�̇̇�

𝐵𝐶
+

𝐴�̇̇�

𝐴𝐶
+

𝑚2

𝐴2 ]        (9) 

Here, we consider the energy-momentum tensor 𝑇μν in the form of a perfect fluid, which can be 

parametrized as. 

𝑇μν = (ρ + 𝑝)𝑢μ𝑢ν + 𝑝𝑔μν       (10) 

Where ρ and 𝑝 are the energy density and pressure of the matter content. The four-velocity vector 

𝑢μ is presumed to satisfy 𝑢μ𝑢μ = −1. 

By the definition of 𝑇μν, the Θμν can be expressed. 

Θμν = ℒ𝓂𝑔μν − 2𝑇μν     (11) 

Furthermore, we take the matter Lagrangian as ℒ𝓂 = 𝑝 and hence. 

Θν
μ

= 𝑝δν
μ

− 2𝑇𝜈
μ
     (12) 

By using the equations (8) and (10) in equation (7), the field equation of 𝑓(𝑄, 𝑇) gravity (7) in the 
Bianchi type-VI space-time can be obtained as. 

𝑓(𝑄,𝑇)

2
− 𝑓𝑄 [

�̈�

𝐵
+

�̈�

𝐶
+

𝐴�̇̇�

𝐴𝐵
+

2𝐵�̇̇�

𝐵𝐶
+

𝐴�̇̇�

𝐴𝐶
+

2𝑚2

𝐴2 ] − 𝑓�̇� [
�̇�

𝐵
+

�̇�

𝐶
] = −8π𝑝      (13) 

𝑓(𝑄,𝑇)

2
− 𝑓𝑄 [

�̈�

𝐴
+

�̈�

𝐶
+

𝐴�̇̇�

𝐴𝐵
+

𝐵�̇̇�

𝐵𝐶
+

2𝐴�̇̇�

𝐴𝐶
] − 𝑓�̇� [

�̇�

𝐴
+

�̇�

𝐶
] = −8π𝑝              (14) 

𝑓(𝑄,𝑇)

2
− 𝑓𝑄 [

�̈�

𝐴
+

�̈�

𝐵
+

2𝐴�̇̇�

𝐴𝐵
+

𝐵�̇̇�

𝐵𝐶
+

𝐴�̇̇�

𝐴𝐶
] − 𝑓�̇� [

�̇�

𝐴
+

�̇�

𝐵
] = −8π𝑝            (15) 

𝑓(𝑄,𝑇)

2
− 2𝑓𝑄 [

𝐴�̇̇�

𝐴𝐵
+

𝐵�̇̇�

𝐵𝐶
+

𝐴�̇̇�

𝐴𝐶
] = 8πρ + 8π𝐺(ρ + 𝑝)               (16) 
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𝑚𝑓𝑄 [
�̇�

𝐵
−

�̇�

𝐶
] = 0         (17) 

The overhead dot represents the derivative with respect to cosmic t. In this case, 𝑓𝑄 and 8π𝐺 ≡ 𝑓𝑇 

represent differentiation with respect to 𝑄 and 𝑇 respectively. 
We define the following physical parameters, which are important in solving field equations and 

cosmological observations. 

The spatial volume 𝑉 and average scale factor ℛ are defined as. 

𝑉 = ℛ3 = 𝐴𝐵𝐶     (18) 
The Hubble parameter is defined as. 

𝐻 =
ℛ̇

ℛ
=

1

3
(

�̇�

𝐴
+

�̇�

𝐵
+

�̇�

𝐶
)     (19) 

The deceleration parameter, expansion scalar θ and shear scalar σ2 are defined as. 

𝑞 = −
ℛℛ̈

ℛ2̇ = −1 +
𝑑

𝑑𝑡
(

1

𝐻
)      (20) 

θ = 3𝐻             (21) 

σ2 =
1

2
(∑ 𝐻𝑖

23
𝑖=1 − 3𝐻2)         (22) 

The anisotropy parameter 𝐴𝑚 of the expansion is characterized by the directional Hubble 
parameters, and the mean Hubble parameter is given as. 

𝐴𝑚 =
1

3
∑ (

𝐻𝑖−𝐻

𝐻
)

2
3
𝑖=1 =

2σ2

3𝐻2      (23) 

Where𝐻1, 𝐻2 and 𝐻3 are directional Hubble parameters in the direction of 𝑥, 𝑦 and 𝑧 − 𝑎𝑥𝑖𝑠, 

respectively, and 𝐻1 =
�̇�

𝐴
, 𝐻2 =

�̇�

𝐵
 and 𝐻3 =

�̇�

𝐶
 

 

4. Solutions of Bianchi Type VI Model 
The solution of Eq. (17) yields. 

𝐶 = 𝑐1𝐵     (24) 

Where 𝑐1 > 0 is the constant of integration. Without loss of generality, we take 𝑐1 = 1 for the sake 

of simplicity. Using the value of 𝐶 in the above equations (13)-(16), we obtain. 
𝑓(𝑄,𝑇)

2
− 𝑓𝑄 [

2�̈�

𝐵
+

2𝐴�̇̇�

𝐴𝐵
+

2𝐵2̇

𝐵2 +
2𝑚2

𝐴2 ] − 2𝑓�̇�
�̇�

𝐵
= −8π𝑝      (25) 

𝑓(𝑄,𝑇)

2
− 𝑓𝑄 [

�̈�

𝐴
+

�̈�

𝐵
+

3𝐴�̇̇�

𝐴𝐵
+

𝐵2̇

𝐵2] − 𝑓�̇� [
�̇�

𝐵
+

�̇�

𝐶
] = −8π𝑝      (26) 

𝑓(𝑄,𝑇)

2
− 2𝑓𝑄 [

2𝐴�̇̇�

𝐴𝐵
+

𝐵2̇

𝐵2] = 8πρ + 8π𝐺(ρ + 𝑝)     (27) 

From Eq. (25) and (26) we get. 
𝑓(𝑄,𝑇)

2
−

𝑓𝑄

2
[

�̈�

𝐴
+

3�̈�

𝐵
+

5𝐴�̇̇�

𝐴𝐵
+

3𝐵2̇

𝐵2 +
2𝑚2

𝐴2 ] −
𝑓�̇�

2
[

3�̇�

𝐵
+

�̇�

𝐴
] = −8π𝑝     (28) 

Therefore, Eq. (27) becomes. 

𝑓(𝑄, 𝑇)

2
−

2𝑓𝑄

1 + 𝐺
[
2𝐴�̇̇�

𝐴𝐵
+

𝐵2̇

𝐵2] −
𝑓𝑄𝐺

2(1 + 𝐺)
[
�̈�

𝐴
+

3�̈�

𝐵
+

5𝐴�̇̇�

𝐴𝐵
+

3𝐵2̇

𝐵2
+

2𝑚2

𝐴2 ] 

−
𝑓�̇�𝐺

2(1+𝐺)
[

3�̇�

𝐵
+

�̇�

𝐴
] = 8πρ       (29) 

We assume that the scalar expansion is proportional to the shear scalar. i.e., θ ∝ σ, which leads to a 
relation between the metric functions as follows. 

𝐴 = 𝐵𝑛     (30) 

Where 𝑛 ≠ 1 is a positive constant. Using this relation in Eqs. (28) and (29), it follows that.  

𝑓(𝑄, 𝑇) − 𝑓𝑄 [
𝐵2̇

𝐵2
(𝑛2 + 4𝑛 + 3) +

�̈�

𝐵
(𝑛 + 3) +

2𝑚2

𝐵2𝑛 ] −
𝑓𝑄�̇�̇

𝐵
(𝑛 + 3) = −16π𝑝     (31) 
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𝑓(𝑄, 𝑇) −
2𝑓𝑄𝐵2̇

(1 + 𝐺)𝐵2
(4𝑛 + 2) −

𝑓𝑄𝐺

(1 + 𝐺)
[
𝐵2̇

𝐵2
(𝑛2 + 4𝑛 + 3) +

�̈�

𝐵
(𝑛 + 3) +

2𝑚2

𝐵2𝑛
] 

−
𝑓𝑄�̇�̇ 𝐺

(1+𝐺)𝐵
(𝑛 + 3) = 16πρ     (32) 

The scale factor present in the Bianchi type-VI metric is considered as [27,28]. 

ℛ(𝑡) = [1 + 𝑎0(𝑡/𝑡0)2]β𝑒𝑥𝑝 [
1

(α−1)
(

𝑡𝑠−𝑡

𝑡0
)

1−α
]      (33) 

Where β, α are dimensionless parameters, while 𝑡𝑠 and 𝑡0 have the dimesions of time. The 

parameter 𝑡𝑜 is a fiducial time taken to make the above expression dimensionally correct, and we take 

𝑡0 = 1𝐵𝑌 (Billion Years). We also assume that 𝑡 ≤ 𝑡𝑠. In effect, the scale factor can be re-written as. 

ℛ(𝑡) = [1 + 𝑎0𝑡2]β 𝑒𝑥𝑝 [
1

(α−1)
(𝑡𝑠 − 𝑡)1−α]     (34) 

The above scale factor can be written as a product of ℛ1(𝑡) and ℛ2(𝑡) respectively, where ℛ1(𝑡) =

[1 + 𝑎0𝑡2]β and ℛ2(𝑡) = 𝑒𝑥𝑝 [
1

(α−1)
(𝑡𝑠 − 𝑡)1−α]. One may get non-singular ekpyrotic bounce with β <

1/6 for 𝑅1(𝑡), however for the large positive cosmic time, ℛ1(𝑡) goes as 𝑡2β which is incompatible in 

getting viable dark energy model. The goal of the scale factor ℛ2(𝑡) is to obtain a feasible dark energy 

epoch at a later period. Because of exponential behavior, ℛ2(𝑡) plays essentially no part in the universe's 

contracting stage; hence, the bouncing behavior is solely governed by ℛ1(𝑡). However, the time of 

bounce is slightly altered by the presence of ℛ2(𝑡). The scale factor ℛ(𝑡) of Eq. (34) appears to 
emphasize, in particular, the unification of an ekpyrotic bounce to a feasible dark energy era, with an 

intermediate deceleration period in between the bounce and followed by late-time acceleration [27, 28]. 
Using Eq. (30) and (34) in Eq. (18) we obtained the expressions. 

𝐴(𝑡) = [{1 + 𝑎0𝑡2}β𝑒𝑥𝑝
1

(α−1)
(𝑡𝑠 − 𝑡)1−α]

3𝑛

𝑛+2
      (35) 

𝐵(𝑡) = [{1 + 𝑎0𝑡2}β𝑒𝑥𝑝
1

(α−1)
(𝑡𝑠 − 𝑡)1−α]

3

𝑛+2
      (36) 

𝐶(𝑡) = [{1 + 𝑎0𝑡2}β𝑒𝑥𝑝
1

(α−1)
(𝑡𝑠 − 𝑡)1−α]

3

𝑛+2
     (37) 

Now, using Eqs. (35), (36) and (37) in equation (8), we can write the Bianchi type-𝑉𝐼 model in the 
present case as. 

𝑑𝑠2 = −𝑑𝑡2 + [1 + 𝑎0(𝑡/𝑡0)2]β𝑒𝑥𝑝 [
1

(α−1)
(

𝑡𝑠−𝑡

𝑡0
)

1−α
]

6𝑛

𝑛+2

𝑑𝑥2 + [1 +

                  𝑎0 (
𝑡

𝑡0
)

2
]

β

𝑒𝑥𝑝 [
1

(α−1)
(

𝑡𝑠−𝑡

𝑡0
)

1−α
]

6

𝑛+2
(𝑒−2𝑚𝑥𝑑𝑦2 + 𝑒2𝑚𝑥𝑑𝑧2)                       (38) 

 

5. Bouncing Behaviour in 𝒇(𝑸, 𝑻) Gravity 
Now, using eq. (34), the Hubble parameter can be obtained as. 

𝐻 =
2β𝑎0𝑡

1+𝑎0𝑡2 +
1

(𝑡𝑠−𝑡)α      (39) 

In a general bouncing cosmology, the evolution of the universe consists of two eras: the era of 
contraction, where the Hubble parameter is negative, and an era of expansion, having a positive Hubble 

parameter. In particular, the bounce phenomena are defined by the conditions 𝐻 = 0 and �̇� > 0 at the 
bouncing epoch. The evolutionary behavior of the Hubble parameter is shown in the fig. (1). The 
Hubble parameter satisfies the conditions for the bouncing phenomena as it comes from the negative 

value passing through zero at 𝑡 < 0, and then it has a positive behavior. 
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Figure 1. 

Time evolution of Hubble Parameter 𝑯(𝒕). The inner insert shows the 

zoomed-in version of 𝑯(𝒕) near the bounce (𝒂𝟎 = 𝟏. 𝟓, 𝒕𝒔 = 𝟑𝟑, 𝜶 =
𝟏. 𝟐𝟕, 𝜷 = 𝟎. 𝟏𝟓). 

 
Table 1. 
Evolution of Hubble Parameter. 

Time (Gyr) Nature of 𝑯 

−∞ < 𝑡 < −0.026 Contracting 

𝑡 ≈ −0.026 𝐻 ≈ 0 

−0.026 < 𝑡 < ∞ Expanding 

 

The deceleration parameter 𝑞 in cosmology indicates that the decelerating and accelerating aspect 
of the expansion of the universe is an essential cosmological variable. The deceleration parameter for 
this model can be expressed as: 

𝑞 = −1 −
(𝑡𝑠−𝑡)α−1[α(1+𝑎0𝑡2)

2
−2𝑎0β(𝑎0𝑡2−1)(𝑡𝑠−𝑡)α+1]

[𝑎0+𝑡(2β(𝑡𝑠−𝑡)α+1+1]2      (40) 

The positive range of 𝑞(𝑡) predicts the accelerated universe, and the negative range of 𝑞(𝑡) 

indicates the accelerated universe. From the graphical representation of 𝑞 which is shown in fig (2), it 

can be seen that for the small values of cosmic time, 𝑞(𝑡) ranges at −1 < 𝑞 < 0, it values gradually 

decreases to large negative values near the bouncing point. For the large values of cosmic time, 𝑞(𝑡) 

ranges at −1 < 𝑞 < 0. Therefore, it can be stated that the present model predicts the accelerated phase 
of the universe. 
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Figure 2. 
Time evolution of Deceleration Parameter q(t). The inner insert shows the zoomed-in 

version of q(t) around the present cosmic time. (𝒂𝟎 = 𝟏. 𝟓, 𝒕𝒔 = 𝟑𝟑, 𝜶 = 𝟏. 𝟐𝟕, 𝜷 =
𝟎. 𝟏𝟓). 

 
Table 2. 
Deceleration Parameter at different epoch. 

Epoch Time (Gyr) 𝒒 Nature of 𝒒 

At Bounce 𝑡 = −0.026 𝑞 < −1 Super exponential expansion 

Early Phase 𝑡 = 3 3.255 9 Decelerating expansion 

At Present 𝑡 = 13.8 −0.28 Exponential expansion 

Late Phase 𝑡 = 16 −0.904 Exponential expansion 

 

Also, the physical quantities such as Spatial volume of scale factor (𝑉), scalar of expansion (θ), 

Shear scalar (σ), and mean anisotropy parameter (𝐴𝑚) are derived as: 

𝑉 = [(1 + 𝑎0𝑡2)β𝑒𝑥𝑝
1

(α−1)
(𝑡𝑠 − 𝑡)1−α]

3
     (41) 

𝜃 = 3 [
2β𝑎0𝑡

1+𝑎0𝑡2 +
1

(𝑡𝑠−𝑡)α]                (42) 

σ2 = 3 [
2β𝑎0𝑡

1+𝑎0𝑡2 +
1

(𝑡𝑠−𝑡)α]
2

(
𝑛−1

𝑛+2
)

2
       (43) 

𝐴𝑚 = 2 (
𝑛−1

𝑛+2
)

2
                   (44) 

The graphical representation of Volume 𝑉, Shear scalar σ, and expansion scalar θ with time is 

shown in the fig (3). The spatial volume is finite at 𝑡 = 0, and it increases to a large value with an 

increase in time. The expansion scalar θ is negative at small values of cosmic time passing through zero 

and takes the positive values as 𝑡 → ∞. The Shear Scalar σ decreases positively at the bounce point, 
after which it increases to its maximal value near the bounce. However, it rapidly decreases and ends up 
vanishingly small with an increase in time. It can also be observed that the average anisotropy 

parameter associated with the expansion is constant; hence, the model is anisotropic. For 𝑛 = 1, it 
becomes isotropic and shear-free. 
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Figure 3. 

Time evolution of expansion scalar θ (upper panel), Shear Scalar σ (middle panel) and Volume 𝑉 (lower panel) 

(𝑎0 = 1.5, 𝑡𝑠 = 33, 𝛼 = 1.27, 𝛽 = 0.15, 𝑛 = 3). 

 

To investigate a viable cosmological scenario in the framework of 𝑓(𝑄, 𝑇) gravity theory, a certain 

assumed form of the functional 𝑓(𝑄, 𝑇) must be considered. In this paper, to get the viable cosmological 

model, we consider the non-linear functional form of 𝑓(𝑄, 𝑇) gravity as 𝑓(𝑄, 𝑇) = 𝑎𝑄𝑘 + 𝑏𝑇 where 𝑎 

and 𝑏 are the free parameters. 
 

5.1. Cosmological Model with 𝑓(𝑄, 𝑇) = 𝑎𝑄𝑘 + 𝑏𝑇 
We consider the linear form of the functional in the form 𝑓(𝑄, 𝑇) = 𝑎𝑄𝑘 + 𝑏𝑇 such that 𝑓𝑄 = 𝑎𝑘𝑄𝑘−1, 

𝑓�̇� = (𝑘 − 1)
𝐹

𝑄

𝑑𝑄

𝑑𝑡
, 𝐺 =

𝑏

8π
, 𝐺1 =

𝐺

1+𝐺
 and 𝑄 = 2{

3(2𝑛+1)

(𝑛+2)
[

2β𝑎0𝑡

1+𝑎0𝑡2 +
1

(𝑡𝑠−𝑡)α]
2

+ 𝑚2 [{1 + 𝑎0𝑡2}β 𝑒𝑥𝑝{
1

(α−1)
(𝑡𝑠 −

𝑡)1−α}]

−6𝑛

𝑛+2
} 

So, the pressure and energy density can be obtained as. 

𝑝 =
1

8π(4+8𝐺)
[−2𝑎𝑄𝑘 + (2 + 𝐺 − 𝐺𝐺1){(𝑛2 + 4𝑛 + 3)𝑓𝑄

𝐵2̇

𝐵2 + (𝑛 + 3) (
𝑓𝑄�̈�

𝐵
+

𝑓𝑄�̇�̇

𝐵
) +

                                   
2𝑚2𝑓𝑄

𝐵2𝑛 } + 2𝐺1(4𝑛 + 2)𝑓𝑄
𝐵2̇

𝐵2]                                                    (45) 

ρ =
1

8π(4+8𝐺)
[2𝑎𝑄𝑘 + (3𝐺 − (2 + 3𝐺)𝐺1){(𝑛2 + 4𝑛 + 3)𝑓𝑄

𝐵2̇

𝐵2 + (𝑛 + 3) (
𝑓𝑄�̈�

𝐵
+

𝑓𝑄�̇�̇

𝐵
) +

                               
2𝑚2𝑓𝑄

𝐵2𝑛 } − 2(4𝑛 + 2) (
2

1+𝐺
+ 3𝐺1) 𝑓𝑄

𝐵2̇

𝐵2]                                   (46) 



2632 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 5: 2623-2638, 2025 
DOI: 10.55214/25768484.v9i5.7526 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 4. 

Time evolution of energy density ρ. 
 

(𝑎0 = 1.5, 𝑡𝑠 = 33, 𝛼 = 1.27, 𝛽 = 0.15, 𝑛 = 3, 𝑎 = −80, 𝑏 = −2, 𝑚 = 0.42) 
 

 
Figure 5. 

Time evolution of pressure 𝑝. 
 

(𝑎0 = 1.5, 𝑡𝑠 = 33, 𝛼 = 1.27, 𝛽 = 0.15, 𝑛 = 3, 𝑎 = −80, 𝑏 = −2, 𝑚 = 0.42) 
 

The Equation of state parameter can be obtained as ω =
𝑝

ρ
, 

ω = [−2𝑎𝑄𝑘 + (2 + 𝐺 − 𝐺𝐺1){(𝑛2 + 4𝑛 + 3)𝑓𝑄
𝐵2̇

𝐵2 + (𝑛 + 3) (
𝑓𝑄�̈�

𝐵
+

𝑓𝑄�̇�̇

𝐵
) +

2𝑚2𝑓𝑄

𝐵2𝑛 } + 2𝐺(𝑛 +

2)𝑓𝑄
𝐵2̇

𝐵2] / [2𝑎𝑄𝑘 + (3𝐺(2 + 3𝐺)𝐺1){(𝑛2 + 4𝑛 + 3)𝑓𝑄
𝐵2̇

𝐵2 + (𝑛 + 3) (
𝑓𝑄�̈�

𝐵
+

𝑓𝑄�̇�̇

𝐵
) +

2𝑚2𝑓𝑄

𝐵2𝑛 } −

2(4𝑛 + 2) (
2

1+𝐺
+ 3𝐺1) 𝑓𝑄

𝐵2̇

𝐵2]                                                                                 (47) 

We may substitute in equations (45)-(47) as 
�̇�

𝐵
=

3

𝑛+2
[

2𝑎0β𝑡

1+𝑎0𝑡2 +
1

(𝑡𝑠−𝑡)α] and 
�̈�

𝐵
=

3

𝑛+2
[

3

𝑛+2
(

2𝑎0β𝑡

1+𝑎0𝑡2 +

1

(𝑡𝑠−𝑡)α)
2

+
2𝑎0β

1+𝑎0𝑡2 (1 −
2

1+𝑎0𝑡2) +
1

(𝑡𝑠−𝑡)α+1] to get the respective expressions for pressure, energy density 

and EoS parameter. 
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Figure 6. 

Time evolution of EoS parameter ω. 
 

(𝑎0 = 1.5, 𝑡𝑠 = 33, 𝛼 = 1.27, 𝛽 = 0.15, 𝑛 = 3, 𝑎 = −80, 𝑏 = −2, 𝑚 = 0.42) 
 
Table 3. 

Variation of EoS Parameter (ω) at different Epoch for different values of 𝑘. 

Epoch Time (Gyr) 𝝎(𝒌 = 𝟏) 𝝎(𝒌 = 𝟏. 𝟓) 𝝎(𝒌 = 𝟐) 
At Bounce 𝑡 = −0.026 −22.7555 −22.5472 −22.4445 
Early Phase 𝑡 = 3 −0.6795 0.1839 1.1375 
At Present 𝑡 = 13.8 -1.0157 -0.7838 -0.5489 

Late Phase 𝑡 = 16 -1.2113 -1.3355 -1.4582 

 
The graphical behaviour of energy density and pressure are shown in fig (4) and fig (5), respectively, 

for different values of 𝑘. From fig (4), it can be seen that the energy density of the model is positive 

throughout the evolution of the universe for the values of 𝑘. The behaviour of the pressure for the 

present model shows the negative values throughout the cosmic evolution for 𝑘 = 1. In contrast, for 

𝑘 = 1.5 and 𝑘 = 2, pressure takes the positive values at the pre-bounce and post-bounce epoch for some 
cosmic time and then varies to negative values in the present and late phases of the universe. The 
negative values of the pressure might be an indication of accelerated expansion of the universe. Also, the 
graphical behaviour of the EoS (Equation of State) parameter is represented in fig (6). It is shown that at 

the bouncing point, the EoS parameter ω < −1 satisfies the phantom-dominated phase. The EoS 

parameter shows the quintessence phase near the bounce for 𝑘 = 1 while for 𝑘 = 1.5 and 𝑘 = 2, it takes 

the positive values for some time during the decelerating era. The EoS parameter ω at different epochs 
can be seen in the table (3). 
 

6. Energy Conditions 
In this work, we consider energy conditions to test the validity of the models in the context of 

cosmic acceleration. There are several forms of energy conditions, such as null energy conditions 
(NEC), weak energy conditions (WEC), strong energy conditions (SEC), and dominant energy 

conditions (DEC) are given for the content of the universe in the form of a viscous fluid in 𝑓(𝑄, 𝑇) 

gravity as follows [36]: 

A.  Null energy conditions (NEC) ⇔ ρ + 𝑝 ≥ 0. 

B. Weak energy conditions (WEC) ⇔ ρ + 𝑝 ≥and ρ ≥ 0. 

C. Strong energy conditions (SEC) ⇔ ρ + 3𝑝 ≥ 0. 

D.  Dominant energy conditions (DEC) ⇔ ρ − | {𝑝} | ≥ 0 and ρ ≥ 0. 



2634 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 5: 2623-2638, 2025 
DOI: 10.55214/25768484.v9i5.7526 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 7. 

Time evolution of energy conditions for 𝑘 = 1. The inner insert shows the zoomed-in 
version around the present cosmic time. 

 

(𝑎0 = 1.5, 𝑡𝑠 = 33, 𝛼 = 1.27, 𝛽 = 0.15, 𝑛 = 3, 𝑎 = −80, 𝑏 = −2, 𝑚 = 0.42) 
 

 
Figure 8. 

Time evolution of energy conditions for 𝑘 = 1.5. The inner insert shows the zoomed-in version 
around the present cosmic time. 

 

(𝑎0 = 1.5, 𝑡𝑠 = 33, 𝛼 = 1.27, 𝛽 = 0.15, 𝑛 = 3, 𝑎 = −80, 𝑏 = −2, 𝑚 = 0.42) 
 



2635 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 5: 2623-2638, 2025 
DOI: 10.55214/25768484.v9i5.7526 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 9. 

Time evolution of energy conditions for 𝑘 = 2. The inner insert shows the zoomed-in version around 
the present cosmic time. 

 

(𝑎0 = 1.5, 𝑡𝑠 = 33, 𝛼 = 1.27, 𝛽 = 0.15, 𝑛 = 3, 𝑎 = −80, 𝑏 = −2, 𝑚 = 0.42) 
 

The energy conditions are shown in the fig (7), fig (8) and fig (9) for 𝑘 = 1,1.5 and 2 respectively. It 
shows that the dominant energy condition (DEC) is in the positive domain throughout the evolution of 

the universe for all the values of 𝑘. The null energy condition (NEC) has been in the negative domain 
for some time near the neighborhood of the bouncing point. The strong energy condition (SEC) is 

violated throughout the cosmic evolution for 𝑘 = 1. At the same time, for 𝑘 = 1.5 and 𝑘 = 2, the SEC 
remains positive for some time during the decelerated era. Then, it varies to the negative domain at the 
present and late phases of cosmic evolution. The negative value of SEC also ensures the accelerating 
expansion of the universe, according to recent observational data. 
 

7. Stability Analysis 
The stability of 𝑓(𝑄, 𝑇) gravity is studied in this section. The universe is considered to be filled with 

a perfect fluid for which we may introduce the adiabatic speed of sound 𝐶𝑠
2 =

∂𝑝

∂ρ
. For thermodynamically 

or mechanically stable systems, the sound velocity 𝐶𝑠
2 =

∂𝑝

∂ρ
 should remain positive. Also, in order to 

ensure a mechanical stability, 𝐶𝑠
2 =

∂𝑝

∂ρ
 should be less than 1. Therefore, the region bounded by 0 ≤ 𝐶𝑠

2 ≤

1 provides stable solutions. The violation of NEC can lead to the formation of ghost fields that suggest 

dangerous instabilities at both classical and quantum levels [37]. 

       In fig (10), the stability of the 𝑓(𝑄, 𝑇) gravity is depicted. In the vicinity of the bouncing point, the 
stability condition is not satisfied. Furthermore, in the present time, the stability condition is satisfied 

for 𝑘 = 1.5 and 𝑘 = 2, while for 𝑘 = 1, the stability condition is not satisfied as 𝐶𝑠
2 remains negative. In 

view of these findings, the model may exhibit some instabilities in the late stages of cosmic evolution. 
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Figure 10. 
The behaviour of sound velocity as functions of cosmic time. The inner insert shows the 

zoomed-in version of 𝐶𝑠
2(𝑡) around the present cosmic time. 

 

(𝑎0 = 1.5, 𝑡𝑠 = 33, 𝛼 = 1.27, 𝛽 = 0.15, 𝑛 = 3, 𝑎 = −80, 𝑏 = −2, 𝑚 = 0.42) 

 

8. Conclusion 
In this study, we explored the universe's bouncing behaviour in the Bianchi type-𝑉𝐼 metric within 

the framework of 𝑓(𝑄, 𝑇) gravity. A generic functional form of 𝑓(𝑄, 𝑇), as previously examined in the 

literature, has been taken into consideration. The functional form under consideration is 𝑓(𝑄, 𝑇) =

𝑎𝑄𝑘 + 𝑏𝑇, where 𝑎, 𝑏 and 𝑘 are model parameters. We investigated the possibility of a bouncing 

cosmological scenario using a well-known scale factor ℛ(𝑡) = [1 + 𝑎0𝑡2]β𝑒𝑥𝑝 [
1

(α−1)
(𝑡𝑠 − 𝑡)1−α]. The 

analysis of the bouncing cosmological model provides valuable insights into the dynamics and evolution 

of the universe under the context of  𝑓(𝑄, 𝑇) gravity. The following briefly summarizes the main 
conclusions and findings: 

• The behaviour of the scale factor and Hubble parameter exhibits the characteristics consistent 
with the prescribed bouncing cosmology as the Hubble parameter evolves from the negative value 

passing through 𝐻 = 0, then it shows the positive behaviour. The deceleration parameter at the 
bouncing point shows the super-exponential nature. In the early universe, it became positive for 
quite some time, which shows the decelerating expansion of the universe. The deceleration 
parameter at present shows the exponential expansion of the universe. 

•  The spatial volume is finite at the bouncing point, and post bounce, the volume increases with an 
increase in time. The shear scalar and expansion scalar decrease positively during the bounce era 
with an increase in time. The anisotropy parameter associated with the expansion is constant, and 

for 𝑛 = 1, the anisotropy parameter becomes zero, which indicates the isotropic and shear-free 
model. 

• The model predicts that the energy density is positive throughout the cosmic evolution while the 
pressure profile is negative, which justifies the current cosmic expansion. Furthermore, the EoS 

parameter crosses the phantom divide line (ω = −1) in the vicinity of bouncing point. During the 
early universe, near the bouncing point, the model exhibits matter, and radiation dominated the 
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era for 𝑘 = 1.5 and 𝑘 = 2. The model shows the Quintessence behavior at the present cosmic 
time, and it exhibits the phantom behavior with increasing energy density during late time cosmic 
evolution. 

• For the present model, the null energy condition is annihilated in the neighbourhood of the 
bouncing point. The intense energy condition was satisfied during the decelerating expansion era 

for the values of 𝑘 = 1.5 and 𝑘 = 2. During the accelerated expansion, the SEC is annihilated for 

all the values of 𝑘, which also justifies the current cosmic expansion. 

• The stability of the present model shows that in the bouncing point, the sound velocity remains 
negative, which depicts the instability. The sound velocity gives the positive value in the present 

cosmic time for the certain value of 𝑘. 

Based on the discussion mentioned above, the proposed 𝑓(𝑄, 𝑇) gravity model offers a useful 
framework to comprehend the dynamics of the bouncing universe. 
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