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Abstract: The k-nearest neighbors (KNN) algorithm is widely recognized for its simplicity and 
flexibility in modeling complex, non-linear relationships; however, standard KNN regression does not 
inherently provide prediction intervals (PIs), presenting a persistent challenge for uncertainty 
quantification. This study introduces a bootstrap-based multi-K approach specifically designed to 
construct robust prediction intervals in KNN regression. By systematically aggregating predictions 
across multiple neighborhood sizes through ensemble techniques and bootstrap resampling, the method 
effectively quantifies prediction uncertainty, particularly in challenging high-dimensional scenarios. 
Evaluations conducted on 15 diverse datasets spanning education, healthcare, chemistry, economics, and 
social sciences reveal that the proposed approach consistently achieves competitive predictive accuracy 
compared to traditional regression methods. Although traditional regression produces wider intervals 
with higher coverage probabilities, the proposed bootstrap-based KNN method generates notably 
tighter intervals, enhancing interpretability and practical utility. Despite occasionally reduced coverage 
probabilities, especially in high-dimensional contexts, the proposed methodology effectively balances 
precision and predictive coverage. Practically, this multi-K bootstrap approach provides researchers and 
practitioners with an effective and interpretable method for robust uncertainty quantification in complex 
predictive modeling tasks. 

Keywords: Bootstrapping, Ensemble methods, K-nearest neighbors, KNN regression, Machine learning, Non-parametric 
regression, Prediction intervals, Uncertainty quantification. 

 
1. Introduction  

The k-nearest neighbors (KNN) algorithm is widely recognized for its simplicity, flexibility, and 
effectiveness in modeling complex, nonlinear relationships across diverse fields such as finance, 
environmental monitoring, medical diagnostics, and engineering. Its intuitive nature and minimal 
assumptions make KNN particularly valuable for real-world predictive tasks requiring both accuracy 
and interpretability. 

In the financial domain, KNN has demonstrated substantial potential in tasks such as stock price 
prediction and market analysis Easton, et al. [1]. For example, Alkhatib, et al. [2] utilized KNN to 
forecast stock prices for companies listed on the Jordanian stock exchange, producing predictions 
closely aligned with actual market values. Additionally, Kim [3] compared KNN against support vector 
machines (SVM) and other machine learning (ML) techniques for financial time series forecasting, 
highlighting the method's competitive performance and robustness in modeling intricate financial 
behaviors. 

Beyond finance, KNN has shown significant utility in environmental monitoring and remote 
sensing Chao and Guang Qiu [4]. Thanh Noi and Kappas [5] compared KNN with random forests 
(RF) and SVMs for land cover classification using Sentinel-2 satellite imagery, demonstrating KNN’s 
strong performance. KNN has also effectively contributed to air quality prediction and monitoring [6, 
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7] and has proven adaptable in forecasting COVID-19 cases Sejuti and Islam [8] thus underscoring its 
applicability to pressing public health and environmental issues. 

In engineering, KNN has been successfully applied to various predictive tasks. For instance, Al-
Dosary, et al. [9] demonstrated the effectiveness of KNN in predicting fuel consumption for tractor-
chisel plow systems, achieving superior outcomes compared to traditional multiple linear regression 
(MLR) models. Zhang, et al. [10] introduced a hybrid metric-based KNN approach incorporating both 
distance and direction information, enhancing forward gait stability control in bipedal robots and 
effectively identifying faults associated with abnormal motion. Similarly, Jegorowa, et al. [11] 
developed a non-invasive, automated system employing KNN to evaluate drill-bit conditions based on 
operational data such as feed force, cutting torque, jig vibrations, acoustic emissions, and noise. 

The medical field has also benefited significantly from KNN, especially in automated diagnostic 
systems. Onan [12] proposed a fuzzy-rough nearest neighbor classifier enhanced with consistency-
based subset evaluation and instance selection, resulting in improved accuracy for breast cancer 
diagnosis. Shouman, et al. [13] applied KNN to diagnose heart disease, demonstrating the method’s 
reliability and effectiveness. Liu, et al. [14] employed KNN for predicting early recurrence in 
hepatocellular carcinoma patients, illustrating its strength in oncology. Additionally, Archana and 
Komarasamy [15] introduced an innovative ensemble method combining bagging techniques with 
KNN, significantly enhancing brain malignancy detection accuracy. 

A comprehensive review by Halder, et al. [16] summarized recent advancements in KNN 
methodologies, highlighting the algorithm’s increasing adaptability to various predictive modeling 
challenges. Notable developments include feature randomization and bootstrapping for kernel KNN 
proposed by Srisuradetchai and Suksrikran [17] adaptive soft KNN classifiers capable of estimating 
posterior probabilities introduced by Bermejo and Cabestany [18] and hybrid approaches combining K-
means clustering and KNN classification by Deng, et al. [19]. Further methodological innovations 
encompass dimensionality reduction algorithms such as Q-SNE by Ingram and Munzner [20] 
structured data processing strategies addressing big data challenges by Pramanik, et al. [21] efficient 
data partitioning methods proposed by Saadatfar, et al. [22] NCP-KNN techniques introduced by 
Abdalla and Amer [23] to reduce computational complexity, and advanced exact KNN queries for high-
dimensional data discussed by Ukey, et al. [24]. 

Prediction intervals significantly enhance the practical utility of KNN regression by quantifying 
predictive uncertainty, thereby providing intervals within which true outcomes likely reside, rather than 
offering single point estimates [25]. Such intervals are particularly crucial in decision-making 
scenarios, including aircraft trajectory prediction or parking availability forecasting, where 
understanding outcome variability is essential. Additionally, prediction intervals facilitate more accurate 
assessments of model reliability, especially in scenarios involving heteroscedastic data or complex 
nonlinear relationships [26]. These intervals are especially important in sectors like agriculture and 
healthcare, where managing uncertainty induced by climate variability is paramount. For instance, 
Srisuradetchai [27] demonstrated effective interval forecasting for time-series KNN regression. 

Despite the widespread adoption and continuous advancements in KNN regression methods, 
reliably constructing PIs remains challenging. This study addresses this critical gap by integrating 
ensemble and bootstrap techniques specifically tailored to KNN regression. To our knowledge, 
explicitly incorporating multiple neighborhood sizes (multi-K) within a KNN regression framework to 
systematically construct robust bootstrap-based PIs has not been previously explored. 

Figure 1 illustrates the regression surfaces generated by KNN regression applied to a synthetic 

dataset with two predictors, 1x  and 2x , and a response variable modeled as 1 22sin( ) 0.5y x x = + + , 

where ~ (0,1)N . The visualizations clearly demonstrate the influence of the number of neighbors (𝑘) 

on the regression outcome. With smaller values of 𝑘 (e.g., 𝑘 = 3), the regression surface captures 

detailed local variations, potentially increasing prediction variance. Conversely, larger 𝑘 (e.g., 𝑘 = 15) 
yields smoother surfaces, effectively reducing variance but at the expense of increased bias. This trade-
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off highlights the complexity inherent in selecting an optimal 𝑘, emphasizing the advantage of adopting 

a multi- 𝑘 ensemble approach. These patterns validate the rationale for employing bootstrap-based 

prediction intervals, as combining predictions from multiple 𝑘-values can effectively balance predictive 
accuracy, interpretability, and uncertainty quantification. 
 

 
Figure 1.  
KNN regression surfaces for synthetic data at different neighborhood sizes. 

 

2. K-Nearest Neighbors (KNN) Regression 
KNN regression is a non-parametric, data-driven algorithm extensively used for predicting 

continuous variables. Unlike parametric models that assume predefined functional relationships, KNN 
relies solely on similarity among data points, generating predictions by averaging the target values of 
the K nearest neighbors within the training dataset [17]. This straightforward approach, combined 
with its ability to effectively model complex, nonlinear relationships, has made KNN popular across 
diverse fields such as finance, healthcare, and environmental science. 

The theoretical foundation of KNN regression is succinctly captured by the formula: 

=

= 
1

1
ˆ( )

K

i
i

y x y
K

, 

where i
y  denotes the target values corresponding to the K nearest neighbors of the query point x 

[28]. Selecting an optimal K  significantly impacts the algorithm’s performance by affecting the bias-

variance trade-off. Smaller K  values capture intricate local patterns, reducing bias but increasing 

variance and sensitivity to noise. Conversely, larger K  smoothes variations, increasing bias but 

effectively reducing variance. Therefore, selecting an optimal K  is critical for robust predictive 
performance. 

The accuracy of KNN regression also heavily depends on the choice of distance metric utilized to 
determine the proximity of points. Commonly employed metrics include the Euclidean distance: 

=
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and the Minkowski distance: 
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where p represents the number of features, and q determines the type of distance measure  (q = 2 

corresponds to Euclidean distance, while q = 1 corresponds to Manhattan distance) [29].  
Recent advancements in KNN regression focus on enhancing its adaptability and predictive power. 

Adaptive KNN dynamically adjusts the neighborhood size K  based on local data characteristics, 
optimizing predictive performance for individual query points. Weighted KNN assigns greater influence 
to closer neighbors by applying weights based on distance from the query point. The weighted 
prediction formula is: 

=

=

=
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where the weights 
i
w  are typically defined as ( )

2
1 ( , )

i
d x x . Kernel KNN further enhances 

predictive accuracy by using kernel functions to weight neighbor contributions, enabling improved 
modeling of non-linear relationships. Local linear regression integrates linear modeling within the 

neighborhood defined by the K  nearest neighbors, thus improving local prediction accuracy. 
Additionally, random KNN methods introduce randomness in feature selection and distance calculations 
to enhance robustness and computational efficiency. Ensemble KNN combines predictions from multiple 

KNN models, each employing different values of K  or distance metrics, thereby creating a more stable 
and reliable predictive model [30]. 

Theoretical guarantees underpin the reliability of KNN regression under specific conditions. 

Specifically, as the sample size n  grows toward infinity and the neighborhood size K  increases in such 

a manner that the ratio K/n → 0, the KNN estimator converges to the true regression function. Under 
these conditions, the asymptotic mean squared error (MSE) for KNN regression at a query point xxx 
can be decomposed into its bias and variance components as follows: 

 
 + 
 

4/
1

( ) ( ) ( )

d
K

MSE x B x V x
n K

, 

where B(x) denotes the squared bias, V(x) represents the variance at point x , and d  is the 
dimensionality of the feature space. This decomposition highlights the critical balance between bias and 

variance. A smaller K  results in higher variance but lower bias, whereas a larger value of K  produces 

lower variance but higher bias. Thus, careful selection of the neighborhood size K  relative to the 
sample size n  is essential for optimal predictive accuracy [31, 32]. 
 

3. Cross-Validation Error 
Cross-validation is a widely adopted technique used to assess the predictive performance of 

statistical and machine learning models. Among various methods, V-fold cross-validation is particularly 
popular due to its optimal balance between computational efficiency and reliable error estimation. 

In −V fold cross-validation, the dataset ( ) 
=

=
1

,
n

i i i
yS x  is divided into V  equally sized subsets 

known as folds. Each fold sequentially serves as a test set, while the remaining −1V  folds collectively 
form the training set. This ensures each data point contributes to both training and testing, enhancing 
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the robustness and generalizability of evaluation. Formally, the dataset S  is partitioned into V  subsets, 

Fold
v
 for v  = 1, 2,…, V  , satisfying: 

=

=
1

Fold
v

V

v
S  and  =  Fold Fold ,

i j
i j  

In each iteration v , the model is trained on \Fold
v

S , the complement of the v -th fold, producing 

surrogate model ˆ ( )
v i

ψ x . The predictive error 
v
e  for each fold is calculated as: 
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where  denotes an appropriate loss function such as mean squared error (MSE). After iterating over all 

folds, overall CV error ò -fold

CV
ˆK  is computed as the average of fold-specific errors: 

=
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1

1
ˆ

V

v

K

v

e
V

. 

This process ensures comprehensive error estimates, highlighting the necessity for meticulous 
design and validation when applying V-fold CV, particularly in complex or heterogeneous datasets [33-
35]. 

However, the implementation of V-fold cross-validation can face several challenges. One key issue is 
class imbalance, where certain classes might be underrepresented or entirely excluded from some folds. 

For instance, if Fold
k
 contains only data from one class, the surrogate model ˆ ( )

v
ψ x  may fail to 

generalize to unseen classes. To mitigate this, it is common practice to shuffle the data before 
partitioning it into folds. Shuffling assumes that the samples are independent and identically distributed 
(i.i.d.), allowing for a more balanced representation of classes across folds. Nevertheless, this assumption 
may not hold for time-series or correlated data, where shuffling could result in overly optimistic error 
estimates due to the violation of data dependencies [36-38]. 

Another critical consideration is ensuring representative data distribution across folds. If certain 
regions of the feature space are inadequately represented in training folds, the model may fail to 
generalize effectively when predicting the test fold. These concerns highlight the importance of 

meticulous design and validation when applying V -fold cross-validation, particularly in complex or 
heterogeneous datasets. 
 

4. Performance Criteria 
Evaluating predictive models typically involves metrics that fall into two broad categories: point 

estimation metrics and prediction interval metrics. These metrics provide a comprehensive assessment 
of a model’s accuracy, reliability, and uncertainty quantification capabilities. 
 
4.1. Point Estimation Metrics 
4.1.1. Root Mean Squared Error 

Root mean squared error (RMSE) is widely utilized for measuring prediction error magnitude. 
Mathematically, RMSE is defined as: 

=

= − 2

1

1
ˆ( )

n

i i
i

RMSE y y
n

, 



2755 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 5: 2750-2764, 2025 
DOI: 10.55214/25768484.v9i5.7589 
© 2025 by the authors; licensee Learning Gate 

 

where 
i
y  represents the actual value, ˆ

i
y  is the predicted value, and n is the number of observations. 

RMSE emphasizes large prediction errors, making it particularly useful in applications where 
minimizing substantial deviations is crucial [38]. 
 
4.1.2. Mean Absolute Error 

Mean absolute error (MAE) measures the average magnitude of prediction errors, providing an 
intuitive metric for predictive performance. MAE is calculated as: 

=

= −
1

1
ˆ

n

i i
i

MAE y y
n

, 

Compared to RMSE, MAE is less sensitive to extreme values, making it robust to outliers and suitable 
when reducing large deviations is not critical [39]. 
 
4.1.3. R-Squared 

The coefficient of determination (
2R ) quantifies the proportion of variability in the dependent 

variable explained by the predictive model. Mathematically, it is expressed as: 

=

=

−

= −

−
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2 1

2
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i i
i

n

i
i

y y
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y y
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where y  is the mean of the observed values. The 
2R  metric ranges between negative infinity and 1, 

where values closer to 1 indicate better predictive performance [40, 41]. 
 
4.2. Prediction Interval Metrics 
4.2.1. Coverage Probability 

Coverage probability (CP) evaluates the proportion of actual observed values that fall within 

predicted intervals. Ideally, for a nominal confidence level −(1 )100%,α  empirical CP should closely 

match this nominal level, thus reflecting the interval's reliability. CP serves as a critical metric for 
assessing the accuracy of interval estimates in various statistical contexts, including zero-inflated 
models and regression frameworks [42-44]. It is calculated as: 

=

=  
1

1
CP ( )

n

i i i
i

L y UI
n

, 

where 
i
L  and 

i
U  denote the lower and upper bounds of the prediction interval, respectively, and ( )I  is 

an indicator function. 
 
4.2.2. Expected Length 

Expected length (EL) measures the average width of prediction intervals, calculated as: 

=

= −
1

1
EL ( ).

n

i i
i

U L
n

 

Generally, narrower intervals are preferred, provided they maintain an appropriate CP consistent 
with the desired confidence level. Balancing interval width and CP is essential for effective uncertainty 
quantification [45, 46]. 
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5. Proposed Methodology 
This study introduces a novel methodology termed multi-K KNN regression, explicitly designed to 

enhance prediction intervals (PIs) in K-nearest neighbor (KNN) regression. Although ensemble 
methods, bootstrapping, and cross-validation (CV) are individually well-established, their integrated 
application—specifically tailored to leverage multiple neighborhood sizes (multi-K)—represents a 
significant methodological advancement in KNN regression. By combining predictions from various 
neighborhood sizes with V-fold CV and bootstrap resampling, the proposed framework generates robust 
PIs, accurately quantifying prediction uncertainty and variability. The methodology comprises three 
primary stages: data preprocessing, multi-K prediction generation, and bootstrap-based PI construction. 
 
5.1. Data Preprocessing 

Consider a dataset S  containing n observations: 

=
=  

1
{( , )} , , ,n d

i i i i i
S y yx x  

where 
i
x  are input features and 

i
y  are target values. The dataset is partitioned into V  -fold cross-

validation sets 
1 2

{ , , , }.
V

F F F  In iteration v , fold 
V
F  serves as the validation set, and the remaining 

−1V  folds form the training set 
tr ,v
S . Metrics are subsequently aggregated across folds to ensure 

robustness. 
For consistency and comparability across features, standardization is performed: 

−
 =

,

,

i j j

i j

j

x μ
x

σ
, 

where 
j
μ  and 

j
σ  denote the mean and standard deviation computed from the training set, respectively. 

 
5.2. Multi-K Prediction Generation 

KNN regression predictions are iteratively computed for multiple neighborhood sizes, defined as: 

  = 
 

1,2, , .K n   

For each validation fold 
v
F  and test point 

v
Fx , predictions for each neighborhood size   k K  are 

obtained via: 

=

=  ( )
1

1
ˆ ( )

i

k

ik
y y

k
x , 

where ( )i
y  represents the target values of the k  nearest neighbors identified in 

tr ,v
S . Predictions for all 

k  are collected into the prediction vector:  
 

 
 

= 
1 2
ˆ ˆ ˆ{ ( ), ( ), , ( )}

n
y y y

x
P x x x , 

thereby promoting diversity and enhancing predictive robustness. 
 
5.3. Bootstrap Interval Construction 

Bootstrap resampling generates prediction intervals from x
P . For each test point 

k
Fx : 

1. Bootstrap Sampling: Generate B bootstrap samples from x
P  with replacement. Each bootstrap 

sample is denoted as: 
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( ) ,b
x
P  = 1,2,...,b B . 

2. Bootstrap Mean: Compute the mean prediction for each bootstrap sample: 



= 
( )

( )

( )

1

| | b

b

jb
j

μ y
x

x

Px
P

. 

3. Quantile Estimation: Estimate the 2α -th and ( )−1 2α -th quantiles of the bootstrap means: 

( ) ( )= − =
= =( ) ( )

/2 1 1 /2 1
{ } , { } .b B b B

α b α b
L Q μ U Q μ
x x x x

 

In this paper, we use = 0.05.α   
4. Prediction Interval: Construct the PI for x : 

=PI [ , ]L U
x x x

. 

The complete procedure is succinctly summarized in the following algorithm: 
Input: 

• Dataset: 
=

=
1

{( , )}n
i i i

S yx  

• Number of CV folds: V  

• Neighborhood sizes:   = 
 

1,2, ,K n  

• Number of bootstrap samples: B  

• Confidence level: ( )−1 α  

Procedure: 

1. Partition the dataset into V  folds. 

2. For each fold :
v
F  

• Standardize features based on the training set. 

• For each test point 
v
Fx , compute predictions using KNN for all  .k K  

• Perform bootstrap resampling on predictions to construct PIs. 

Output: Prediction intervals [ , ]L U
x x  for each test point. 

 

6. Evaluation Datasets and Results 
This section presents the datasets used for benchmarking and evaluates the proposed bootstrap 

multi-K KNN regression approach. Results are compared with those obtained from standard regression 
methods. Both point prediction accuracy and interval estimation effectiveness are assessed using the 

metrics RMSE, MAE, MAPE, 𝑅2, CP, and EL. 
 
6.1. Datasets for Benchmarking 

To ensure rigorous evaluation, 15 datasets spanning various fields—including education, healthcare, 
chemistry, economics, and social sciences—were selected. These datasets substantially differ in sample 

size (n), feature dimensionality (𝑝), and response variables, thus enabling comprehensive validation of 
the proposed methodology. Table 1 summarizes these structured datasets, which range from low-
dimensional to high-dimensional settings, covering simple and complex predictive tasks. 
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Table 1.  
Summary of datasets used for benchmarking. 

Datasets n   p  Responses 

Student Performance (MATH) Cortez [47] 395 42 Math Scores 
Student Performance (POR) Cortez [47] 649 30 Portuguese Scores 

Wisconsin Prognostic Breast Cancer (CANCER) 
Wolberg, et al. [48] 

198 34 Recurrence Time 

Polycyclic Aromatic Hydrocarbon 
(PAH)Todeschini, et al. [49] 

80 113 Effectiveness of PDGFH inhibitors  

Platelet-Derived Growth Factor Receptor 
(PDFGR) Guha and Jurs [50] 

79 304 IC50 Biological Activity 

Boston House (BOSTON) Harrison Jr and 
Rubinfeld [51] 

506 16 Median House Value ($1000's) 

Phenethyl (PHEN) Kubinyi [52] 22 629 Phenethyl Derivatives 
TECATOR Borggaard and Thodberg [53] 240 125 Fat Content of Meat Sample 

FRIC4 Friedman [54] 1,000 100 Artificially Generated Model Responses 
Happiness Rank (HAPPY) Helliwell, et al. [55] 235 9 Happiness Scores (World Happiness Report) 

Auto Horse (AUTO) OpenML. dataset-
autoHorse_fixed [56] 

201 69 Price 

Residential Building (RESIDENT) Rafiei [57] 372 108 Actual Selling Price 
Communities and Crime (CRIME) Redmond 
[58] 

1,994 100 Violent Crimes per 100,000 Population 

DETROIT Fisher [59] 13 14 Homicides per 100,000 Population 

qsbr_rw1 (QSBR) Damborsky, et al. [60] 14 51 Structure–Biodegradability Relationships 

 
6.2. Results 

The proposed bootstrap multi-K KNN regression method was evaluated across diverse datasets, 
with results summarized in Figures 2–7. Predictive accuracy is assessed through Figures 2–5, and 
prediction interval quality is analyzed in Figures 6–7. 

 

 
Figure 2.  
Min-max scaled RMSE comparison across datasets. For high-dimensional datasets, only the proposed KNN method is 
applicable. 
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Figure 3.  
Min-max scaled RMSE comparison across datasets.  

 

 
Figure 4.  
Min-max scaled MAE comparison across datasets.  

 
For low-dimensional datasets (where n p ), results for both the proposed KNN and regression 

methods are presented. Overall, both methods show competitive performance, though the proposed 
KNN consistently yields lower RMSE and MAE in several cases (e.g., MATH, BOSTON, HAPPY, and 
RESIDENT), indicating robust predictive accuracy, especially when modeling complex relationships. 
Figure 5 highlights the strength of the proposed KNN in providing superior explanatory power (higher 
R2) compared to regression, particularly in non-linear scenarios such as AUTO and CRIME. 

In high-dimensional settings (PAH, PDFGR, PHEN, DETROIT, and QSBR), where traditional 
regression fails due to the number of predictors exceeding observations, only the proposed KNN results 
are presented. Despite the absence of regression results for comparison, KNN achieves consistently high 
predictive accuracy (R2 > 0.6), demonstrating its utility and robustness in challenging high-dimensional 
scenarios. 

Figure 6 presents CP comparisons. Regression generally achieves higher CP, especially in datasets 
like CANCER, TECATOR, RESIDENT, and CRIME, due to excessively wide intervals. Conversely, 
the proposed KNN maintains tighter intervals, resulting in lower CP for some cases (PHEN, 
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TECATOR). Notably, for datasets such as BOSTON and HAPPY, the proposed KNN intervals provide 
higher or comparable CP, indicating scenarios where regression intervals may be overly conservative or 
unnecessarily wide. 

 

 
Figure 5.  
Min-max scaled R2 comparison across datasets. For high-dimensional datasets, only the proposed KNN method is 
applicable. 

 

 
Figure 6.  
Coverage probability comparison across datasets.  
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Figure 7.  
Log-transformed expected length comparison. 

 
The log-transformed EL results in Figure 7 clarify differences across datasets with varying interval 

widths. Regression intervals consistently exhibit larger EL values across datasets (e.g., MATH, FRIC4, 
CRIME, CANCER, TECATOR, AUTO, and RESIDENT). By contrast, the proposed KNN 
consistently provides narrower intervals, effectively balancing precision and predictive coverage. 

Overall, these results demonstrate the methodological strength of the proposed multi-K bootstrap 
approach, particularly its applicability in high-dimensional contexts and its effectiveness in providing 
compact yet reliable intervals, offering valuable improvements over traditional regression-based 
methods. 
 

7. Conclusion and Discussion 
This study proposed a novel bootstrap-based multi-K approach for constructing robust prediction 

intervals in KNN regression, particularly addressing challenges posed by high-dimensional datasets. 
Traditional regression-based methods fail when predictors exceed observations; however, the proposed 
methodology remains effective under such scenarios, consistently achieving substantial predictive 
accuracy (R² > 0.6). 

Although the proposed KNN intervals often yield lower CP compared to linear regression, 
particularly evident in datasets like TECATOR and PHEN, they significantly outperform regression in 
terms of EL, especially in challenging datasets such as AUTO, RESIDENT, and CANCER. This 
narrower interval enhances interpretability and practical decision-making utility, though it highlights 
the inherent trade-off between interval tightness and coverage reliability. 

Furthermore, this study demonstrates the methodological flexibility of combining ensemble, cross-
validation, and bootstrap methods within a unified multi-K framework, significantly improving interval 
estimation compared to traditional approaches. Future research may explore adaptive weighting or 
feature selection strategies to further optimize coverage probability without substantially sacrificing 
interval compactness. Extending this framework to other machine learning methods and evaluating its 
performance on large-scale datasets may also provide valuable insights for practitioners seeking reliable 
uncertainty quantification tools. 
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