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Abstract: Semantic segmentation of cellular images obtained via optical microscopy is a critical area in 
medical image analysis. However, the irregularity of cellular images on glass slides, along with 
excessive impurities, presents significant challenges for existing segmentation algorithms, leading to 
frequent semantic misclassification. This paper introduces a Hybrid U-Net architecture based on 
encoding channel reconstruction and self-attention calibration bridging to achieve weakly supervised 
extraction of cellular category information. The architecture, built upon a hybrid CNN and transformer 
module framework, first proposes channel reconstruction during the convolutional encoding phase, 
creating a latent space for channel information by expanding the dimensions. Subsequently, texture and 
global information within the latent space are compressed and reconstructed, effectively eliminating 
inter-channel redundancy at minimal additional cost. Additionally, a self-attention calibration bridging 
module is employed in the skip connections, where attention is extracted from shallow features in two 
dimensions. The proposed method is tested and validated on the publicly available SIPaKMeD dataset, 
outperforming other semantic segmentation networks in terms of mIoU and Dice scores. 

Keywords: Channel reconstruction, Hybrid U-Net architecture, Optical microscopy, SIPaKMeD dataset, Weakly-supervised 
learning. 

 
1. Introduction  

Semantic segmentation of cellular images [1] obtained through optical microscopy is a core 
technology in biomedical image analysis, aimed at accurately separating cellular regions from image 
backgrounds or other tissue structures. This task plays a critical role in fields such as cell counting [2] 
pathological diagnosis [3] drug screening [4] and disease research [5]. With the continuous 
advancement of microscopy imaging technologies, the quality of cellular images has significantly 
improved, providing more detailed information for the segmentation task. However, cellular images 
often exhibit complex morphological characteristics, such as significant variations in cell shape, size, and 
density, as well as issues like adhesion, overlapping, and blurred boundaries between cells, making 
semantic segmentation of cells increasingly challenging. 

Early cell segmentation methods primarily relied on classical image processing techniques such as 
thresholding [6] edge detection [7, 8] region growing [9, 10] and morphological operations [11]. 
While these methods could achieve certain results in simpler cases, they typically perform poorly in 
complex cellular images due to their limited robustness to noise, morphological variations, and cell 
overlap. Additionally, traditional methods struggle to fully utilize high-level semantic information from 
the images, limiting improvements in segmentation accuracy. 

With the rapid development of computer vision and deep learning, Convolutional Neural Networks 
(CNNs) [12] have made breakthrough advancements in the field of image segmentation. Deep learning 
methods, by automatically learning prior knowledge from large amounts of labeled data, effectively 
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overcome the limitations of traditional methods, significantly improving segmentation accuracy. 
Notably, deep learning models based on architectures such as Fully Convolutional Networks (FCN), U-
Net [13, 14] and Mask R-CNN [15, 16] are capable of capturing multi-level features of cell 
morphology and structure, using contextual information from the images for accurate segmentation. 
These models can not only recognize individual cells but also handle cell cluster segmentation [17, 18] 
in complex scenarios. 

Currently, research in cell semantic segmentation is continuously expanding and deepening. Recent 
studies have focused on multi-scale feature fusion algorithms [19] as an important approach to enhance 
segmentation performance. By extracting features at different scales, these methods effectively address 
the challenges posed by differences in cell size and morphology. Moreover, incorporating various 
attention mechanisms [20] allows models to focus on the most important regions of the image, thereby 
avoiding background noise interference and improving accuracy. In weakly-supervised [21] cell 
segmentation tasks, image augmentation techniques help achieve good segmentation results even with 
limited data, and the application of semi-supervised [22] learning and transfer learning [23] has 
greatly advanced the research in cell semantic segmentation. 

U-Net models have been widely applied to various medical image segmentation tasks with 
significant progress, but challenges remain in semantic segmentation tasks for cell clusters with 
incomplete labels. First, although U-Net architecture exhibits excellent fitting ability and robustness on 
small-scale datasets, it requires a large amount of high-quality manual annotations as prior knowledge 
to effectively train the correct weights. The complexity and diversity of cell cluster images make the 
annotation process time-consuming and heavily reliant on expert knowledge, and it is difficult to 
accurately annotate all cell shapes. Second, although U-Net architecture with skip connections can 
effectively address cell overlap and occlusion, segmentation errors still occur when cells are highly 
overlapped or boundaries are blurred. 

In this paper, based on the hybrid U-Net architecture incorporating CNN and transformer units, we 
optimize the features in both the encoding and skip connection stages and apply them to weakly-
supervised cell cluster segmentation tasks. Our method enhances the initial encoding stage's 
understanding of channel interactions through the introduction of a CNN-based channel reconstruction 
module. We also use a self-attention calibration bridging module in the skip connection stage to 
decouple and reconstruct features from three different scales along different axes, generating region-
specific attention. The main contributions of this work are summarized as follows: 
i. We reconstructed the training set for the cell cluster segmentation dataset with incomplete labels, 

converting the weakly-supervised segmentation problem into a strongly-supervised task, yielding 
good performance during inference. 

ii. We built a feature channel reconstruction module at the backend of the encoding stage across 
different scales, enhancing the inter-channel interactions and eliminating redundant information 
in the channel dimensions. 

iii. We constructed a self-attention calibration bridging module for the skip connection stage, 
enabling self-attention to be reapplied to the initial features during the transmission process, 
effectively eliminating background interference and various types of noise in cell cluster 
segmentation tasks. 

 

2. Related Work 
2.1. Cell Segmentation 

Researchers have developed numerous algorithms to address the challenges of cell recognition and 
segmentation, which mainly rely on traditional image processing techniques and deep learning-based 
computer vision algorithms. Traditional image processing techniques typically extract specific features 
and perform threshold segmentation and morphological classification based on characteristics such as 
texture, color, shape, and entropy of the cells. For instance, Veta, et al. [24] employed predefined 
nuclear geometries and watershed algorithms for cluster nuclei separation, while Wienert, et al. [25] 
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utilized morphological operations without involving watershed. Liao, et al. [26] used eclipse fitting 
methods for cluster separation. These traditional methods rely heavily on specialized prior knowledge 
and require pre-designed tuning of hyperparameters, which, in practice, have limitations. They are often 
inadequate for handling the complex background interference in cell segmentation tasks and struggle to 
correctly identify features of cells in various biological tissues. 

On the other hand, with the widespread application and development of deep learning in image 
segmentation, many neural network-based end-to-end segmentation algorithms have also been applied 
to cell image segmentation tasks. Li, et al. [27] proposed a segmentation method based on white blood 
cell localization and deep semantic U-Net, achieving semantic segmentation on a small white blood cell 
dataset. Fan, et al. [28] introduced a "white blood cell membrane" system that includes localization and 
segmentation branches. Tran, et al. [29] designed a fully automated white blood cell and red blood cell 
counting system based on SegNet, but neglected the segmentation of nuclear components. Additionally, 
Mahbod, et al. [30] adopted a hybrid model combining U-Net and attention mechanisms, such as SSD 
and U-Net, to perform instance segmentation of cells within clusters. 
 
2.2. Weakly-Supervised Semantic Segmentation  

Weakly-supervised semantic segmentation (WSSS) algorithms primarily generate pseudo-labels to 
create attention-based class activation maps [31, 32] from which segmentation masks are 
reconstructed. Past research has led to heuristic advancements in WSSS, such as adversarial erasure, 
aimed at guiding the network to explore new regions rather than being limited to salient areas. 
Additionally, techniques such as self-supervised learning [31, 33] contrastive learning [34] and cross-
image information [35] have been employed to enhance the accuracy and completeness of CAMs. 
Recently, visual language pre-training techniques [36] have emerged as an effective approach for 
addressing visual-language tasks, with notable applications in WSSS [37]. On the other hand, due to 
the coarse boundaries of initial attention maps, refinement methods such as CRF [38] and IRN [39] 
have been used. However, segmentation results generated from activation maps face issues like 
misalignment and blurred boundaries compared to fully-supervised methods. In this work, we propose a 
data reconstruction approach to address the problem of insufficient labels for cell cluster segmentation 
tasks. 

 

3. Method 

Given a batch of incomplete cell samples of size 𝑁 × ℝ𝐻×𝑊×3, where N denotes the number of 
samples, and R represents the dimensions of the cell cluster’s confocal microscopy imaging with 

𝐻 ×𝑊 × 3, we first reconstruct the incomplete labeled dataset by removing the unlabeled portions and 
reformulating it into a fully labeled dataset. This process transforms the weakly supervised task into a 
strongly supervised one, with specific details provided in section 3.2. Next, an end-to-end multi-class 
semantic segmentation is performed using a hybrid-Unet architecture. Finally, we validate the results 
on an additional manually labeled test set. This section introduces our approach through data 
reconstruction, the channel reconstruction module during the encoding phase, and the self-attention 
calibration bridging module. 



3296 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 5: 3293-3308, 2025 
DOI: 10.55214/25768484.v9i5.7679 
© 2025 by the authors; licensee Learning Gate 

 

3.1. Overall Architecture 
 

 
Figure 1.  
Weakly Supervised Hybrid U-Net Segmentation Flowchart. 

  
The weakly supervised hybrid U-Net segmentation framework constructed in this study is shown in 

Figure 1. The encoder structure consists of three residual convolution blocks at different scales and 
twelve layers of transformer blocks. The CNN encoder progressively reduces the input image scale to 
1/2, 1/4, and 1/8, with each CNN unit containing several residual blocks, a pooling layer, and a channel 
reconstruction layer to represent 2D spatial features. The output features are then converted into a 
linear sequence and input into the transformer encoder. After passing through twelve transformer 
blocks with multi-head self-attention (MSA) mechanisms, the features are restored to 2D 
representations. Subsequently, four stages of upsampling are performed, with the corresponding scale 
feature maps from the CNN backbone decoupled and refocused via the self-attention calibration 
bridging module during the skip connection phase of each upsampling stage. These are then 
concatenated, followed by upsampling and classification to obtain the test labels and inference results. 
The training dataset shown in Figure 1 consists of cell cluster images reconstructed from raw samples, 
with the generation process described in section 3.2. The test input is the raw sample. 
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3.2. Weakly Supervised Data Reconstruction 
 

 
Figure 2.  
Weakly Supervised Data Reconstruction Process 
 

There are three main challenges in image processing and semantic segmentation of cell cluster data: 
The boundaries of cells are unclear, with each individual cell being distinct and exhibiting 

significant variability in shape, color, and features. Cell boundaries are often accompanied by issues such 
as blurring and fading, which can cause confusion with the background or other cells. 

Overlapping regions between individual cells are prevalent. In multi-cell images, cells are not 
typically isolated; cells of the same type tend to overlap and connect, making it difficult to distinguish 
which cell the nucleus and cytoplasm belong to, as well as causing intersection and union problems due 
to cytoplasm overlap. 

The sampling background contains impurities that cause significant interference. For example, some 
impurities appear as black circular shapes, which are difficult to distinguish from the cell nucleus in 
terms of morphology and color, leading to missegmentation and misclassification. 

Therefore, as shown on the left side of Figure 2, manual labeling of each cell is a significant 
challenge. Relying solely on visual observation and experience can only allow for labeling a very small 
number of cells in each image, resulting in incomplete samples. Incomplete data labeling negatively 
impacts the performance and test results of weakly supervised semantic segmentation tasks in two main 
ways: First, in terms of quantity, a multi-cell image typically contains several to dozens of cells. Due to 
the aforementioned reasons, most cells cannot be labeled, leading to a small proportion of correctly 
labeled single-cell images, generally not exceeding 20%. Second, in terms of dataset size, due to the 
limited data collection and the low proportion of positive samples in the entire sample space, overfitting 
and long-tail effects are likely to occur during network training, making it difficult to obtain correct 
weight parameters for testing. 

To address these issues, we have developed a data augmentation method suitable for cell cluster 
data to expand and reconstruct the dataset. Unlike traditional methods such as morphological 
reconstruction, adding noise, and random rotation or translation, we use a random concatenation 
approach for dataset reconstruction. The specific process is as follows: As shown in Figure 2, we name 
the entire process "qualitative selection concatenation," which consists of two main workflows: 

Background selection. We split each cell cluster image into 6x8 sections, resulting in 48 background 
blocks. After secondary screening of these background blocks to retain those without cells, we randomly 
select and reorganize these blocks to form the background of the new dataset. 
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Cell selection. We extract labeled single-cell images from the cell cluster. The extraction process 
involves selecting a bounding box centered around the cell nucleus's position in the image, using the 
average single-cell size. These bounding boxes are then filtered to retain only the areas containing the 
current cell, ensuring that the selected box is not disturbed by other cells or impurities, forming 
negative samples. 

After these two steps, the extracted single-cell images are multiplied with their corresponding 
labels, and the single-cell results are randomly rotated, translated, and scaled, then placed into the 
background generated in the first step to create the final augmented dataset. Although the generated 
samples may appear disjointed and incomplete to the human eye, using native backgrounds in computer 
vision significantly enhances the neural network's denoising, recognition, and robustness capabilities, 

helping the network better fit realistic cell cluster segmentation scenarios.｡ 
 
3.3. Channel Reconstruction in the Encoding Stage 
 

 
Figure 3. 
Structure of the Channel Reconstruction Module. 

 
In the hybrid U-Net network constructed in this study, the convolutional feature pre-extraction 

stage possesses the ability for two-dimensional local perception and fine-grained spatial structure 
information capture. However, it also suppresses the interaction of channel information and the 
extraction of key information at low resolution. This is primarily due to the continuous convolution and 
pooling operations during the encoding stage, which lead to the loss of spatial and boundary 
information. Moreover, traditional convolutions are ineffective in isolating crucial feature channels, 
resulting in the loss of robustness and stability in complex and noisy tasks such as cell cluster 
segmentation. 

To address these issues, we have designed a feature channel reconstruction module (CRM) at the 
backend of the encoding stage at different scales. As shown in Figure 3, the CRM consists of two main 
stages. In the first stage, we have developed a lightweight channel expansion module to adaptively 
expand the high-dimensional hidden space along the channel dimension, increasing the original input 

channel count c to 4𝑐. This stage can be represented as: 

𝑆1(𝑥) = 𝛿𝑅𝑒 𝐿𝑈 (𝜑3×3(𝐶𝑜𝑛𝑣1×1
𝑑𝑖𝑚=4𝑐(𝑥)))                                              (1) 

Here, 𝜑3×3 represents the use of depthwise separable convolutions with a kernel size of 3, which 
effectively reduces the computational parameters in a multi-channel design. 

In the second stage, the channels will be aggregated and reconstructed. Since the channel expansion 
in the first stage introduces significant redundant information, although the additional hidden channels 
provide more nonlinear representations, they lead to an exponential increase in computational cost in 
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subsequent stages. Therefore, we perform channel reduction and projection in this stage, reallocating 
the features. First, the input features are mapped to a one-dimensional plane through convolution, 
compressing all channels to build an efficient global representation. Then, we compute the difference 
between the input features and the global representation to create a more effective representation for 
channel scaling. Finally, we construct a residual structure and use an MLP to restore the channel 
dimension to c: 

𝑆2(𝑥) = 𝐶𝑜𝑛𝑣1×1
𝑑𝑖𝑚=𝑐 (𝑥 + 𝛾𝑐 ⊙(𝑥 − 𝛿𝑅𝑒 𝐿𝑈(𝐶𝑜𝑛𝑣1×1

𝑑𝑖𝑚=1(𝑥))) + 𝑥                             (2) 

Here, 𝛾𝑐 represents the learnable scaling factor, which redistributes the channels of the differential 
features through complementary interactions during the training process. 

Finally, we connect the two stages, and the constructed CRM module is a composite function of the 
two stages: 

𝐶𝑅𝑀(𝑥) = 𝑆2(𝑆1(𝑥))                                                         (3) 
The CRM module maintains dimensional consistency before and after the input, reconstructing 

local texture information and complex global features at each convolutional stage. It eliminates 
redundant channels at a relatively low additional cost. 
 
3.4. Self-Attention Calibration Bridging Module  
 

 
Figure 4.  
Structure of the Self-Attention Calibration Bridging Module. 

 
The U-Net framework is centered on directly transferring low-level features from the encoder to 

the decoder, which effectively preserves spatial information. However, this also introduces noise and 
irrelevant information from the cell cluster images. Skip connections do not account for the differences 
between low-level and high-level information. Direct concatenation and summation of low-level 
information with high-level features in the decoder cause the model to fail to fully leverage the 
differences across different layers and dimensions, particularly in complex scene information fusion 
processes, which leads to the loss of fine-grained semantic information and redundant noise. 

To address this, we introduce a self-attention calibration bridging module (SACBM) in the skip 
connection process between the encoder and decoder. SACBM enhances the focus on texture features 
and foreground regions by capturing long-range dependencies across different axes to establish global 
contextual attention. The detailed structure of SACBM is shown in Figure 4. First, for the input feature 
xxx, adaptive mean pooling is applied in both horizontal and vertical directions to obtain two axial 
vectors. These vectors are then summed to generate the initial global feature with coarse attention. 
Subsequently, two bar convolutions, operating in different directions, are applied to decouple and 
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calibrate the attended regions along the respective axes. The bar convolutions adaptively learn the 
appropriate weights in the horizontal and vertical directions to optimize the coarse attention features, 
forming finer attention that directs the focus toward the regions of interest for segmentation. The 
attention map generation process of SACBM is as follows: 

𝑎𝑡𝑡(𝑥) = 𝛿(𝜑𝑘×1(𝜃𝐵𝑁(𝜑1×𝑘(𝑃ℎ(𝑥) + 𝑃𝑤(𝑥)))))                                             (4) 

Here,  and 𝜑𝑘×1 represent the bar convolutions with different shapes, constructed using a large 
kernel depthwise separable convolution. Depthwise separable convolution decomposes the convolution 
operation into channel-wise and pointwise convolutions, thereby optimizing the convolution 

computation requirements. 𝑃ℎ and 𝑃𝑤 denote the adaptive mean pooling operations in the horizontal 

and vertical directions, respectively. 𝜃𝐵𝑁 represents the batch normalization operation, and 𝛿 is the 
sigmoid activation function. 

Subsequently, the fine attention features are fused with the input features. We further extract the 
texture details of the input features through a 3x3 depthwise separable convolution. The fine attention 
features are weighted and fused with the extracted features through a dot product operation, capturing 
fine-grained local textures while reducing the computational parameter count. This process can be 
expressed as: 

𝜏(𝑥) = 𝜑3×3(𝑥) ⊙ ℂ𝑎𝑡𝑡(𝑥)                                                             (5) 

Here, 𝜑3×3 represents the 3x3 kernel depthwise separable convolution, and ⊙ denotes the 
Hadamard product operation. 

Finally, the calibrated features are further refined through batch normalization and an MLP, while 
residual connections are used to reuse the input features, preventing gradient explosion and vanishing 
gradients. The overall structure of SACBM can be expressed as follows:  

𝑆𝐴𝐶𝐵𝑀(𝑥) = 𝑀𝐿𝑃(𝜃𝐵𝑁(𝜏(𝑥))) + 𝑥                                               (6) 
 

4. Experiments 
4.1. Dataset 

The SIPaKMeD dataset consists of 966 cell cluster images captured with a CCD camera under an 
optical microscope, with certain cells manually annotated, totaling 4,049 independent labeled positive 
samples. These cell cluster images can be classified into five categories based on morphological and 
pathological features. Normal cells are divided into superficial-intermediate and parabasal categories, 
while abnormal cells include koilocytes and dyskeratotic cells, and benign cells are classified as 
metaplastic. The labeled samples categorize the cells' semantics into the nucleus, cytoplasm, and 
background. This study conducts experiments on these three categories for validation. 
 
4.2. Implementation Details 

The CNN used in this study is based on the ResNet-50 architecture, with weights pretrained on 
ImageNet and followed by 12 transformer layers at the output. For the input cell images, we apply 
additional data augmentation through random rotations, scaling, zooming, and flipping, and set the 
input image size to 512x512 pixels. All experiments were conducted on a single Nvidia RTX 3090, and 
during training, the SGD optimizer was used with an initial learning rate of 0.01, weight decay of 

1×10−4, and a momentum factor of 0.9. For the small-scale cell dataset, the batch size was set to 4, with 
a total of 200 training epochs. The optimal training weights were saved using early stopping during the 
training process. 
 
4.3. Quantitative Results 

In this section, we present the quantitative comparison results between the proposed method and 
other representative baseline methods. We selected several CNN-based segmentation models, such as 
U-Net [40] PSPNet [41] and DDRNet [42] as well as transformer-based models like Segmenter [43] 

1 k 
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and the hybrid architecture TransUNet [44]. We evaluated the performance using various metrics, 
including per-class IoU, mIoU, per-class Dice, mDice, per-class recall, and pixel accuracy. Among these 
metrics, IoU and Dice are the primary evaluation criteria, as they effectively reflect False Positive and 
True Negative situations in segmentation results. 

As shown in Table 1, Segmenter achieved the lowest performance compared to other methods, 
particularly for the nuclear class. This is mainly due to the reliance of pure transformer-based models on 
the linear sequence of multi-head attention mechanisms, which emphasize global features while 
neglecting local features that are crucial for accurate nuclear segmentation. In contrast, CNN-based 
segmentation models performed well in terms of per-class IoU, with PSPNet achieving the best metrics 
for cytoplasm and background segmentation. However, its nuclear segmentation performance lagged 
behind TransUNet. This is because PSPNet's pyramid pooling method captures global semantic 
information, but the lack of skip connections in the encoding stage leads to neglect of the localization 
information necessary for nuclear segmentation. The proposed method outperforms others in nuclear 
segmentation, surpassing TransUNet by 2.51%. Although it slightly lags behind PSPNet in other 
categories, it achieves superior mIoU, reflecting the balanced performance of our method across 
different categories. The Dice metrics in Table 2 are consistent with the IoU results, further validating 
the segmentation performance. 

In Table 3, the recall and pixel accuracy (PA) metrics show that our method underperforms 
compared to PSPNet. The primary reason for this is the recall calculation method, which does not 
account for True Negative cases. This is particularly evident in the nuclear class, where erroneous 
segmentation and irregular results lead to a larger proportion of True Negatives. This causes a 
significant discrepancy between recall and IoU. However, the area of True Negatives in the nuclear 
class is small and does not significantly affect the overall PA or other categories, although it still 
represents an overlooked error. Furthermore, PA does not consider the balance across all categories. 
Background and some cytoplasm classes, with larger area proportions, naturally yield higher PA scores, 
which disadvantages smaller area classes like nuclei. Therefore, PA is less reliable than IoU and Dice in 
reflecting segmentation performance for small area classes. 

 
Table 1.  
Experimental results of the proposed method and other segmentation algorithms on the IoU metric for each category (%) 

Methods other cyt nuc mIoU 
u-net 80.94 55.52 31.92 56.13 

segmenter 80.23 51.38 8.85 46.82 
ddrnet 78.46 54.07 25.49 52.67 

pspnet 82.86 58.52 36.68 59.36 
transunet 80.25 55.32 37.93 57.83 

ours 81.68 57.96 40.44 60.03 

 
Table 2.  
Experimental results of the proposed method and other segmentation algorithms on the Dice metric for each category (%) 

Methods other cyt nuc mdice 
u-net 89.47 71.40 48.39 71.90 

segmenter 89.03 67.88 16.26 63.78 
ddrnet 87.93 70.19 40.62 69.00 

pspnet 90.63 73.83 53.67 74.50 
transunet 89.04 71.23 55.00 73.28 

ours 89.92 73.39 57.59 75.02 
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Table 3.  
Experimental results of the proposed method and other segmentation algorithms on the Recall and PA metrics for each 
category (%) 

Methods other cyt nuc PA 
u-net 82.91 79.51 57.81 83.36 

segmenter 81.67 76.67 58.81 82.19 
ddrnet 86.04 75.26 47.23 81.26 

pspnet 83.87 87.25 67.38 85.24 
transunet 83.02 78.91 64.83 83.07 

ours 83.86 80.66 65.50 84.34 

 
4.4. Qualitative Results 
 

 
Figure 5. 
The visual effectiveness of the proposed method is compared with other methods through 
visualization. 
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Figure 5 illustrates the visual performance of the proposed method compared to five other baseline 
methods, validating the quantitative results presented in Section 4.3. Segmenter is able to segment some 
general regions of the cytoplasm but fails to accurately identify the nucleus, losing significant detail due 
to its reliance on global inference. The U-Net model achieves good segmentation results but struggles 
with excessive interference, often mistakenly identifying non-cytoplasm impurities as nuclei. DDRNet, 
in the third sample group, segments most of the background areas as cellular regions, indicating that 
the multi-resolution backbone is insensitive to the blurred boundaries of the main regions. PSPNet 
shows better visualization across various cell types, with the cytoplasm and nucleus having correct 
shapes and smooth boundaries. However, its segmentation area is more conservative, suggesting that 
high-dimensional information is lost at the segmentation endpoint, resulting in errors due to the loss of 
essential cellular texture details. TransUNet retains basic texture information and maintains the main 
segmentation areas well, but it introduces unnecessary adhesion in the cytoplasm and fails to accurately 
delineate the boundaries between different cells. The proposed method outperforms TransUNet, 
particularly in the third and fourth samples, achieving segmentation results closer to the ground truth 
labels. While some impurity interference remains outside the cells, the proposed method demonstrates 
better robustness and fitting ability compared to U-Net and TransUNet. 



3304 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 5: 3293-3308, 2025 
DOI: 10.55214/25768484.v9i5.7679 
© 2025 by the authors; licensee Learning Gate 

 

4.5. Ablation Study 
 

 
Figure 6.  
Qualitative comparison of the effectiveness of SACBM and CRM through visualization 
methods. 

 
Table 4.  
Experimental results of the CRM and SACBM modules on the IoU metric for each category (%) 

CRM SACBM other cyt nuc mIoU 

× × 80.25 55.32 37.93 57.83 

× √ 81.09 55.53 39.72 58.78 

√ × 81.21 56.15 39.45 58.93 

√ √ 81.68 57.96 40.44 60.03 
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Table 5.  
Experimental results of the CRM and SACBM modules on the Dice metric for each category (%) 

CRM SACBM other cyt nuc mDice 

× × 89.04 71.23 55.00 73.28 

× √ 89.56 71.41 56.86 74.04 

√ × 89.63 71.92 56.58 74.16 

√ √ 89.92 73.39 57.59 75.02 

 
Table 6.  
Experimental results of the CRM and SACBM modules on the Recall and Accuracy metrics for each category (%) 

CRM SACBM other cyt nuc PA 

× × 83.02 78.91 64.83 83.07 

× √ 82.71 80.70 67.94 83.64 

√ × 83.33 80.78 64.57 83.76 

√ √ 83.86 80.66 65.50 84.34 

 
We conducted ablation experiments on the two core components of the proposed method, CRM and 

SACBM, to validate their effectiveness. Table 4 presents the ablation results of both modules on the IoU 
metric for each category. It can be observed that SACBM effectively improves the segmentation 
performance of the nucleus, primarily because the recognition of the nucleus relies on the skip 
connections, which preserve low-dimensional information. SACBM eliminates redundant low-
dimensional information, such as impurities similar to the nucleus, during the recalibration of attention. 
Additionally, it retains the nucleus semantic information in the cytoplasm by leveraging global context. 
Similar performance improvements are observed in the Dice metric in Table 5 and the Recall metric in 
Table 6. On the other hand, the CRM module optimizes the performance of all features by channel 
compression reconstruction in the first three CNN stages, leading to consistent improvements in the 
IoU for all three categories. The final mIoU metric shows a 1.1% improvement over the baseline model. 
The combined result of both modules inherits the advantages of each, outperforming the individual use 
of either module across all metrics and achieving the best mIoU score of 60.03%. 

The differences observed in some categories between the Recall and IoU metrics in Table 6 are 
primarily due to the fact that Recall does not consider false negatives (FN), i.e., missed detections. 
Therefore, IoU and Dice metrics are more representative compared to Recall. Nevertheless, the final 
combined Recall metric still outperforms the baseline model, demonstrating the effectiveness of the 
proposed method. 

The visualizations in Figure 6 also confirm the quantitative results. The baseline model retains more 
impurities, aside from the cytoplasm and nucleus, leading to more fragmented and damaged 
segmentation in the cell clusters. The addition of SACBM improves the continuity of cell clusters, 
providing stronger contextual representation, while the segmentation of the nucleus becomes more 
consistent and complete. In the case of CRM being added individually, noise and misidentification 
interference are noticeably reduced compared to the baseline model, with improvements in the 
completeness and semantic accuracy of the cytoplasm. The combined results of SACBM and CRM 
achieve the closest segmentation to the ground truth, maintaining correct localization relationships and 
segmentation areas for the main body of the cell clusters. 

5. Conclusion 
This paper addresses the irregularity and excessive impurity interference in cell cluster images, 

proposing a Hybrid U-net architecture based on encoding channel reconstruction and self-attention 
calibration bridging to achieve weakly supervised extraction of cell category information in incomplete 
labeled cell segmentation tasks. We first performed data reconstruction on incomplete labels, 
transforming the weakly supervised problem into a strongly supervised one, which enhanced the impact 
of positive samples from prior knowledge on the segmentation performance of the network model. 
Additionally, we developed a channel reconstruction module in the encoding phase and a self-attention 
calibration bridge module to eliminate feature redundancy in the convolutional stage and to pre-attend 
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to foreground objects in shallow features, significantly improving the semantic understanding of low-
dimensional information. The proposed method was tested and validated on the publicly available 
weakly supervised cell segmentation dataset SIPaKMeD. Through comparative experiments and 
ablation studies, the modules proposed in this paper achieved excellent performance in both quantitative 
metrics and visual analysis, outperforming other semantic segmentation networks in terms of mIoU, 
Dice, and other indicators. 
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