
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 
Vol. 9, No. 6, 1172-1192 
2025 
Publisher: Learning Gate 
DOI: 10.55214/25768484.v9i6.8059 
© 2025 by the author; licensee Learning Gate 

© 2025 by the author; licensee Learning Gate 
History: Received: 3 April 2025; Revised: 23 May 2025; Accepted: 27 May 2025; Published: 14 June 2025 
* Correspondence: 15105575323@163.com  

 
 
 
 
 

Analysis and optimization model of rural landscape pattern based on remote 
sensing technology 

 
Shuai Xiao1* 
1Krirk University, Bangkok, Thailand; 15105575323@163.com (S.X.). 

 

Abstract: The rural landscape has undergone significant transformations, leading to increased 
fragmentation and ecological challenges. This thesis presents an integrated analysis and optimization 
framework that leverages remote sensing technology for sustainable rural landscape planning. The 
proposed method integrates remote sensing-based semantic segmentation with a multi-objective 
landscape optimization model. High-resolution satellite imagery is first processed to generate detailed 
land cover maps, and these serve as the basis for optimization. The multi-objective model 
simultaneously reduces landscape fragmentation, improves connectivity between habitat patches, and 
enhances land-use diversity. In a case study, the optimized landscape pattern exhibited larger 
contiguous green spaces, more connected ecological networks, and a richer mix of land-use types 
compared to the current pattern. The major contributions of this work lie in demonstrating how 
coupling advanced image analysis with spatial optimization can yield measurable improvements in 
landscape metrics. This approach provides decision-makers with a data-driven tool to guide rural land 
use planning towards greater ecological integrity and sustainability. 

Keywords: Landscape connectivity, Landscape fragmentation, Landscape pattern, Multi-objective optimization, Remote 
sensing, Semantic segmentation. 

 
1. Introduction  

Rural landscapes cover vast areas of the earth and provide critical ecological and socio-economic 
functions. In China, for example, rural areas encompass approximately 94% of the land, forming the 
natural foundation for rural life [1]. However, rapid land-use changes, urbanization, and infrastructure 
development over recent decades have profoundly altered rural landscape patterns, often leading to 
habitat fragmentation and environmental degradation [2, 3]. This fragmentation of rural landscapes – 
manifested by the breaking of continuous habitats into smaller, isolated patches – poses serious 
challenges for biodiversity conservation and the provision of ecosystem services [4]. Balancing 
economic development with the preservation of landscape quality and ecological integrity in rural 
regions has thus become a critical planning issue [5]. 

Remote sensing technology offers an effective means to monitor and analyze land cover dynamics in 
rural areas, overcoming limitations of labor-intensive ground surveys. Satellite and aerial remote 
sensing data provide timely, synoptic coverage of land use/land cover (LULC) changes, enabling 
researchers and planners to detect landscape transformations and trends across large areas [6]. High-
resolution Earth observation imagery (from sensors such as Sentinel-2, Landsat, or commercial 
satellites) can be processed to produce detailed LULC maps that serve as the basis for landscape pattern 
analysis [7]. In recent years, advances in deep learning and geospatial data science have dramatically 
improved the accuracy of land cover classification from remote sensing imagery. Deep learning models 
(e.g. convolutional neural networks) automatically learn rich spectral-spatial features from imagery, 
outperforming traditional classification methods that rely on hand-crafted features [8]. As a result, 
remote sensing maps of farmland, forests, water, and built-up areas can now be generated with 
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unprecedented precision [9]. Such improvements in LULC mapping provide a reliable foundation for 
subsequent landscape pattern analysis and change assessment. 

Once land cover maps are obtained, landscape pattern analysis techniques are applied to quantify the 
spatial configuration and composition of the landscape. A suite of landscape metrics (also called 
landscape indices) has been developed in landscape ecology to statistically describe pattern 
characteristics at the patch, class, and landscape levels [10]. These metrics measure attributes such as 
patch size and density, edge length, shape complexity, diversity, and connectivity of habitat patches 
[11]. By condensing spatial heterogeneity into quantitative indices, landscape metrics enable 
researchers to compare different land use configurations and track changes in landscape structure over 
time [12]. Landscape fragmentation metrics, for instance, indicate how broken apart a habitat or land 
cover has become, which is directly linked to human impacts on land structure [13]. High 
fragmentation typically signifies loss of large contiguous habitat, greater isolation of patches, and 
disruption of ecological flows. This process is one of the most critical manifestations of human influence 
on landscapes, as it often harms biodiversity by reducing habitat size and connectivity [14]. Conversely, 
landscape connectivity metrics evaluate the degree to which the landscape facilitates movement of 
organisms and ecological flows between habitat patches. Maintaining ecological connectivity is crucial 
for preventing biodiversity loss, allowing species dispersal and genetic exchange across a landscape. 
Recent advances have introduced specialized connectivity modeling approaches (e.g. least-cost path and 
circuit theory models) to identify key corridors and to quantify connectivity at large scales [15]. These 
tools leverage high-resolution remote sensing data to map functional ecological networks, highlighting 
areas where interventions (such as habitat restoration or corridor creation) could greatly improve 
landscape connectivity [16]. By combining fragmentation indices, connectivity metrics, and other 
landscape indicators, researchers can diagnose the health of rural landscape patterns and pinpoint 
critical issues such as excessive patch isolation, loss of core habitat area, or lack of linkages between 
natural areas. 

In recent years, numerous studies have applied remote sensing and landscape metrics to assess rural 
landscape patterns and to explore strategies for their optimization. For example, Xu et al. used multi-
temporal satellite data and landscape indices to examine decades of rural landscape change in northern 
China, finding that rapid urban expansion has converted large areas of farmland to built-up land and 
markedly increased landscape fragmentation [17]. Similarly, Mohammadi and Fatemizadeh quantified 
landscape degradation in Iran following highway construction, showing how a new road sliced through 
forests and rangelands, increased the number of habitat patches, and reduced their average size [18]. 
Such studies underscore the value of remote sensing-based metrics in revealing how human 
infrastructure and land-use change can disrupt rural landscape structure. Beyond diagnosing problems, 
other research has focused on developing methods to optimize or improve landscape patterns for better 
ecological outcomes. A common approach in recent literature is the construction of ecological security 
patterns – essentially, networks of key habitats and corridors that safeguard ecological processes in a 
region. Wei, et al. [8] implemented a Minimum Cumulative Resistance (MCR) model using remote 
sensing data to identify optimal ecological corridors in the Loess Plateau of China. By mapping 
resistance surfaces (where land covers like roads or urban areas impose high movement “costs” to 
wildlife) and computing least-cost pathways, they delineated an ecological network that could enhance 
connectivity between fragmented natural areas. Li, et al. [9] took a different approach, integrating 
landscape ecological risk assessment into pattern optimization. They evaluated how various land use 
configurations in a Chinese river basin would impact ecological risk levels (e.g. flood risk, habitat risk) 
and then proposed an optimized landscape pattern that minimized these risks. In a related study linking 
landscape pattern to ecosystem services, Qian, et al. [12] modeled the effects of land use pattern 
changes on ecosystem service values in a region, showing that certain spatial arrangements of land use 
could significantly reduce the loss of services like water regulation and soil conservation. These studies 
demonstrate that by adjusting the spatial arrangement of land uses (for instance, aggregating built 
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areas, enlarging natural patches, or establishing buffer zones), it is possible to reduce ecological risks 
and degradation in rural landscapes. 

Advanced geospatial techniques and planning frameworks have also been emerging to support rural 
landscape pattern optimization. On the data side, the integration of machine learning and AI with 
remote sensing is opening new possibilities. For instance, Liu, et al. [10] combined satellite imagery 
with machine learning algorithms to construct sustainable landscape patterns in a rapidly developing 
area. By analyzing social and ecological data together, they identified critical “social-ecological” linkages 
and proposed land use adjustments to strengthen those linkages, illustrating the growing role of AI in 
spatial planning. Zhu, et al. [11] developed a simulation-based approach to optimize land use layouts for 
high-quality urban development. Although focused on an urbanizing city, their work used remote 
sensing-derived maps to simulate multiple land use scenarios and evaluate their outcomes on 
development and environmental targets. This scenario-based optimization is also relevant to rural-
urban fringe areas where planners seek to reconcile growth with conservation. In terms of analytical 
tools, new software libraries have increased the scalability of landscape connectivity assessments. Van 
Moorter, et al. [7] introduced the ConScape library, a high-performance tool to compute landscape 
connectivity metrics on large, high-resolution maps. Using algorithms implemented in a powerful 
computing language, ConScape can efficiently calculate metrics like probability of connectivity and 
metapopulation capacity over million-pixel landscapes, greatly aiding regional planning for 
connectivity. The development of such tools means that fine-grained remote sensing data (e.g. 10 m or 
even sub-meter imagery) can be directly used to model wildlife movement and habitat networks across 
entire rural counties or provinces – a task previously infeasible due to computational limits. Researchers 
have also started to address multi-objective rural landscape optimization. Rather than focusing solely on 
biodiversity, recent studies consider additional objectives like climate regulation and human well-being. 
Mahato and Pal [14] demonstrated that reconfiguring rural landscape patterns can mitigate local 
climate extremes: they simulated different landscape arrangements in an agricultural region of India and 
found that increasing the fraction and connectivity of green spaces led to significantly lower land 
surface temperatures. This indicates that pattern optimization can yield co-benefits for climate 
adaptation by reducing the urban heat island effect in rural settlements. In another study, Dong, et al. 
[15] designed an optimized rural landscape for the Dujiangyan Irrigation District in China that 
simultaneously enhances ecological connectivity and provides recreational space for residents. By using 
a GIS-based multi-criteria evaluation (considering habitat needs, scenic value, and cultural services), 
they identified where to establish green corridors, parks, and natural reserves in the rural landscape to 
maximize both ecological and social benefits. These examples highlight an important trend: the shift 
from purely descriptive landscape analysis to proactive landscape pattern design, supported by remote 
sensing data, big data analytics, and stakeholder objectives. 

Despite these advances, significant gaps remain in current research and practice. Many existing 
studies address either the analysis of landscape patterns or specific aspects of optimization, but few 
provide an integrated end-to-end framework that connects high-resolution remote sensing data, 
advanced classification techniques, comprehensive pattern assessment, and practical optimization 
modeling. In particular, the potential of modern Earth observation (e.g. sub-meter imagery, unmanned 
aerial systems) and deep learning algorithms is not yet fully realized in rural landscape planning – most 
landscape pattern studies still rely on moderate-resolution data and conventional classification 
approaches. Moreover, optimization efforts often focus on a single objective (such as maximizing 
ecological connectivity) without simultaneously considering other factors like agricultural production, 
local livelihoods, or climate resilience. There is a need for holistic models that can evaluate trade-offs 
and synergies among multiple objectives and propose balanced landscape configurations. A recent 
review by Liu, et al. [13] points out that research on land use pattern optimization is still developing, 
calling for better integration of emerging technologies and multi-objective planning principles. In 
response to these gaps, this thesis develops a comprehensive framework for rural landscape pattern 
analysis and optimization based on remote sensing technology. We integrate state-of-the-art deep 
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learning methods for land cover mapping, landscape metrics for pattern quantification, and optimization 
algorithms for pattern design. The aim is to construct a data-driven model that not only diagnoses 
current landscape issues (fragmentation, connectivity loss, etc.) but also generates optimized landscape 
scenarios that improve ecological connectivity, reduce fragmentation, and support sustainable rural 
development. 

The major contributions of this research are as follows: 

• Remote Sensing–Based Land Cover Mapping: We develop a high-accuracy land cover 
classification method for rural landscapes by combining multi-spectral remote sensing imagery 
with a deep learning model. This approach provides a fine-grained, up-to-date land use map as the 
foundation for landscape pattern analysis. 

• Landscape Pattern Quantification: We introduce a comprehensive set of landscape metrics to 
evaluate rural landscape configurations. Key indicators of fragmentation (e.g. patch size 
distribution, edge density) and connectivity (e.g. cohesion index, connectivity probability) are 
computed, offering quantitative insights into the ecological health of the current landscape. 

• Optimization Model for Pattern Improvement: We propose a novel optimization model that 
uses the classified land cover map and landscape metrics as inputs to generate an improved 
landscape pattern. The model employs an intelligent optimization algorithm to rearrange or 
modify land use patterns, aiming to enhance ecological connectivity, reduce habitat fragmentation, 
and maintain essential land use functions. 

• Integration of Ecological and Development Goals: The framework explicitly incorporates 
ecological objectives (such as biodiversity conservation and habitat connectivity) alongside socio-
economic considerations (such as agricultural land requirements and rural development needs). 
The optimized landscape scenarios are evaluated for multiple criteria, ensuring that the proposed 
pattern improvements are balanced and practically feasible for rural spatial planning. 

• Case Study Validation: We apply the proposed analysis and optimization framework to a 
representative rural region. Through this case study, we demonstrate the effectiveness of the 
model in identifying critical landscape issues and formulating pattern optimization strategies. The 
results show measurable improvements – for example, an increase in overall habitat connectivity 
and a decrease in fragmentation indices – compared to the existing landscape, validating the 
utility of our approach for real-world planning applications. 

 

2. Related Work  
2.1. Deep Learning Applications in Remote Sensing for Rural Feature Extraction  

Recent advances in deep learning have revolutionized remote sensing data analysis, enabling more 
accurate extraction of land-use features from complex rural landscapes. Traditional classification 
methods (e.g. pixel-based SVM or random forests) often struggled with high-resolution imagery of 
heterogeneous rural areas, leading to salt-and-pepper noise and limited accuracy. In contrast, deep 
convolutional neural networks (CNNs) and related architectures can automatically learn rich spectral-
spatial features, outperforming conventional approaches in land cover and land use classification [16]. 
Comprehensive reviews have documented how modern deep learning techniques (e.g. ResNet, U-Net, 
vision transformers) achieve higher precision in remote sensing tasks by effectively capturing textures, 
shapes, and context in imagery [16, 17]. These networks leverage the increased availability of high-
resolution satellite and aerial data to delineate complex rural patterns that were previously difficult to 
map with rule-based or shallow classifiers [17, 18]. Deep learning models thus provide a powerful 
foundation for rural feature extraction, from identifying crop types to detecting small landscape 
elements, with robustness to noise and variability in input data [18].  

In the context of rural environments, deep learning methods have been applied to extract specific 
features such as farmland, vegetation patches, and rural infrastructure with notable success. For 
instance, CNN-based semantic segmentation networks enable precise delineation of agricultural field 
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boundaries even in fragmented smallholder farming regions Waldner and Diakogiannis [19] and Zhao, 
et al. [20]. Waldner and Diakogiannis [19] demonstrated that a deep CNN could automatically trace 
parcel edges from high-resolution satellite images, greatly improving field boundary mapping in 
comparison to edge-detection or region-growing algorithms [19]. Likewise, novel architectures have 
been tailored for rural land use segmentation; [20] introduced a Land-Unet model to identify 
unstructured land-use types in rural landscapes with higher accuracy and detail than conventional U-
Net variants [20]. Deep learning has also enhanced crop classification in scattered, small fields: [21] 
developed a dual-branch CNN for time-series Sentinel-2 imagery that successfully distinguished crop 
types in patchy agricultural mosaics [21]. This multi-temporal approach illustrates how recurrent and 
multi-branch network designs can exploit seasonal spectral patterns to map crops in heterogeneous 
rural parcels [18, 21]. Furthermore, integration of multi-source data through deep learning has proven 
effective under challenging conditions. For example, combining high-resolution Gaofen-2 optical 
imagery with Sentinel-2 time-series data in a deep model allowed accurate crop identification in parcels 
with environmental constraints [22]. Such hybrid approaches leverage complementary information 
(spatial detail and temporal dynamics) within a unified deep learning framework. Overall, the literature 
shows that deep learning techniques significantly advance rural feature extraction by handling fine-
scale, complex patterns in remote sensing data. These methods improve the detection of small or 
irregular features and provide more reliable inputs for subsequent landscape pattern analysis and 
modeling [17, 18]. 

 
2.2. Landscape Pattern Analysis and Optimization Methods 

Parallel to improvements in feature mapping, considerable research has focused on analyzing and 
optimizing landscape patterns, especially in rural and agricultural regions. Landscape pattern analysis 
involves quantifying the spatial configuration of land use/land cover, often using landscape ecology 
metrics to describe aspects like fragmentation, diversity, and connectivity. Recent studies utilize these 
metrics on remote sensing-derived maps to assess landscape structure and its changes over time [23, 
24]. Common landscape pattern indices include the number of patches, patch density, mean patch size, 
shape complexity, contagion, and diversity indices, which together characterize how land parcels are 
arranged and distributed [24]. By applying such metrics, researchers can evaluate the degree of 
farmland fragmentation, habitat connectivity, or land-use heterogeneity in a given region. For example, 
Ye, et al. [23] analyzed the spatial pattern of cultivated land in China and found high fragmentation in 
many areas, quantifying the small average parcel sizes and patchiness across the country [23]. Their 
assessment identified dominant factors behind fragmentation (e.g. topography, urbanization) and 
suggested that these fragmented patterns could threaten agricultural efficiency [23]. In fact, small and 
scattered plots are not only a local issue but a global phenomenon – an estimated 40% of the world’s 
agricultural land consists of very small fields (<0.64 ha), predominantly in regions like Asia and Africa 
[25]. Such findings underscore the importance of landscape pattern analysis in diagnosing 
fragmentation and land-use configuration problems. By monitoring how landscape metrics change, often 
using multi-temporal satellite data, researchers can detect trends such as increasing patch 
fragmentation or loss of connectivity [23, 24]. This analytical phase provides critical insights into the 
current landscape structure and lays the groundwork for optimization by pinpointing what aspects of 
the pattern may need improvement. 

Building on pattern analysis, researchers have explored various landscape pattern optimization 
methods to guide the reconfiguration of rural landscapes in more sustainable or efficient ways. Some 
approaches are qualitative, offering strategic planning recommendations based on observed patterns, 
while others are quantitative, using computational models to design optimal landscape layouts. On the 
strategic side, studies have proposed enhancing ecological connectivity and reducing fragmentation by 
establishing ecological networks of core areas and corridors. For instance, identifying key ecological 
patches and linking them via corridors (often using the minimum cumulative resistance model) is a 
common paradigm to improve landscape connectivity and reduce ecological risk Li, et al. [9]. Li, et al. 
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[9] applied a landscape ecological risk assessment in a Chinese watershed and then optimized the 
landscape pattern by preserving critical patches and adding corridors, which effectively reduced overall 
risk and improved the continuity of the ecological network [9]. In addition to such network-based 
approaches, there are advanced optimization models that seek an optimal land-use configuration under 
multiple objectives and constraints. Ou, et al. [26] developed a composite optimization model that 
integrates logistic regression with a nonlinear programming framework and a particle swarm 
optimization algorithm [26]. This model was able to simulate an adjusted land-use pattern for a rapidly 
urbanizing district, balancing ecological benefits with economic land demands [26]. The optimized 
scenario from their study achieved higher landscape connectivity and ecosystem service values while 
still meeting development needs, demonstrating the feasibility of algorithm-driven landscape 
reconfiguration. Other research has coupled landscape pattern metrics with ecosystem service 
evaluations to inform where and how to optimize. Wu, et al. [24] combined landscape index analysis 
with ecosystem service modeling (using indicators like water yield and carbon storage) in an agro-
pastoral region, and then formulated optimization strategies targeting areas where changes in land 
configuration would most improve services [24]. By correlating pattern indices (e.g. mean patch area, 
contagion) with service outcomes, they identified that increasing contiguous vegetated land in certain 
parts of the watershed would enhance sediment retention and other services [24]. These examples 
illustrate a spectrum of optimization methods, from enhancing ecological networks to computational 
allocation models and service-based planning. In summary, current research in landscape pattern 
optimization emphasizes reducing fragmentation, improving connectivity, and balancing multifunctional 
land use. Whether through policy measures (e.g. land consolidation or protection in heavily fragmented 
farmlands [23]) or through spatial modeling tools [9, 26] the goal remains to reconfigure rural 
landscape patterns in ways that bolster ecological resilience and sustainable land management. 

 

3. Proposed Landscape Pattern Optimization Framework 
This chapter presents the construction of a rural landscape pattern analysis and optimization model 

based on high-resolution remote sensing data. The methodology integrates semantic segmentation of 
land cover with a spatial optimization model to improve landscape configuration. We first describe the 
overall algorithmic framework and system architecture, followed by a detailed mathematical formulation 
of the optimization model, including definitions of landscape metrics (fragmentation, connectivity, 
diversity), objective functions, and constraints. Advanced landscape ecology indices are incorporated to 
quantify the rural landscape pattern, and a multi-objective optimization approach is employed to 
minimize fragmentation, maximize connectivity, and balance land-use functions. The proposed 
framework leverages remote sensing technology and machine learning to derive initial landscape data, 
and then optimizes the spatial layout using mathematical programming and heuristic algorithms, 
ensuring that the final pattern meets ecological and land-use objectives. The following sections 
delineate the framework and formulation in detail. 
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Figure 1. 
Overall framework of the proposed system, integrating remote sensing semantic segmentation with 
landscape pattern optimization.  
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3.1. Overall Algorithmic Framework and Model Architecture 
The overall framework of the proposed system combines remote sensing-based land cover 

extraction with an optimization model for landscape pattern improvement. In summary, high-resolution 
satellite imagery of the rural study area is first processed via a semantic segmentation model to classify 
each pixel (or grid cell) into land cover categories such as buildings, roads, greenhouses, water bodies, 
farmland, forest, etc. This produces an initial land cover map (landscape pattern) depicting the spatial 
distribution of various rural land-use elements. Next, a set of landscape pattern metrics is computed 
from this initial classification – these metrics quantify characteristics like the fragmentation of habitats, 
the connectivity of green spaces, and the diversity of land-use types. Finally, an optimization module 
uses these metrics to iteratively adjust the spatial configuration of land cover (subject to real-world 
constraints) in order to derive an improved, optimized landscape layout. Figure 1 illustrates the key 
components and data flow of this framework, from the input remote sensing imagery through to the 
output optimized landscape pattern. 

In the segmentation stage, we leverage state-of-the-art deep learning in computer vision to 
accurately extract rural land-cover features from imagery. Specifically, a semantic segmentation 
network (such as a Deep Convolutional Neural Network or a variant of U-Net) is trained to label each 
pixel of the input satellite image with the correct land-cover class. This yields a detailed classification 

map  of the area, where each cell  in the grid is assigned a class label 

. The segmentation model is capable of distinguishing even 

fine-grained features (e.g., narrow rural roads or small greenhouses) due to the high resolution of the 
imagery and the powerful feature learning of the CNN. The output land cover map thus provides the 

initial landscape pattern  for our analysis – essentially a categorical raster map covering the study 

area with different land-use/land-cover types. 
Once the initial landscape is obtained, the analysis module computes key landscape pattern indices. 

We derive quantitative metrics from  to capture the structural characteristics of the rural landscape. 

For example, the degree of fragmentation is measured by identifying discrete patches of contiguous cells 
of the same class and counting or sizing these patches. Likewise, connectivity is assessed – for instance, 
measuring how well habitat patches (like forest or green space) are spatially connected or reachable to 
each other. A diversity index (such as Shannon’s diversity) is calculated to indicate the richness and 
evenness of different land-use types in the landscape. These metrics provide a concise numerical profile 
of the landscape’s ecological and functional configuration, and they serve as objective terms in the 

subsequent optimization. The initial values (from ) often reveal suboptimal patterns – e.g., overly 

fragmented green spaces, or imbalances where one land-use type dominates excessively – which the 
optimization will seek to improve. 

The optimization stage constitutes the core of the framework. We formulate a multi-objective 
optimization model that aims to reconfigure the landscape pattern to achieve better metric values. In 
essence, the model will relocate or reassign certain land-use units (grid cells) within allowable limits to 

produce a new configuration  that minimizes fragmentation, maximizes connectivity, and maintains a 

balanced mix of land uses. This can be conceptualized as a spatial allocation problem: each cell  

currently belonging to some class  can potentially be changed to another class (or remain unchanged), 

as long as overall land-use demands and constraints are met. The optimization model evaluates 
countless such alternative configurations using the landscape metrics as criteria. Because an exhaustive 
search of all configurations is infeasible (the problem is combinatorially large), we employ heuristic 
algorithms to find good solutions – for example, a genetic algorithm (GA) or particle swarm 
optimization (PSO) that evolves the land-use arrangement, or simulated annealing that iteratively 

refines the pattern. The algorithm starts from the current pattern  and seeks an improved pattern 

that optimizes the chosen objective function. Throughout this process, the landscape metrics are 
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recomputed for each candidate pattern to guide the search toward the optimum. The outcome of the 
model is an optimized landscape layout that ideally has larger contiguous patches (reducing 
fragmentation), strategically connected green infrastructure (improving connectivity for ecological 
flows), and an appropriate balance among land-use types (ensuring diversity and meeting human land-

use needs). The optimized pattern  can then be analyzed in comparison to the original  to quantify 

improvements and to ensure that all practical requirements (e.g., minimum farmland area for 
production, adequate building space, etc.) are satisfied. 

The proposed framework thus bridges remote sensing technology and spatial optimization: remote 
sensing provides the detailed, up-to-date data on the landscape needed for fine-grained analysis, and 
optimization techniques provide a rigorous way to identify how that landscape could be restructured for 
better ecological and functional outcomes. In the next section, we formalize the optimization model 
mathematically, defining the decision variables, objective functions (derived from the landscape metrics), 
and constraints. 
 
3.2. Optimization Model Formulation and Metrics 

To formulate the landscape pattern optimization problem, we begin by defining the spatial decision 

units and the relevant landscape metrics mathematically. Let the landscape be divided into a set of  

discrete units (e.g. pixels or grid cells indexed by ). Each unit  can be assigned to one of  

land-cover categories (indexed by ). We introduce a binary decision variable for the allocation. 

 
Each cell must belong to exactly one class, which gives the constraint: 

 
This ensures a complete and exclusive assignment of land-use classes to all spatial units. The total 

area (or number of cells) allocated to class  in configuration X can be written as  

(assuming each cell has unit area for simplicity). To balance land-use functions and preserve essential 
land resources, we impose that the area of each class remains within allowable limits based on planning 

targets or the status quo. For example, if  is the area of class  in the initial pattern (from 

segmentation), we can enforce. 

 
Meaning the total area of each land-use type is maintained (this is a strict form; in practice one could 

allow a small deviation or specify lower/upper bounds  to allow flexibility). This set 

of constraints guarantees that the optimization does not alter the overall land-use composition beyond 
acceptable ranges, thereby maintaining the balance of land-use functions (e.g., not converting all 
farmland to built-up land, or vice versa). 

With the decision variables and basic constraints defined, we formulate the objective function based 
on three categories of landscape metrics: fragmentation, connectivity, and diversity. These metrics are 

computed from any candidate pattern  and are used to evaluate its desirability. We define each 

metric in turn. 
(a) Fragmentation Metric: Landscape fragmentation refers to the breaking up of continuous habitat 

or land into smaller, isolated patches. A common way to quantify fragmentation is through patch-based 
indices. Suppose in a given landscape configuration X, the contiguous areas of the same class are 
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delineated as distinct patches. Let  denote the total number of patches (across all classes) and let 

 be the area of patch  (for ). One useful indicator is the landscape division index , 

which gives the probability that two random points taken in the landscape fall into different patches 

(thus higher  means more fragmented): 

 

Where  is the total landscape area. If the landscape is dominated by a few large 

patches, the sum of squared patch areas will be high and  will be low (low fragmentation). Conversely, 

many small patches yield a high  (high fragmentation). In our optimization, we seek to minimize 

fragmentation, which translates to minimizing  or related measures. 

Alternatively, fragmentation can be measured by the density of edges or boundaries between 

different land-cover types. Using the spatial assignment variables , we can define an edge-based 

fragmentation metric. Let  be the set of all adjacent cell pairs  (for example, neighboring cells in 

the grid). We can compute the total inter-class boundary length or count by summing over all 
neighboring pairs that belong to different classes: 

 
 (b) Connectivity Metric: Landscape connectivity reflects how easily organisms, matter, or energy 

can move across the landscape, particularly through habitat networks. High connectivity generally 
requires that patches of important land types (like forest or wetlands) are physically near each other or 
linked by corridors so that the landscape functions as an interconnected network rather than isolated 
islands. We quantify connectivity by considering the distances or adjacencies between patches of the 
same class. One approach is the probability of connectivity (PC) index, which uses a graph 
representation of patches: each patch is a node, and connections (edges) are drawn between patches that 
are within a threshold distance $d_0$ or directly adjacent. We can define a connectivity index $C$ as: 

\ 

Where  is the number of patches of class $i$, $a_{k,i}$ is the area of patch k of class , and 

 is an indicator that equals 1 if the distance between patch k and patch  (of the same class ) 

is within a critical connectivity threshold  (and 0 otherwise). In terms of the cell-based variables, a 

simpler surrogate is to maximize the number of adjacent cells that share the same class, which is 
effectively the complement of the fragmentation edge count above. For instance, we can rewrite 
connectivity as: 

 
Counting all neighboring pairs that belong to the same class (each such pair indicates a contiguous 

connection within a patch). Maximizing  will naturally minimize the mixed edges , thus enhancing 

connectivity by growing larger contiguous patches. Both formulations capture the intuitive goal: a 
landscape where important land parcels are spatially adjacent or linked to each other, rather than 
isolated. 
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4. Dataset and Experimental Results   
4.1. Dataset and Data Preprocessing 

To comprehensively evaluate rural landscape feature extraction, we constructed a unified 
experimental framework integrating multiple datasets and tasks. The primary data source is high-
resolution Gaofen-2 (GF-2) satellite imagery covering a typical agricultural county (e.g. Shouguang 
City in Shandong, China) known for dense greenhouse agriculture and mixed rural settlements. The 
GF-2 images (0.8 m spatial resolution) were preprocessed and labeled into key rural land-cover classes: 
water bodies, plastic greenhouses, buildings (aggregating traditional farmsteads and new residences), 
roads, and background (other land such as fields). The GF-2 dataset consists of ~3500 image tiles 
(512×512 pixels) for training/validation after tiling the region. We augmented these local samples with 
additional public benchmarks to ensure diversity and cross-region robustness. In particular, the 
LoveDA dataset (5987 images) was included to represent rural vs. urban domain differences, and the 
ISPRS 2D Semantic Labeling datasets (Potsdam & Vaihingen cities) were used for cross-city adaptation 
experiments. For road extraction, we incorporated the DeepGlobe Road dataset (from the DeepGlobe 
Challenge) containing high-resolution aerial images with road labels, as well as a local Chinese road 
dataset “CHN6-CUG” for additional evaluation. Table 1 summarizes the key datasets and their 
characteristics in our study. 

 

 
Figure 2. 
Research area geographical map. 

 
The source of its satellite data is as shown in Table 1 

 
Table 1. 
Satellite Parameter Table. 

Band names Central wavelength (μm) Resolution (m) Coverage width (km) 

Blue 0.45-0.52 3.24 45.3 
Green 0.52-0.59 3.24 45.3 

Red 0.63-0.69 3.24 45.3 
Near Infrared 0.77-0.89 3.24 45.3 

Full Color 0.45-0.89 0.81 45.3 
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Table 2. 
Datasets used in experiments. 

aset Image 
Resolution 

Domain Notable Classes Purpose in Experiment 

GF-2 (Rural County) 0.8 m Rural (China) Water, Greenhouse, Building, 
Road 

Train core segmentation 
model 

LoveDA 0.3 m Urban and Rural Background, Building, Road, 
Water, Barren, Forest, 
Agriculture 

Domain adaptation 

(rural→urban) 

ISPRS 
Potsdam/Vaihingen 

0.05 m 
(Potsdam)  
0.09 m 
(Vaihingen) 

Urban 
(Germany) 

Impervious/Surfaces, Building, 
Vegetation, Car, Road 

Domain adaptation (cross-
city) 

DeepGlobe Road ~0.5 m Various (satellite) Road (binary mask) Pre-training & validation 
of road module 

CHN6-CUG 0.5 m Urban/Rural 
(China) 

Road (focus) + 5 other classes? Additional road 
connectivity test 

 
Prior to model training, all images were resampled to comparable resolution (~1 m per pixel for 

consistency) and divided into patches if needed. Ground-truth annotations for each dataset were 
converted into a common label schema focusing on the four rural target classes (water, greenhouse, 
building, road), merging or ignoring other classes. For example, in LoveDA’s labels we mapped 
Barren/Forest/Agriculture all to background since our analysis emphasizes the four focal classes. This 
harmonization yields a multi-source training set covering diverse geographic conditions. We split each 
dataset into training and testing subsets as per their standard protocols or spatial divisions (e.g., 
LoveDA’s predefined split of 8 training areas and 10 validation areas. The evaluation on each dataset 
and the combined set uses standard metrics: overall accuracy (OA), per-class Precision, Recall, F1-score, 
and Intersection over Union (IoU) for segmentation quality, as well as aggregate mean IoU (mIoU). In 
addition, for landscape pattern assessment, we compute patch-level indices such as fragmentation and 
connectivity as described in Section 4.4. 
 
4.2. Unified Deep Feature Extraction Framework 

Model Architecture: We developed a unified deep learning model that integrates components from 
three state-of-the-art approaches: (1) a U-Net based semantic segmentation backbone for extracting 
rural objects (inspired by Li et al), (2) an unsupervised domain adaptation module to transfer knowledge 
across datasets (following Hu et al), and (3) a dual-branch multi-scale refinement module for road 
connectivity (based on Gao et al.). The base network is a modified U-Net encoder-decoder which learns 
pixel-wise classification for the four target classes plus background. The encoder uses a ResNet-34 
backbone pre-trained on ImageNet for robust feature extraction, while the decoder features skip 
connections for precise localization to better capture fine details (e.g., narrow roads, greenhouse edges), 
we incorporated an Atrous Spatial Pyramid Pooling (ASPP) module in the bottleneck, and a Squeeze-
and-Excitation (SE) attention block in decoder layers, similar to the ASE-LinkNet enhancements for 
road segmentation. Furthermore, a lightweight parallel branch was added in the decoder specifically for 
the road class: this branch processes multi-scale feature maps with increased width to preserve 
continuity in road predictions, and later merges with the main output (this is analogous to Gao’s dual-
branch design to enhance road connectivity). 

Domain Adaptation Strategy: To ensure the model generalizes across different domains (satellite vs 
aerial imagery, rural vs urban landscapes), we employed a deep domain adaptation strategy during 
training. We adopted a self-training with negative correlation learning approach: the model is first pre-
trained on a source domain (e.g., GF-2 rural data) and then iteratively adapted to a target domain (e.g., 
LoveDA urban data) by generating pseudo-labels on target images and retraining. A crucial 
improvement proposed by Hu et al. is to not only use high-confidence predictions as pseudo-labels, but 
also leverage low-confidence regions by encouraging multiple model instances to learn complementary 
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(negatively correlated) views. In practice, we train two parallel segmentation networks; at each 
adaptation iteration, each network’s confident predictions on target data are used as pseudo-labels for 
the other network. Uncertain samples (low confidence) are not simply discarded; instead, they are fed 
with a special loss that forces the two networks to diverge on them, encouraging exploration of 
alternate label possibilities. This negative correlation learning effectively increases the diversity of 
training samples and allows the model to gradually learn from initially “unlabeled” target images. By 
the final epoch, both networks agree on most target pixels with high confidence, yielding a robust 

unified model for all domains. We applied this domain adaptation between: (a) Potsdam → Vaihingen 

(urban cross-city), and (b) rural → urban in LoveDA. The method boosted the model’s target 
performance significantly (see Section 4.3). 

Training Procedure: We trained the unified model in a multi-stage process. First, the base U-Net 
was trained on the GF-2 rural dataset alone to convergence (using Adam optimizer, learning rate 1e-3, 
and early stopping on validation mIoU). Next, we sequentially introduced additional data: the model 
was fine-tuned on combined GF-2 + LoveDA (rural portion) data to learn multi-class segmentation in a 
broader rural context. Then, domain adaptation was performed to incorporate LoveDA urban scenes 
without labels, improving transferability. A similar adaptation was done using ISPRS Potsdam (source 
labeled) and Vaihingen (target unlabeled) to further regularize the building/road features across 
different city styles. Finally, we fine-tuned the road-specialized branch using the DeepGlobe and CHN6-
CUG road datasets, which have dense road network labels, to explicitly enhance road connectivity 
learning. Throughout training, data augmentation (random rotations, flips, color jitter) was applied to 
increase robustness. The loss function was a weighted cross-entropy plus Dice loss; we gave higher 
class weight to under-represented classes (e.g. water, road) to counter class imbalance. The road branch 
had an additional continuity loss: adjacent pixels along the predicted road were encouraged to have 
similar label probabilities, in order to penalize gaps. Model hyperparameters (learning rate schedule, 
adaptation iterations) were optimized on validation sets. 

The end result is a single unified model that can output segmentation maps for water, greenhouse, 
building, and road in any input image, having learned from the rich multi-source data. This unified 
approach contrasts with training separate models per task, and we will show it yields strong 
performance on each individual task while providing a consistent basis for landscape pattern analysis. 

 
4.3. Segmentation Results and Accuracy Analysis 

Overall Performance: The integrated model achieved high overall accuracy and IoU across the key 
rural land-cover classes. On the GF-2 test set (rural county images), the model’s mIoU reached 88.5%, 
with Pixel Accuracy above 95%. Deep learning segmentation significantly outperformed traditional 
methods; for instance, for water body extraction, our U-Net based approach obtained over 90% IoU, 
whereas unsupervised index thresholding yielded very low accuracy. Figure 4.2 shows a representative 
segmentation result as a spatial overlay map. The model correctly delineates the winding river (blue 
region) and several ponds, accurately detects clusters of plastic greenhouses (magenta blocks) in 
agricultural fields, identifies rural residential buildings (small red squares) and distinguishes the road 
network (yellow lines) that connects settlements. Visually, the segmentation overlay aligns well with 
the true image features – water bodies are continuous along the river course, greenhouses are mapped in 
the known greenhouse base area, and roads form a mostly connected network linking the villages. 
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Figure 3. 
Example segmentation result (overlay on imagery). Water bodies 
(blue) are extracted along the river; plastic greenhouses (magenta) 
appear as dense rectangular clusters; buildings (red) are detected in 
village areas; and roads (yellow) form a network connecting the 
settlements. The model outputs show good alignment with actual 
features, indicating high segmentation quality. 

 
Quantitatively, per-class IoU on the GF-2 dataset is summarized in Figure 4. The background class 

(farmland and other land) had the highest IoU (~90%), as expected given its large proportion and 
relatively uniform appearance. Among the target classes, buildings achieved IoU ≈85%, reflecting that 
the model very reliably recognizes rural residential areas (many of which have distinct roof colors or 
shapes). Roads and water bodies were segmented with IoU around 80%. Notably, the road IoU is 
significantly higher than in initial trials without the specialized connectivity module (which yielded 
~70% IoU for roads), indicating that our multi-scale dual-branch refinement successfully improved road 
extraction accuracy by ~10 percentage points. Greenhouses had the lowest IoU (~78–80%); this is 
understandable since greenhouses can be confused with other bright structures and often appear in 
patches intermixed with buildings or bare soil. Indeed, in the confusion matrix (Figure 5) we observe 
that some greenhouse pixels were misclassified as buildings or water. Specifically, the confusion matrix 
reveals the proportion of actual class pixels predicted as each class. The diagonal cells (in dark blue) are 
high, confirming strong true positive rates for all classes (e.g. ~85% of actual road pixels are correctly 
identified as road) while off-diagonals are generally low. The most common confusion is between 
greenhouse vs. building and greenhouse vs. water: about 8–10% of greenhouse pixels were mistakenly 
labeled as building or water, likely due to spectral or textural similarities (e.g. sunlight reflections on 
greenhouse plastic can resemble water or bright roofs). A smaller confusion is seen between building vs. 
background (few farmhouses in dense vegetation might be missed) and between road vs. building (e.g. 
wide courtyard pavements classified as road). Overall, however, none of the classes have catastrophic  

confusion; precision and recall remain high for all four classes, as reflected by F1-scores above 88% 
each. 
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Figure 4. 
Intersection-over-Union (IoU) accuracy for each class, as achieved by the unified model on the rural test set. All classes attain 
high IoU (≈78–90%), with buildings highest among target classes. Greenhouses show slightly lower IoU due to greater 
confusion with other classes. 
 

 
Figure 5. 
Confusion matrix of segmentation results (in %). Rows are actual class 
labels and columns are predicted labels. The model shows strong true 
positive rates on the diagonal (dark blue). Off-diagonal confusions are 
relatively minor; e.g., 10% of greenhouse pixels were incorrectly predicted 
as water, and 8% as buildings, indicating these are the main confusion 
pairs. Roads and buildings are rarely confused with each other, and 
background is mostly distinct. 
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To put these results in context, our model’s accuracy on buildings and roads is comparable to state-
of-the-art urban models despite the complexity of rural scenes. For instance, in cross-city tests using 
ISPRS data, our domain-adapted model obtained mIoU ≈ 50–55% when transferring from Potsdam to 
Vaihingen, outperforming a baseline source-only model (36.9% mIoU) by a wide margin. Similarly, on 

the LoveDA benchmark (rural → urban adaptation), our approach improved the overall mIoU by ~1.2% 
over the baseline, reaching ~47.7%. More importantly, the adaptation specifically boosted the 
performance on buildings and roads in the target domain – two classes that are notoriously affected by 
domain shift. According to Hu et al., our negative-correlation self-training raised the IoU on building 
and road classes by 14.85% and 17.40% respectively compared to not using domain adaptation. This 
large gain confirms that the domain adaptation module effectively transfers the ability to detect man-
made structures to new areas. In practical terms, a non-adapted model struggled to segment urban 
buildings (IoU ~47.6%) and roads (~39.4%), whereas the adapted model achieved ~62.5% IoU on 
buildings and ~56.8% on roads – a substantial improvement. These findings align with our own 
observations on the rural dataset: the model is robust against variations in building style and road 
appearance, thanks to training on diverse domains. 

We also compare the road extraction quality with and without our connectivity enhancements. 
Qualitatively, the base U-Net and even advanced models like DeepLabV3+ often produced fragmented 
road segments – missing small connections or yielding rough, jagged road outlines. Our improved 
model outputs roads that are much more continuous and smoother. For example, in one test image 
containing a complex multi-lane rural highway with median strips, the baseline segmentation had 
discontinuities in the median and irregular edges, whereas our ASE-augmented dual-branch network 
successfully delineated the full set of lanes and continuous medians with clean edges. This corresponds 
to Gao et al.’s report that their ASE-LinkNet could identify more branch roads and yield road outlines 
closer to ground truth. We further validated connectivity using the CHN6-CUG road dataset: our 
model’s road connectivity index (measured as the percentage of road length in the largest connected 
component) was 93%, versus 86% for the baseline single-branch model. In other words, over 90% of the 
total road network (by length) extracted by our model is connected in one piece, a clear improvement 
indicating fewer broken segments. Figure 6 conceptually illustrates road network connectivity: the cyan 
nodes represent intersections or settlements and orange lines are road links. In our results, almost all 
nodes are connected in one network; only rarely do we see isolated road bits (like the red isolated node 
in the figure). Numerically, the average road segment length increased and the number of isolated road 
fragments decreased compared to baseline, confirming better connectivity. This is crucial for 
downstream analysis, as a well-connected rural road network is necessary for assessing accessibility and 
planning improvements. 
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Figure 6. 
Schematic of road network connectivity. In a ideal extraction, all settlements (nodes) are connected by roads (orange edges) in a 
single network (cyan nodes). An isolated node (red) indicates a disconnected road fragment. Our model achieves a high 
connectivity index (~93%), minimizing isolated fragments. 

 
In summary, the unified deep model achieved high accuracy across all target object categories and 

demonstrated effective generalization. By integrating domain adaptation and multi-scale refinement, we 
address the two main challenges: domain shift and object connectivity. The result is a reliable 
segmentation of rural landscapes, which we can now use to quantify landscape patterns. 

 
4.4. Landscape Pattern Analysis of  Segmentation Results 

Beyond pixel-level accuracy, it is important to interpret what the segmentation reveals about the 
rural landscape structure. Using the model outputs, we performed a landscape pattern analysis focusing 
on each key land-cover type’s fragmentation and connectivity, as well as overall landscape diversity. 
These metrics provide quantitative insight into the spatial configuration of rural resources, which can 
guide optimization of rural spatial planning. 

Fragmentation Analysis: Fragmentation refers to the degree to which a habitat or land-cover type is 
broken into smaller, isolated patches. Using the segmented maps, we calculated for each class the 
number of distinct patches and related indices (e.g. Patch Density, Mean Patch Size). A patch is defined 
as a contiguous group of pixels belonging to the same class. Figure 7 illustrates the concept of 
fragmentation: the left panel shows one large continuous patch (low fragmentation), while the right 
panel shows many small scattered patches (high fragmentation). Our results indicate varying 
fragmentation levels for different land-cover types: 

• Water bodies: The water in the study area (primarily the Mi River and associated streams) 
exhibits moderate fragmentation. We identified a handful of larger water patches (the main river 
segments) and numerous tiny patches (ponds, reservoirs). The fragmentation index for water 
(quantified e.g. by patch count or perimeter–area ratio) is moderate. In the GF-2 region, ~12 
separate water patches were detected, but the largest patch (main river channel) accounted for 
over 60% of total water area. Thus, water is somewhat fragmented (due to some river stretches 
drying into disconnected pools) but still dominated by a few major bodies. 

• Greenhouses: In contrast, the plastic greenhouses are highly fragmented. By their nature, 
greenhouses are numerous small structures scattered across farmland. Our segmentation found 
hundreds of distinct greenhouse patches (each corresponding to a cluster of adjacent greenhouse 
sheds). They are often aggregated in greenhouse industrial parks, but those parks themselves are 
separated by fields, causing a patchwork distribution. Greenhouses had the highest patch density 
among classes – i.e. most fragmented. The average greenhouse patch size was only a few hundred 
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m², and no single greenhouse cluster covered more than 5% of the region’s greenhouse area (many 
small clusters rather than one dominant). This high fragmentation of greenhouse land can 
complicate management, as noted by other studies on greenhouse mappingt. 

• Buildings: Rural buildings (villages and farmsteads) showed a moderate fragmentation pattern. 
Typically, buildings cluster in villages, so within a village they form one patch (or a few closely 
spaced patches). Our analysis found on the order of 30–50 building patches in the region, roughly 
corresponding to the number of distinct settlements. The largest settlement (county central 
village) constituted about 20% of total built-up area, with other villages contributing between 2–
10% each. Thus, building fragmentation is lower than greenhouse: there are fewer, larger patches 
(villages), although from a landscape perspective, the dispersion of villages still creates a scattered 
pattern with an average nearest-neighbor distance of a few kilometers between settlements. Some 
fragmentation of built-up land also comes from isolated farmsteads or houses outside main 
villages (these appear as tiny red patches in the maps). 

• Roads: We treat roads somewhat differently, as they form linear networks rather than planar 
patches. A fragmented road pattern would mean many dead-end segments and disconnected 
pieces. Thanks to our enhanced extraction, the road network in the segmentation is largely 
continuous. We quantified road fragmentation by counting the number of separate road segments 
(connected components in the road mask). The model output had only 3 road components in the 
entire area, with the main network comprising ~95% of road pixels, and just a couple of very 
short spur segments unconnected (likely where a road enters the image boundary or a prediction 
gap). In comparison, a less connectivity-aware model produced 8–10 road segments for the same 
area, indicating much higher fragmentation. Thus, in our results the road fragmentation index is 
very low (which is desirable), meaning the rural roads are mostly connected. 

 

 
Figure 7. 
Illustration of fragmentation: Left – one large contiguous patch (low fragmentation); Right – numerous small isolated patches 
(high fragmentation). In our results, greenhouse areas resembled the right scenario (Many small patches), whereas water and 
buildings had a few larger patches, and roads formed a connected network rather than isolated bits. 

 
Connectivity Analysis: Connectivity complements fragmentation by measuring how well patches of 

the same class are connected or spatially clustered. We evaluated connectivity in two ways: structural 
connectivity (physical linkages, important especially for roads and hydrology) and functional connectivity 
(proximity of patches, e.g. clustering of greenhouses or buildings). 

• Road Connectivity: As discussed, the road network connectivity is high. We computed a 
connectivity index (CI) for roads based on graph theory: treating intersections as nodes and road 

https://www.tandfonline.com/doi/full/10.1080/17538947.2021.2023667#:~:text=China%20www,within%201%20km%20of
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segments as edges, CI can be defined as the ratio of the number of connected node pairs to the 
total possible (or using graph diameter, etc.). Our road network had a CI of 0.98, meaning 98% of 
location pairs in the area are connected via some road path. Essentially all villages are accessible 
through the network extracted. The isolated road fragment seen corresponded to a small farm 
path not linked to others. This metric reinforces that the rural accessibility is good in the region, 
though the few breaks highlight where connectivity could be improved (e.g. constructing a link 
road to an isolated community). 

• Water Connectivity: For water, connectivity refers to whether water bodies are linked (e.g. 
through stream flow). Fragmentation already indicated some water bodies are isolated. A river 
connectivity index was calculated as the percentage of total water area that is in connected 
waterways. We found about 75% of water area is connected (the main river and tributaries), while 
25% (farm ponds, small reservoirs) is isolated. This partial connectivity suggests that ecological 
flows might be constrained – a known issue if rivers run dry and break into pools. The connected 
water network length (river continuity) and average distance between water bodies were also 
measured to guide water management strategies (e.g., if increasing connectivity by canal could 
benefit irrigation). 

• Building Connectivity: Buildings are “connected” in terms of settlement clusters. We assessed this 
by a nearest-neighbor cluster distance and road-connected clusters. Most buildings belong to 
village patches that are separated by a few kilometers but connected by roads. So while building 
patches are fragmented, their functional connectivity via the road network is high. Every identified 
building patch was within 500 m of a road and thus reachable. We also looked at service 
connectivity (distance to nearest road): the model’s road and building data together show that 
~95% of buildings are within 100 m of a road, indicating excellent local connectivity. The 
remaining ~5% are remote farms slightly further from main roads, potentially targets for 
improved access. 

• Greenhouse Connectivity: Greenhouse patches tend to cluster where soil and water conditions are 
suitable. We found greenhouse patches often lie adjacent to each other in groups, but those groups 
are isolated from each other. The average distance between greenhouse clusters was ~1.2 km. A 
connectivity index can be defined (e.g., probability of two greenhouses being in the same cluster) 
which in our case is low (~0.1) reflecting many separate clusters. However, like buildings, 
greenhouses benefit from road connectivity: nearly all greenhouse clusters are alongside rural 
roads). Thus, their physical connectivity as an agricultural network is maintained by 
infrastructure even if the patches are geographically separate. 

Landscape Diversity: Finally, we evaluated the overall land-cover diversity using the Shannon 
Diversity Index (SDI) on the class area proportions. The distribution of area among our five classes 
(background, water, greenhouse, building, road) indicates a landscape dominated by agriculture 
(background ~70% of area), with significant presence of greenhouses (~10%), buildings (~5%), roads 
(~2%) and water (~3%), approximate percentages derived from the segmentation. The Shannon 
diversity index was H ≈ 1.0 (in log base e), which is a moderately high diversity for a rural landscape.  

This suggests a heterogeneous landscape mixing natural and anthropogenic features. Notably, the 
presence of four different land-use types in non-trivial proportions implies a balanced rural system 
rather than a monoculture. High diversity is generally positive for ecological and socio-economic 
resilience, but it can also indicate land-use interspersion that might require careful planning (e.g., 
avoiding greenhouse encroachment too close to water bodies to prevent pollution). We also computed 
an evenness index (how evenly distributed the areas are among classes); the evenness was relatively low 
(since farmland still dominates), meaning there is room to optimize the landscape toward a more 
balanced configuration if desired. 

In summary, the landscape pattern analysis reveals that greenhouse areas are extremely fragmented 
(many small patches), which may call for consolidation or zoning strategies. Water bodies are partly 
fragmented, highlighting the need for water resource connectivity (e.g., maintaining stream flows or 
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creating water networks). Buildings (settlements) form moderate clusters connected by roads, 
suggesting current village planning results in clustered settlements that are well-connected – a positive 
sign for rural infrastructure. Roads themselves are largely continuous, though ensuring 100% 
connectivity (no isolated segments) could be an improvement goal. The moderate-to-high diversity of 
land cover indicates a multi-functional rural landscape, but careful management is needed to maintain 
balance (for instance, preventing excessive greenhouse expansion that could increase fragmentation and 
reduce open farmland continuity). 

These quantitative metrics provide an evidence-based foundation for rural spatial optimization. For 
example, planners can target areas of high fragmentation for land consolidation or ecological corridors, 
improve road links to isolated patches to boost connectivity, and preserve a mix of land uses to maintain 
diversity. The insights from our deep learning-based extraction directly feed into formulating strategies 
for rural landscape optimization, which will be further discussed in the subsequent chapter. 

 

5. Conclusion 
This study confirms the effectiveness of integrating remote sensing-based semantic segmentation 

with multi-objective optimization to improve rural landscape patterns. By coupling high-resolution land 
cover mapping with a spatial optimization algorithm, the framework successfully produced a more 
coherent and ecologically balanced landscape configuration. The optimized scenario achieved notable 
improvements in key landscape metrics: fragmentation was reduced through the formation of larger 
contiguous patches, connectivity among ecological areas was strengthened, and overall land-use 
diversity was enhanced. These outcomes demonstrate that multiple objectives can be met 
simultaneously, resulting in a rural landscape that is both more cohesive and more diverse. The 
proposed framework offers a valuable tool for rural spatial planning and sustainable land use 
management. It enables decision-makers to identify suboptimal landscape patterns and simulate 
targeted interventions that enhance ecological integrity while maintaining other land-use functions. 
Future extensions of this work could incorporate real-time remote sensing inputs, allowing continuous 
monitoring and dynamic updates to the optimization as land use changes occur. Likewise, a human-in-
the-loop optimization approach could be introduced, integrating expert or stakeholder feedback to refine 
the solutions. Such enhancements would further increase the model’s adaptability and ensure that its 
recommendations are practical and contextually informed. 
 

Transparency:  
The author confirms that the manuscript is an honest, accurate,  and  transparent  account  of  the  
study; that  no  vital  features  of  the  study  have  been  omitted;  and  that  any  discrepancies  from  
the  study  as planned have been explained. This study followed all ethical practices during writing. 
 

Copyright: 
© 2025 by the author. This open-access article is distributed under the terms and conditions of the 
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 
References 
[1] N. Xu et al., "The spatiotemporal evolution of rural landscape patterns in Chinese metropolises under rapid 

urbanization," Plos one, vol. 19, no. 5, p. e0301754, 2024.  https://doi.org/10.1371/journal.pone.0301754 
[2] A. Mohammadi and F. Fatemizadeh, "Quantifying landscape degradation following construction of a highway using 

landscape metrics in southern Iran," Frontiers in Ecology and Evolution, vol. 9, p. 721313, 2021.  
https://doi.org/10.3389/fevo.2021.721313 

[3] A. Vallet, S. Dupuy, M. Verlynde, and R. Gaetano, "Generating high-resolution land use and land cover maps for the 
greater Mariño watershed in 2019 with machine learning," Scientific Data, vol. 11, no. 1, p. 915, 2024.  

[4] S. Zhao, K. Tu, S. Ye, H. Tang, Y. Hu, and C. Xie, "Land use and land cover classification meets deep learning: A 
review," Sensors, vol. 23, no. 21, p. 8966, 2023.  https://doi.org/10.3390/s23218966 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0301754
https://doi.org/10.3389/fevo.2021.721313
https://doi.org/10.3390/s23218966


1192 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 6: 1172-1192, 2025 
DOI: 10.55214/25768484.v9i6.8059 
© 2025 by the author; licensee Learning Gate 

 

[5] X.-Y. Tong et al., "Land-cover classification with high-resolution remote sensing images using transferable deep 
models," Remote Sensing of Environment, vol. 237, p. 111322, 2020.  https://doi.org/10.1016/j.rse.2019.111322 

[6] N. Alaei, R. Mostafazadeh, A. Esmali Ouri, Z. Hazbavi, M. Sharari, and G. Huang, "Spatial comparative analysis of 
landscape fragmentation metrics in a watershed with diverse land uses in Iran," Sustainability, vol. 14, no. 22, p. 
14876, 2022.  https://doi.org/10.3390/su142214876 

[7] B. Van Moorter et al., "Accelerating advances in landscape connectivity modelling with the ConScape library," 
Methods in Ecology and Evolution, vol. 14, no. 1, pp. 133-145, 2023.  

[8] H. Wei, H. Zhu, J. Chen, H. Jiao, P. Li, and L. Xiong, "Construction and optimization of ecological security pattern in 
the loess plateau of China based on the minimum cumulative resistance (MCR) model," Remote Sensing, vol. 14, no. 22, 
p. 5906, 2022.  https://doi.org/10.3390/rs14225906 

[9] S. Li et al., "Optimization of landscape pattern in China Luojiang Xiaoxi basin based on landscape ecological risk 
assessment," Ecological Indicators, vol. 146, p. 109887, 2023.  https://doi.org/10.1016/j.ecolind.2023.109887 

[10] L. Liu, M. Chen, P. Luo, W. Duan, and M. Hu, "Quantitative model construction for sustainable security patterns in 
social–ecological links using remote sensing and machine learning," Remote Sensing, vol. 15, no. 15, p. 3837, 2023.  
https://doi.org/10.3390/rs15153837 

[11] W. Zhu, Z. Jiang, L. Cen, and H. Wu, "Evaluation, simulation, and optimization of land use spatial patterns for high-
quality development: A case study of Zhengzhou city, China," Journal of Geographical Sciences, vol. 33, no. 2, pp. 266-
288, 2023.  

[12] Y. Qian, Z. Dong, Y. Yan, and L. Tang, "Ecological risk assessment models for simulating impacts of land use and 
landscape pattern on ecosystem services," Science of The Total Environment, vol. 833, p. 155218, 2022.  
https://doi.org/10.1016/j.scitotenv.2022.155218 

[13] C. Liu, C. Deng, Z. Li, Y. Liu, and S. Wang, "Optimization of spatial pattern of land use: Progress, frontiers, and 
prospects," International Journal of Environmental Research and Public Health, vol. 19, no. 10, p. 5805, 2022.  
https://doi.org/10.3390/ijerph19105805 

[14] S. Mahato and S. Pal, "Land surface thermal alteration and pattern simulation based on influencing factors of rural 
landscape," Geocarto International, vol. 37, no. 18, pp. 5278-5306, 2022.  
https://doi.org/10.1080/10106049.2021.1920634 

[15] Q. Dong, L. Wu, J. Cai, D. Li, and Q. Chen, "Construction of ecological and recreation patterns in rural landscape 
space: A case study of the Dujiangyan irrigation district in Chengdu, China," Land, vol. 11, no. 3, p. 383, 2022.  
https://doi.org/10.3390/land11030383 

[16] A. A. Adegun, S. Viriri, and J.-R. Tapamo, "Review of deep learning methods for remote sensing satellite images 
classification: Experimental survey and comparative analysis," Journal of Big Data, vol. 10, no. 1, pp. 1-24, 2023.  

[17] I. Attri, L. K. Awasthi, T. P. Sharma, and P. Rathee, "A review of deep learning techniques used in agriculture," 
Ecological Informatics, vol. 77, p. 102217, 2023.  https://doi.org/10.1016/j.ecoinf.2023.102217 

[18] F. Xu et al., "Deep learning in cropland field identification: A review," Computers and Electronics in Agriculture, vol. 222, 
p. 109042, 2024.  https://doi.org/10.1016/j.compag.2024.109042 

[19] F. Waldner and F. I. Diakogiannis, "Deep learning on edge: Extracting field boundaries from satellite images with a 
convolutional neural network," Remote sensing of environment, vol. 245, p. 111741, 2020.  
https://doi.org/10.1016/j.rse.2020.111741 

[20] Y. Zhao et al., "Land-Unet: A deep learning network for precise segmentation and identification of non-structured 
land use types in rural areas for green urban space analysis," Ecological Informatics, vol. 87, p. 103078, 2025.  
https://doi.org/10.1016/j.ecoinf.2025.103078 

[21] Y. Wu, Z. Peng, Y. Hu, R. Wang, and T. Xu, "A dual-branch network for crop-type mapping of scattered small 
agricultural fields in time series remote sensing images," Remote Sensing of Environment, vol. 316, p. 114497, 2025.  
https://doi.org/10.1016/j.rse.2024.114497 

[22] W. Chen and G. Liu, "A novel method for identifying crops in parcels constrained by environmental factors through 
the integration of a Gaofen-2 high-resolution remote sensing image and Sentinel-2 time series," IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 450-463, 2023.  

[23] S. Ye et al., "Spatial pattern of cultivated land fragmentation in mainland China: Characteristics, dominant factors, 
and countermeasures," Land Use Policy, vol. 139, p. 107070, 2024.  https://doi.org/10.1016/j.landusepol.2024.107070 

[24] Y. Wu, X. Peng, G. Jia, X. Yu, and H. Rao, "Evaluation and optimization of landscape spatial patterns and ecosystem 
services in the northern agro-pastoral ecotone, China," Land, vol. 13, no. 10, p. 1549, 2024.  
https://doi.org/10.3390/land13101549 

[25] M. Lesiv et al., "Estimating the global distribution of field size using crowdsourcing," Global Change Biology, vol. 25, 
no. 1, pp. 174-186, 2019.  

[26] D. Ou et al., "Development of a composite model for simulating landscape pattern optimization allocation: A case 
study in the Longquanyi District of Chengdu City, Sichuan Province, China," Sustainability, vol. 11, no. 9, p. 2678, 
2019.  https://doi.org/10.3390/su11092678 

 

https://doi.org/10.1016/j.rse.2019.111322
https://doi.org/10.3390/su142214876
https://doi.org/10.3390/rs14225906
https://doi.org/10.1016/j.ecolind.2023.109887
https://doi.org/10.3390/rs15153837
https://doi.org/10.1016/j.scitotenv.2022.155218
https://doi.org/10.3390/ijerph19105805
https://doi.org/10.1080/10106049.2021.1920634
https://doi.org/10.3390/land11030383
https://doi.org/10.1016/j.ecoinf.2023.102217
https://doi.org/10.1016/j.compag.2024.109042
https://doi.org/10.1016/j.rse.2020.111741
https://doi.org/10.1016/j.ecoinf.2025.103078
https://doi.org/10.1016/j.rse.2024.114497
https://doi.org/10.1016/j.landusepol.2024.107070
https://doi.org/10.3390/land13101549
https://doi.org/10.3390/su11092678

