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Abstract: Wind turbine blade icing poses a significant challenge to the reliability and efficiency of wind 
power generation, especially in cold and harsh climates. Accurately detecting icing conditions is 
essential for maintaining optimal turbine performance and preventing potential mechanical failures. 
However, conventional detection methods often face limitations when processing complex multivariate 
time-series data collected from Supervisory Control and Data Acquisition (SCADA) systems. In this 
study, we propose a novel hybrid deep learning model, CNN-BiGRU-TPA, which integrates 
Convolutional Neural Networks (CNNs) for spatial feature extraction, Bidirectional Gated Recurrent 
Units (BiGRUs) for temporal sequence modeling, and a Temporal Pattern Attention (TPA) mechanism 
to highlight critical temporal features. The proposed model demonstrates superior performance, 
achieving a recall of 0.8896, precision of 0.8904, F1 score of 0.8900, and Matthews Correlation 
Coefficient (MCC) of 0.7800. These results indicate its strong capability in accurately identifying icing 
events from complex SCADA datasets. This research provides a robust and scalable solution for real-
time wind turbine monitoring and offers valuable insights for future applications in industrial big data 
analytics. 

Keywords: Bidirectional gated recurrent units, CNN-BiGRU-TPA model, Convolutional neural networks, Data analysis, 
SCADA data, Temporal attention mechanism, Wind turbine blade icing. 

 
1. Introduction  

Wind power, as a clean and renewable energy source, has seen widespread adoption in recent years. 
It is progressively replacing fossil fuels and emerging as a crucial force in advancing carbon peak and 
carbon neutrality goals [1]. In China, with its vast territory and varied terrain, wind energy resources 
are abundant, particularly in high-altitude mountainous regions and areas near lakes in the south. 
However, these regions often experience cold temperatures and high humidity during winter, leading to 
frequent low temperatures and freezing conditions that can cause wind turbine blades to ice over. Blade 
icing not only reduces the efficiency of power generation but also increases the mechanical load on the 
blades, potentially resulting in serious safety hazards such as blade breakage or turbine failure. 
Therefore, the development of reliable ice detection methods is essential to ensure the safe and efficient 
operation of wind turbines. 

At present, the diagnosis of wind turbine blade icing fault mainly relies on non-destructive testing 
technology, including blade icing detection system [2, 3] data mining method [4] acoustic emission 
detection [5] vibration mode recognition detection [6] infrared optical image processing [7] and 
unmanned aerial vehicle detection [8]. Among them, damage identification technologies such as 
ultrasonic [9] and fiber grating [10] are also applied in the inspection of wind turbine blades. Acoustic 
emission and vibration detection technologies often require sensors to be installed on the blades, which 
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is not only costly, but can also affect the dynamics of the blades. Drone detection faces the problems of 
downtime operation, short battery life and environmental factors. Hyper spectral imaging [11] and 
infrared cameras [12] can quickly and accurately identify the icing state of leaves through image 
processing, but the effectiveness of these methods may be limited in adverse weather conditions. The 
data mining method [13] performs well in accurately identifying the icing state of leaves, but it has 
high requirements for feature screening, and the accuracy of the overall algorithm may be affected if the 
feature screening is improper. 

As the most widely used and mature data acquisition and monitoring system (SCADA), the SCADA 
system can provide rich information about the operating status of wind turbines without installing 
additional sensors, thereby reducing monitoring and maintenance costs, so it has been widely used in 
wind power equipment [14]. Machine learning and deep learning technologies are often used in the 
method of calculating the icing of wind turbine blades based on SCADA data, and the rapid 
development of these technologies has significantly promoted the research of ice detection of wind 
turbine blades. 

Machine learning techniques are widely used in conventional wind turbine blade icing fault 
detection. Kreutz [15] proposed a convolutional neural network (CNN) model with dual inputs and a 
one-dimensional convolutional filter to effectively identify blade icing by utilizing historical turbine data 
and weather forecasts. Yang, et al. [16] developed a method using SCADA data, combining random 
forest and KNN algorithms to enhance feature selection, enhancing the accuracy of wind turbine blade 
icing diagnosis. This approach showed better performance compared to traditional BP neural networks, 
contributing to safer and more reliable wind turbine operation in cold regions. Xu, et al. [17] 
introduced a blade icing prediction method using a PSO-optimized SVM model. By enhancing data 
preprocessing and feature selection, the method improved prediction accuracy, offering an effective 
solution for icing fault detection. Meng, et al. [18] applied a combination of recursive feature 
elimination random forest (RFE-RF) and support vector machine (SVM) for icing monitoring, 
effectively diagnosing faults through feature selection and model fusion (Stacking). Tao, et al. [19] 
combined the physical characteristics of icing with the Stacked-XGBoost model to calculate wind 
turbine blade icing, significantly improving diagnostic accuracy and model generalization by accounting 
for both short-term and long-term icing effects.  

Deep learning, due to its powerful ability to handle complex nonlinear problems, is widely used in 
the prediction of wind turbine blade icing, and there is a tendency toward the combination of multiple 
models.  Xiong [20] based on the SCADA monitoring data of wind farms, a short-term icing state 
prediction model of wind turbine blades combining Bi-LSTM and SVM was proposed, and a high 
accuracy was achieved through PCA dimensionality reduction and multi-group data training. Dazhong 
[21] presented a deep fully connected neural network algorithm based on deep learning optimization, 
which shows higher prediction accuracy and computational efficiency in the prediction of icing state of 
wind turbine blades compared with the traditional KNN, SVM and unoptimized BP neural network 
methods. Tao [22] researched a method for predicting wind turbine blade icing employing a focal loss 
function combined with a CNN-Attention-GRU model. By refining feature extraction and handling data 
imbalance, their approach improved prediction accuracy by an average of 6.41% and increased the F1 
score by 4.27%, significantly boosting the model's performance. In this study [23]. A leaf icing 
detection method was utilized, combining a spatiotemporal attention model with an adaptive weight 
(SAW) loss function. This approach significantly enhances classification accuracy and adaptability by 
extracting and weighting spatiotemporal features from imbalanced SCADA data while dynamically 
adjusting data category weights. The GTAN model [24] enhances the accuracy and robustness of wind 
turbine blade icing predictions by integrating feature extraction, temporal attention mechanisms, and a 
specialized loss function for handling imbalanced data, demonstrating strong potential for practical 
applications. Tian [25] constructed a multi-level convolutional recurrent neural network (MCRNN) 
with convolutional neural network (CNN) and long short-term memory network (LSTM) branches for 
leaf icing detection. Wang, et al. [26] offered a Wavelet LSTM method for detecting ice on wind 
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turbine blades. This approach incorporates wavelet-based multi-scale learning into the traditional 
LSTM framework, allowing for the simultaneous learning of both global and local temporal features 
from multivariable SCADA signals, thus improving fault detection performance. 

Although existing methods for detecting ice formation in wind turbine blades, such as GSDE [27] 
ESS-ELM [28] and DCISS [29] model have made significant progress in improving the prediction 
accuracy and robustness, but there are still some problems such as insufficient generalization ability, 
strong dependence on high-quality labeled samples, and insufficient feature extraction. Especially when 
dealing with complex SCADA data, these models often ignore the temporal characteristics of the data 
and the dependencies between variables, leading to a reduction in detection accuracy in a dynamic 
environment. 

Therefore, enhancing the accuracy of ice prediction of wind turbine blades, the paper constructs a 
hybrid prediction model combining Convolutional Neural Network (CNN) with Bidirectional Gated 
Recurrent Unit (BiGRU) network based on Temporal Pattern Attention Mechanism (TPA) [30, 31]. 
The model integrates the respective characteristics of CNN, BiGRU and TPA modules, and constructs a 
continuous feature map by inputting wind turbine operation data and environmental parameters 
through the prior knowledge of icing detection. Then, the CNN is used to extract the latent relationship 
between the time series data in the feature map, and the processed feature vector is used as the input of 
the BiGRU network. Finally, the dynamic timing modeling is carried out by combining the TPA 
mechanism to complete the short-term prediction of the icing of wind turbine blades. Compared to the 
BiGRU network model alone, the CNN-BiGRU-TPA hybrid model uses the CNN model to extract 
more important icing-related features. Additionally, the TPA module is incorporated into the BiGRU 
model to emphasize the key time series features after BiGRU analysis, thereby reducing the influence of 
insignificant features. This approach addresses the issue of the BiGRU model failing to distinguish the 
importance of time series features, resulting in improved prediction accuracy and robustness. 
 

2. Related Work 
Icing of wind turbine blades is often regarded as a multivariate time series binary classification 

problem. In the day-to-day operation of a wind farm, it is critical to quickly determine whether the 
blades are icy so that appropriate measures can be taken in a timely manner, such as stopping the 
aircraft or starting the de-icing equipment. By simplifying the problem into two categories, "icing" and 
"non-icing", the binary classification model not only improves detection efficiency and accuracy, but also 
simplifies the data processing process, which helps to achieve faster real-time responses. In addition, the 
binary classification method requires fewer computing resources and is particularly suitable for the 
diagnosis of ice formation of wind turbine blades in large-scale wind farms. The data-driven approach to 
modeling wind turbine blade icing primarily involves feature engineering, distance analysis, and deep 
learning techniques. Feature engineering is concerned with extracting key features from the time, 
frequency, and time-frequency domains to facilitate the classification of time series data.The distance 
analysis method distinguishes between normal and abnormal samples by calculating the distance 
between samples. However, the limitation of these methods is that they require expertise to select and 
extract useful features and suitable distance metrics, which often require a significant investment of 
resources. In contrast, deep learning, as a data-driven approach, can overcome these limitations and 
provide more effective solutions. 
 
2.1. CNN Neural Network 

The Convolutional Neural Network (CNN, as shown in Figure 1) is a deep learning model 
commonly applied to computer vision tasks, especially for image recognition and classification involve 
CNNs that extract features from image data through convolution and pooling operations, followed by 
classification or regression in fully connected layers. The main components of a CNN are the 
convolutional and pooling layers. CNN [32] has shown excellent performance in solving many 
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problems related to multi-dimensional nonlinear data and has been extensively used in the prediction of 
wind turbine blade icing. 
 

Input layer
Pooling layerConvolutional layer

Fully-connected Layer

Output layer

 
Figure 1. 
Framework of  CNN. 

 
The convolutional layer operation usually uses a filter-like convolutional kernel mechanism to 

extract the features of the icing parameter matrix of wind turbine blades in the SCADA system, extracts 
data blocks from the input feature vectors, transforms them, and then reorders the output feature 
vectors spatially. This operation reduces the quantity of parameters in the overall network, prevents 
overfitting from occurring, and reduces the amount of memory occupied by the entire network, thus 
reducing the amount of computation. In practice, convolution operations are usually used instead of 
convolution operations because they need to flip the convolution kernel during backpropagation, as 
shown in equation (1):   

𝑦𝑙(𝑖,𝑗) = 𝐾𝑖
𝑙 ∗ 𝑋𝑙(𝑟𝑗) = ∑ 𝐾𝑖

𝑙(𝑗′)𝑊−1
𝑗′=0 𝑋𝑙(𝑗+𝑗′)                       (1) 

Where 𝐾𝑖
𝑙(𝑗′)

is the j' weight of the i-th convolutional kernel of l-layer;𝑋𝑙(𝑗+𝑗′) represents the j-th 

convoluted local region of the i-th convolution kernel of l-layer; W represents the width of the 
convolution kernel. 

The pooling layer is mainly reducing parameters through downsampling, and the pooling process is 
described as follows: 

𝐴𝑘
𝑙 (𝑖, 𝑗) = [∑ ∑ 𝐴𝑘

𝑙𝑓
𝑦=1

𝑓
𝑥=1 (𝑠0𝑖 + 𝑥, 𝑠0𝑗 + 𝑦)𝑝]

1

𝑝                  (2) 

Where s0 represents the step size, f represents the size of the convolution kernel, p fills the number 

of layers, and when p→∞, the maximum value is taken in the pooling area, that is, the maximum 
pooling. The pooling layer optimizes the dimensionality by selecting the most representative features to 
optimize the network. However, each spatial position in the output feature vector matches to the same 
position in the input feature vector, that is, the original sequential relationship is still retained after the 
convolutional pooling operation, and the temporal characteristics of the leaf icing sequence are not 
destroyed. 
 
2.2. GRU 

A Recurrent Neural Network (RNN) is a model designed to process time series data by retaining 
previous information through the interconnected structure of nodes at each layer. This stored 
information is then used to influence the output of subsequent layers, enabling the model to capture 
temporal dependencies in the data. 
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Figure 2. 
Framework of  GRU. 

 
The original Recurrent Neural Network (RNN) struggles with learning long-term dependencies in 

sequential data and is susceptible to issues like vanishing or exploding gradients, making gradient-based 
optimization methods challenging. To address these problems, two extended models were proposed: 
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). GRU, a simplified version of 
LSTM, features a more efficient structure. As depicted in Figure 2, GRU [33] is composed of three 
parts: the reset gate (rt), the update gate (zt), and the candidate layer (ct). Unlike LSTM, GRU eliminates 
the need for an additional memory cell and uses the update gate (zt) to regulate which information is 
retained or discarded, thus reducing computational overhead. The GRU’s operations can be computed as 
follows: 

𝑧𝑡= σ (𝑉xz𝑥𝑡 + Uhzℎt-1 + b𝑧)                                                                  (3) 

𝑟t = σ (𝑉xr𝑥𝑡 + 𝑈ℎ𝑟ℎt-1 + 𝑏𝑟)                                                                   (4) 

𝑐𝑡 = φ(𝑉xc𝑐xt + 𝑈ℎ𝑐 (𝑟𝑡  ⊙ ℎt-1) + 𝑏𝑐)                                                   (5) 
Where Vxz, Vxr, Vxc denote the weights that link the input layer to the GRU units. Uhz, Uhr, Uhc represent the 
weights associated with the self-connections between the current time step t and the previous time step 

t−1.bz , br denote the biases for the two gates in the GRU unit, while bc represents the bias for the 
candidate layer. 
 
2.3. Bidirectional GRU  

While GRU is effective in modeling time-series data, it is restricted to learning information solely in 
the forward direction. In contrast, the Bidirectional GRU (BiGRU) improves upon this by incorporating 
two layers-one that processes information in the forward direction and another in the backward 
direction. As illustrated in Figure 3, the forward and backward layers are connected to the output layer, 
allowing the model to capture both past and future context, making it more effective in processing 
sequential data with dependencies across different time steps. 
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Figure 3. 
Framework of  BiGRU. 

 

The forward layer (ℎ⃗ 𝑡) conducts training on the time-series data in the forward direction, while the 

backward layer (ℎ⃗⃖𝑡) trains the time-series data in the reverse direction.This bidirectional approach 
allows the model to utilize information from both directions, enhancing its understanding of the 
sequence. The forward and backward training processes can be formulated as follows: 

ℎ⃗ 𝑡 = 𝑓(𝑊⃗⃗⃗ ⋅ 𝑥𝑡 + 𝑈⃗⃗ ⋅ ℎ⃗ 𝑡−1 + 𝑏⃗ )                                         (6) 

ℎ⃗⃖𝑡 = 𝑓(𝑊⃗⃗⃗⃖ ⋅ 𝑥𝑡 + 𝑈⃗⃗⃖ ⋅ ℎ⃗⃖𝑡−1 + 𝑏⃗⃖)                                        
 
(7) 

ℎ𝑡 = ℎ⃗ 𝑡 ⊕ ℎ⃗⃖𝑡                                                                     
(8) 

The weights connecting the input layer to the forward and backward layers are denoted by 𝑊⃗⃗⃗ and 

𝑊⃗⃗⃗⃖, respectively. The self-connection weights for these layers are represented by 𝑈⃗⃗ and 𝑈⃗⃗⃖. The biases for 

the forward and backward layers are 𝑏⃗  and 𝑏⃗⃖, respectively. Additionally, ⊕ represents the concatenation 
of the outputs from both layers. 
 
2.4. Temporal Attention Mechanism  

The attention mechanism Yin and Jesse [34] and SHI, et al. [35] mimics human visual attention by 
assigning different weights to various features, emphasizing those most relevant to the target task. 
Typical attention mechanisms focus on extracting important information associated with the current 
time step. The context vector vt is derived by weighting the column vectors of the BiGRU hidden state 
H=(h1, h2, ..., ht-1). However, in the case of wind turbine blade icing detection, each time step involves 
multiple variables that exhibit complex nonlinear relationships. Additionally, each variable exhibits 
unique characteristics and periodicity, making it challenging to pinpoint a specific time step as the 
primary focus. To address this, the Temporal Pattern Attention Mechanism (TPA) applies a one-
dimensional convolutional neural network (1D-CNN) filter to extract row vector features from the 
BiGRU hidden state H. This improves the model's capacity to capture the relationships among multiple 
variables across various time steps. The framework of TPA is shown in Figure 4. 
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Figure 4. 
Framework of  TPA. 

 

For the initial time series H, BiGRU computes a hidden state matrix 𝐻i,j, and TPA applies k filters 

to extract features through row-wise convolution operations on each row Hi of H, generating a time 

pattern matrix 𝐻i,j
𝐶 . Here, Hi,j represents the output value corresponding to the i-th row vector and the j-

th convolutional kernel, with C representing the convolution process. 

𝐻i,j
𝐶 = ∑ 𝐻𝑖,(𝑡−𝑤−1+𝑙)

𝑤
𝑙=1 × 𝐶𝑗,𝑇−𝑤+𝑙                            

(9) 

 

The predicted nodes are ht and 𝐻i,j
𝐶 . Each matrix row is processed to calculate a weight, which is then 

normalized to derive the attention weight ai, reflecting the influence of each time series on ht. 

𝑓(𝐻𝑖
𝐶 ,h𝑡) = (𝐻𝑖

𝐶)𝑇𝑊𝑎ℎ𝑡                                              
(10)

 
𝑎𝑖 = sigmoid(𝑓(𝐻𝑖

𝐶 , ℎ𝑡))                                             
(11)

 
The weighted sum of the weights of each time series is used to obtain the weight vector vt, which takes 
into account the combined effect of all rows on ht, i.e., time attention. 

𝑣𝑡 = ∑ 𝑎𝑖𝐻𝑖
𝐶𝑛

𝑖=1                                                             
(12) 

For vt and ht, the linear mapping and the sum are performed to obtain the time information state ht'. 

ℎ𝑡
′ = 𝑊𝑡ℎ𝑡 + 𝑊𝑣𝑣𝑡                                                        

(13) 
Where Wt\Wv represents the weight matrix of different variables. 

A key advantage of TPA over traditional attention mechanisms is its ability to assign weights not 
only to time steps, but also to individual characteristic dimensions related to icing of wind turbine 
blades. Standard attention mechanisms often distribute weights between different time steps, which 
makes it difficult to pinpoint the specific effect of each variable on leaf icing within a single time step. In 
contrast, TPA digs deep into the relationship between variables in historical data and current icing 
conditions, using weighted attention vectors to better capture time series features to generate more 
accurate predictions. In addition, while RNN models such as BiGRU often encounter problems such as 
vanishing gradients when dealing with long-term wind turbine SCADA data series, TPA overcomes 
this challenge by analyzing the correlation between historical icing sequences and future results 
through its resource allocation system. This strategy emphasizes key contributors, reduces the risk of 
losing important information, and effectively captures long-term dependencies, making TPA a powerful 
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tool for predicting icing on wind turbine blades, and Table 5 can demonstrate the superiority of its 
model. 

 
2.5. CNN-BIGRU-TPA Model  

Figure 5 shows the architecture of the CNN-BiGRU-TPA model developed in this study, consisting 
of five main components: the input layer, CNN layer, BiGRU layer, TPA layer, and output layer. The 
roles of these layers are as follows: 
 

Data Input

    Pooling                       Convolutional

     

Backward GRU Forward GRU

Dropout Layer

                      

 

TPA Mechanism

1h 2h
3h 2-th 1-th th

     

tv

Dense Dense

'
t

h

Fully Connected Layer Output

Input Layer

CNN Layer

BiGRU Layer

TPA Layer

Output  Layer
 

Figure 5. 
Framework of  CNN-BIGRU-TPA. 

 
(1) Input Layer: The model's input consists of historical SCADA icing data and other influencing 

factors. 
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(2)CNN Layer: This layer captures the relationships between input factors and current blade icing. 
The convolutional layers identify feature patterns, while the pooling layers reduce dimensionality by 
selecting key features. The processed features are then sent to the BiGRU layer via fully connected 
layers. 

(3) BiGRU Layer [36]: The BiGRU layer captures temporal dependencies within the icing 
sequence, building a dynamic time-series model. It processes bidirectional information and applies 
dropout regularization to prevent overfitting. The result is a hidden state matrix H i,j = [ h1 ,h2 ,...,ht-1 ,ht], 
which is passed to the TPA layer. 

(4) TPA Layer: The Temporal Pattern Attention Mechanism(TPA) assigns adaptive weights to the 
hidden states from BiGRU, selecting and emphasizing relevant features. The attention mechanism 
produces a comprehensive temporal feature vector ht' by highlighting important features. 

(5) Output Layer: The fully connected layer produces the predicted output, indicating whether 
blade icing will occur in the next time step. 
 

3. Experiments and Discussion   
3.1. Data Description  

In this study, icing data for wind turbine blades was collected from a wind farm located in Hunan 
Province, utilizing turbines manufactured by Harbin electric corporation. The SCADA data was 
recorded from December 1st to December 30th, with a resolution of  7 seconds. Engineers identified 26 
key variables related to blade icing from a SCADA system with data from hundreds of  sensors and 
pinpointed the times when icing occurred. These variables are listed in Table 1. 
 
Table 1. 
Partial Monitoring Parameter Information of  Wind Turbine Units. 

Serial Number Variable Name Serial Number Variable Name 
1 Wind_speed 14 Pitch1_moto_tmp 
2 Generator_speed 15 Pitch2_moto_tmp 

3 Power(kw) 16 Pitch3_moto_tmp 

4 Wind_direction(°) 17 Acc_xx 
5 Wind_direction_mean 18 Acc_yy 

6 yaw_position 19 environment_tmp 
7 yaw_speed 20 int_tmp 

8 Pitch1_speed 21 Pitch1_ng5_tmp 
9 Pitch2_speed 22 Pitch2_ng5_tmp 

10 Pitch3_speed 23 Pitch3_ng5_tmp 

11 Pitch1_angle 24 Pitch1_ng5_DC 
12 Pitch2_angle 25 Pitch2_ng5_DC 

13 Pitch3_angle 26 Pitch3_ng5_DC 

 
3.2. Data Preprocessing   

The data used in this study was obtained from the SCADA system, which presented challenges such 
as outliers, redundant entries, and missing values. To prevent these issues from impacting model 
training and testing, a comprehensive data preprocessing procedure was carried out, including the 
following steps: 

(1) Read and preliminarily filter data: Use the os.listdir() function to iterate through all the files in 
the data directory, perform preliminarily filter based on specific keywords in the file name, and then read 
the CSV file that matches the criteria. 

(2) Data labeling and imputation: Experienced wind turbine engineers labeled all raw data, 
categorizing it as either normal or iced. To ensure data continuity and completeness, missing values 
were handled using the Fillna method, preventing gaps in the time series from affecting subsequent 
analysis and model training. 
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(3) Data segmentation and normalization: Since the SCADA data is collected as time series from 
sensors at regular intervals, normalization and standardization were applied to align the data with the 
input requirements of the CNN-BiGRU-TPA wind turbine blade icing prediction model. First, Min-
Max normalization was performed to scale the feature values within the range of 0 to 1, mitigating the 
impact of varying units and magnitudes on the model. The normalized time series was then segmented 
into fixed-length fragments (500 data points) suitable for model input. 

𝑋′ =
𝑋−𝑋min

𝑋max−𝑋min                                                             
(14) 

Here, X′ represents the preprocessed feature data, X is the raw data, and Xmax and Xmin represent the 
maximum and minimum values of  the feature, respectively. 

(4) Handling iced data: In addition to processing the normal data, similar segmentation and 
normalization procedures are applied to the iced data. Failure data is integrated into the overall dataset 
by retrieving information from other data sources and applying the same preprocessing techniques. 
 
3.3. Evaluation Metrics 

This study evaluates the proposed model using imbalanced data, where the number of abnormal 
(icing) samples is much smaller than the number of normal (non-icing) samples. This imbalance can 
inflate the precision score, making it unsuitable for accurate model assessment. Given the focus on wind 
turbine blade icing, with icing and non-icing conditions treated as positive and negative samples, 
respectively, the paper uses precision, recall, F1-score, and the Matthews correlation coefficient (MCC) 
as performance metrics. The definitions of these metrics are as follows: 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                    

(15)
 

𝑅ecall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   

(16)
 

𝐹1 =
2×𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒 𝑐𝑎𝑙𝑙

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
                                              

  
(17)

 
ACC=

TP+TN

TP+FP+TN+FN
                                                        

(18)
 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                          

(19)
 Where TP, FP, FN, and TN represent true positives, false positives, false negatives, and true negatives, 

respectively. 
 
3.4. Experimental Environment 

This experiment was performed in a computing environment with the following Table 2: 
 
Table 2. 
Experimental Environment. 

Hardware configuration Software Configuration 
(1)CPU: Intel64 Family 6 Model 186 Stepping 2, 
GenuineIntel 
(2)Memory: 31.65 GB RAM 
(3)Storage: 302.60 GB 

(1)Operating System: Windows 10 10.0.22631 SP0 
(2)Programming language: Python 3.8 
(3)Deep learning framework: PyTorch 1.8.1 

 

4. Case Study 
4.1. Data Description  
4.1.1. LSTM and BiLSTM  

The LSTM model was used to capture unidirectional temporal features for diagnosing wind turbine 
blade icing, while the BiLSTM model extracted both forward and backward temporal information, 
improving the overall understanding of  blade conditions. Both models analyzed and classified icing 
states using a cross-entropy loss function (which implicitly included a softmax classifier). 
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4.1.2. GRU and BiGRU 
The GRU model was used to capture unidirectional temporal features in wind turbine blade icing 

diagnosis, as shown in Section 2.2. BiGRU, on the other hand, uses a bidirectional structure to extract 
both forward and backward temporal information simultaneously, as shown in Section 2.3, enhancing 
the overall understanding of  blade conditions. Both models incorporated a temporal attention 
mechanism to focus on key time steps and analyze icing states using a cross-entropy loss function 
(which implicitly included a softmax classifier). 
 
4.1.3. CNN and CNN-BiGRU-TPA 

A CNN layer and the CNN-BiGRU-TPA model were used with the parameters and structure 
described in Section 2.1 and 2.5. 
 
4.2. Baseline Comparison 

To determine the optimal model parameters, a controlled variable method was used to gradually 
adjust and refine the hyperparameters. Initially, the model was set with 100 training epochs, a batch size 
of  100, a learning rate of  0.001, and 100 hidden units for BiGRU. The convolutional kernel size and the 
number of  filters in the CNN were then adjusted. The results showed that when the kernel size was 3 
and the number of  filters was 32, the model's precision and accuracy were relatively low. The 
performance of  the CNN with 2 and 3 layers was also tested, but adding more layers did not enhance 
prediction accuracy, so a single-layer CNN was selected. 

After determining the parameters for the CNN layer, the hidden units and number of  layers for the 
BiGRU were optimized. It was found that setting the hidden units to 64 and using 1 BiGRU layer 
minimized the prediction error. Next, with the CNN and BiGRU hyperparameters fixed, a dropout layer 
was added after BiGRU, and a dropout rate of  0.2 was found to give the best performance. 

The hyperparameters of  each model were mainly determined by factors such as: initial learning rate 
(ILR), number of  hidden units (HUs), learning rate decay mechanism (using CosineAnnealingLR), and 
the number of  filters in the CNN layers (FILs). The learning rate for each model was fine-tuned within 
the range of  [0.001, 0.005]. All models used L2 regularization, controlled by the weight decay, with 
values between 0.0005 and 0.001. To reduce the risk of  overfitting, dropout settings varied across 
models, with the BiLSTM model employing higher dropout rates (0.2/0.3). The number of  hidden units 
was set between , and for CNN-related models, multiple kernel sizes (5, 7, 9) were used to capture multi-
scale features. 

All models used a consistent batch size of  512 and cross-entropy as the loss function. The table 3 
below shows the final hyperparameter values that achieved the best performance for each model, 
representing the optimal configuration for both performance and optimization. 
 
Table 3. 
Partial Monitoring Parameter Information of  Wind Turbine Units. 

Model Learning Rate Weight Decay Dropout Hidden Size Filter Sizes Batch Size 
CNN-TPA 0.0003 0.0005 0.1 N/A [5, 7, 9] 512 

LSTM-TPA 0.0003 0.0005 0.1 64 N/A 512 
GRU-TPA 0.0003 0.0005 0.1 64 N/A 512 

BiGRU-TPA 0.0003 0.0005 0.1 64/128 N/A 512 

BiLSTM-TPA 0.0001 0.001 0.2 64/128 N/A 512 
CNN-BiGRU-TPA 0.0003 0.0005 0.1 64/128 [5, 7, 9] 512 

 
4.3. Baseline Comparison 

Figure 6 shows the performance of different models during training across 50 epochs, highlighting 
key metrics. From the data, we studied the behavior of each model, focusing on the jumping 
phenomenon, flattening trends, and why some models show less significant loss reduction. 
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4.3.1. Jumping Phenomenon 
 The curves of the BiGRU-TPA model on multiple indicators, such as Precision (Figure 6(b)) and 

MCC (Figure 6(d)), showed obvious jumps. This phenomenon might be due to the model's sensitivity to 
the data, especially in the early training stages, when the model weights were updated drastically, 
resulting in large fluctuations in the metrics. Since the BiGRU model considered both forward and 
backward information, if the attention mechanism of the model was unstable, it would cause large 
changes in the weights of local time steps, leading to fluctuations in prediction accuracy. 
Additionally, the jump in the CNN-BiGRU-TPA model was also reflected in the early stage, primarily 
due to the complexity of the model structure. The model required to balance between extracting local 
features in the convolutional layer and global temporal features in BiGRU. Early in training, the model 
might be trying to optimize the weights of these two components, causing the metrics to fluctuate 
greatly. 
 

 
(a) Recall 
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(b) Precision 

 

 
(c) F1-score 
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(d) MCC 

 

 
(e) Accuracy 



2049 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 6: 2035-2054, 2025 
DOI: 10.55214/25768484.v9i6.8312 
© 2025 by the authors; licensee Learning Gate 

 

 
(f) Loss 

Figure 6. 
Performance Comparison of  the models over 50 epochs. 

 
4.3.2. The Flattening Phenomenon 

The index curves of the LSTM-TPA and GRU-TPA models were relatively stable, as seen in 
Figure 6(a) and 6(b). This might be because these models had simpler structures and focus on one-way 
temporal features. The optimization direction of these models remained relatively stable in each training 
cycle, resulting in a slow, steady improvement of the metrics with small fluctuations. 

The curve of the CNN-TPA model also showed a relatively flat trend, especially the decrease in the 
Loss (Figure 6f). After about 30 epochs, the loss value decreased by approximately 20%. This indicated 
that the convolutional network's feature extraction was relatively stable, and the model gradually 
converged during the training process. 
 
4.3.3. The loss of the CNN-BiGRU-TPA Model 

Although CNN-BiGRU-TPA excels in terms of Accuracy (Figure 6(e)), Recall (Figure 6(a)), and F1 
score (Figure 6(c)), its Loss curve (Figure 6(f)) would not decrease significantly in the later stages of 
training (between 30 and 50 epochs). Several reasons might account for this: 

Complexity of the model: CNN-BiGRU-TPA combined convolutional networks and bidirectional 
GRUs, along with a time-attention mechanism, resulting in a large number of parameters during 
training. While this complex structure could be able to extract richer features, it also caused the model 
to fall into a local optimum, preventing further significant reductions in the loss value. 

The flat and jumping changes in different model curves were closely related to the complexity of the 
model, optimization difficulty, and the structural characteristics. Although CNN-BiGRU-TPA exhibited 
superior classification performance, the model's complexity caused the loss value to plateau, reflecting 
the model's tendency to converge to a local optimum during optimization. 
 
4.4. Baseline Comparison 

Table 4 shows the performance of six models in detecting wind turbine blade icing, evaluated on 
five key metrics: Recall, Precision, Accuracy (ACC), F1 Score (F1), and Matthews Correlation 
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Coefficient (MCC). A comparison of these metrics indicates that the CNN-BiGRU-TPA model 
outperforms the others. 
 
Table 4. 
Classification results of  six models. 

Models Recall Precision ACC F1 MCC 
CNN-TPA 0.7967 0.8051 0.7874 0.7868 0.6017 

LSTM-TPA 0.7807 0.7929 0.7701 0.7690 0.5735 
GRU-TPA 0.7210 0.7263 0.7126 0.7120 0.4473 

BiLSTM-TPA 0.7044 0.7284 0.6897 0.6846 0.4322 

BiGRU-TPA 0.7495 0.7544 0.7414 0.7410 0.5039 
CNN-BiGRU-TPA 0.88961 0.89041 0.89081 0.89001 0.78001 

 
From the perspective of Accuracy, F1-Score, Precision, Recall, and MCC, the CNN-BiGRU-TPA 

model showed obvious comprehensive advantages. First, on the Accuracy, CNN-BiGRU-TPA reached 
0.89081, which was about 20%-25% higher than the 0.7414 and 0.7126 of BiGRU-TPA and GRU-TPA, 
showing a significant improvement in classification accuracy. On F1-Score, CNN-BiGRU-TPA reached 
0.89001, an improvement of about 10% over other models, especially compared to BiLSTM-TPA's 
0.6846. At the same time, for Precision and Recall, the CNN-BiGRU-TPA achieved 0.89041 and 
0.88961, respectively, much higher than other models, demonstrating excellent balance when detecting 
positive and negative samples. In addition, in the MCC indicator, CNN-BiGRU-TPA reached 0.78001, 
which was 36% higher than that of LSTM-TPA of 0.5735, indicating that it was more robust in dealing 
with the classification task of unbalanced data. 

In conclusion, the CNN-BiGRU-TPA model significantly improved the classification performance 
by combining the feature extraction capabilities of CNN and the temporal information capture 
advantages of BiGRU. In contrast, the indicators of LSTM-TPA and GRU-TPA were slightly lower 
than those of the CNN-TPA models, especially on Precision and Recall, both of which did not reach the 
performance level of CNN-BiGRU-TPA, suggesting that they had some errors and limitations in 
detecting positive and negative samples of wind turbine blade icing. On the whole, the improvement of 
CNN-BiGRU-TPA in a number of indicators proved its absolute advantage in processing complex time 
series data and unbalanced data, especially for task scenarios that require high-precision classification. 
 
4.5. Comparison to Different Optimization Approaches 

To further demonstrate the superiority of the CNN-BiGRU-TPA model, this paper compares 
models without attention mechanisms (such as MLP and ResNet) with models incorporating attention 
modules (such as SE, GA-BiGRU-TPA, and GWO-BiGRU-TPA). The evaluation metrics are shown in 
Table 5. 
 
Table 5. 
Evaluation metrics of  different models. 

Models Recall Precision F1 MCC References 
MLP 0.607 0.718 0.714 0.420 [30] 
ResNet 0.8853 0.778 0.834 0.674 [30] 

SE 0.7662 0.82152 0.7924 0.7778 [29] 

GTAN 0.794 0.808 0.788 0.754 [23] 
GA-BiGRU-TPA 0.8735 0.81793 0.84433 0.83262 [29] 

GWO-BiGRU-TPA 0.91581 0.8141 0.86182 0.85231 [29] 

CNN-BiGRU-TPA 0.88962 0.89041 0.89001 0.78003 Ours 

 
The MLP model Yuan, et al. [37] consists of  three fully connected (FC) layers, each with 500 

hidden nodes, and dropout layers between them, serving as a basic baseline model. On the other hand, 
ResNet [38] is a widely used CNN variant in time series classification (TSC) tasks, with a complex and 
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deep architecture capable of  extracting rich features. However, both of  these models do not incorporate 
temporal attention (TA) mechanisms, limiting their baseline performance. 

To address this, the SE model [39] incorporated the Squeeze-and-Excitation (SE) module, which 
captures channel interdependencies and adaptively adjusts the feature responses. Additionally, the 
GTAN model introduces a feature extraction module designed to enhance the differentiation between 
various sensor data categories while integrating a temporal attention (TA) mechanism to improve 
sensitivity to temporal features. The inclusion of  these attention mechanisms enabled the models to 
handle complex time series data more effectively. 

The GA-BiGRU-TPA model optimized the hyperparameters of  the Bidirectional Gated Recurrent 
Unit (BiGRU) through genetic algorithm (GA) [40] and combined it with the Time Attention 
Mechanism (TPA) to enhance the focus on key time steps and improved the prediction ability of  
complex time series data. Similarly, the GWO-BiGRU-TPA model optimizes the BiGRU 
hyperparametrically through the Gray Wolf  Optimizer (GWO) [41] and combines it with TPA, which 
further improved the model's ability to capture key temporal features and exhibits higher prediction 
accuracy. 

The CNN-BiGRU-TPA model outperformed other models in key performance metrics by combining 
CNN's spatial feature extraction, BiGRU's ability to capture time dependence, and TPA's enhanced 
weight allocation across time steps. For instance, CNN-BiGRU-TPA achieved a Precision of  0.89041 
and a Recall of  0.88962, significantly surpassing the SE model (Precision: 0.8215, Recall: 0.7662). This 
highlights the effectiveness of  integrating spatial and temporal attention mechanisms. It also 
outperformed optimization-based models like GA-BiGRU-TPA (Precision: 0.81792, Recall: 0.8735) and 
GWO-BiGRU-TPA (Precision: 0.8141, Recall: 0.9158), demonstrating more consistent and superior 
performance across multiple metrics. 

By combining CNN's local spatial feature extraction, BiGRU's bidirectional time-series capture, and 
an optimized temporal attention mechanism, CNN-BiGRU-TPA outperforms traditional models and 
other attention-based approaches in wind turbine blade ice detection, making it ideal for complex time 
series prediction tasks. 
 

5. Case Study 
This study proposes significant advancements in the detection accuracy of wind turbine blade icing 

through the development and refinement of the CNN-BiGRU-TPA model. By incorporating CNN for 
spatial feature extraction and BiGRU to capture temporal dynamics in multivariate time-series data, the 
model utilizes the Temporal Pattern Attention Mechanism(TPA) to highlight crucial time series 
information. The proposed model showed to outperform both traditional and enhanced models across 
various key performance indicators. Specifically, the proposed CNN-BiGRU-TPA model achieved a 
recall of 0.8896, precision of 0.8904, an F1 score of 0.8900, and an MCC of 0.7800, indicating its high 
predictive accuracy and robustness. 

The model also incorporated min-max normalization and time window segmentation during data 
preprocessing, ensuring that the input data was consistent and standardized. Results from tests 
conducted in a high-performance computing environment indicate that the model not only improved 
accuracy but also speeded up convergence, reaching a stable accuracy of 0.89 after just 30 training 
cycles. 

In summary, the proposed CNN-BiGRU-TPA model showed exceptional performance in identifying 
icing on wind turbine blades, offering a novel approach to tackling complex industrial big data 
problems. The model’s success suggested considerable potential for broader applications. Future 
research should aim to refine the model structure and explore new approaches for data augmentation 
and model integration to improve prediction accuracy and expand its applicability. 
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