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Abstract: In response to the problems existing in the application of AI (Artificial Intelligence) discourse 
analysis technology in high school English teaching, such as insufficient context adaptability of the 
automatic feedback system and weak teacher-student-AI collaboration mechanisms, this paper proposes 
an innovative framework of dynamic context modeling and multimodal collaborative drive. By 
integrating multimodal data streams of voice, text, facial expressions, and body movements in classroom 
scenes, a cross-modal feature dynamic fusion model is constructed to capture the semantic associations 
and emotional states of teacher-student interactions in real time. Based on deep reinforcement learning, 
a feedback algorithm with adaptive state perception capabilities is designed to periodically update the 
classification parameters of teaching scenes. The teacher's experience rules and AI analysis results are 
simultaneously embedded in the system decision-making layer through knowledge distillation 
technology to form a closed-loop mechanism for human-computer collaborative optimization. The 
experimental results show that the proposed model performs best in multiple indicators. The teacher 
response delay is the shortest, only 2.19 seconds; the student interaction density is the highest, reaching 
14 times per minute; the student emotion scores are concentrated in a high and stable range of 3.4 to 
4.3; the average score is 80.83 points. Class participation and satisfaction are also the highest, reaching 
69.53% and 3.51 points, respectively, proving the advantages of the model in improving teaching 
effectiveness. 

Keywords: Artificial intelligence, Discourse analysis, High school English teaching, Multimodal fusion, Reinforcement 
learning feedback. 

 
1. Introduction  

Currently, the application of AI in the field of education has gradually become an important 
direction of research and practice [1, 2]. In the field of English education, using AI to enhance teaching 
effectiveness and improve students' language ability has always been a hot topic for scholars and 
educators [3, 4]. Traditional teaching models rely on teachers' experience and students' feedback. 
However, with the diversification and complexity of the educational environment, a single teaching 
method is increasingly unable to meet the needs of different students [5, 6]. Therefore, AI-based 
personalized teaching has become an important way to improve teaching quality [7, 8]. 

In the field of discourse analysis, AI can conduct an in-depth analysis of classroom language, 
identify students' semantic understanding, emotional state, and language expression, and provide a real-
time basis for teaching feedback, thereby optimizing the teaching process [9, 10]. Some research focuses 
on how to analyze students' language through technologies such as speech recognition and natural 
language processing [11] and assist teachers in formulating teaching strategies through feedback 
systems. Discourse analysis technology can interpret students' expressions from the text and speech 
levels [12] but in practical applications, how to effectively combine teachers' experience and contextual 
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factors and how to establish an efficient interaction mechanism are still important issues that need to be 
addressed. Many existing intelligent feedback systems have limitations, such as insufficient adaptability 
and inaccurate context understanding, which results in their inability to maximize their role in the 
teaching process. 

This paper implements a framework for applying AI-based discourse analysis technology to high 
school English teaching, aiming to address the limitations of existing teaching feedback systems. By 
building a dynamic context modeling and multimodal collaborative, driven framework, this paper uses 
cross-modal feature fusion technology to capture semantic associations and emotional changes in 
teacher-student interactions in real time and uses deep reinforcement learning to design an adaptive 
feedback mechanism to periodically update the teaching scene classification parameters, so that the 
system can better cope with the changing classroom environment. At the same time, the teacher's 
experience rules are effectively embedded in the decision-making layer through knowledge distillation 
technology, further enhancing the decision-making ability of AI and finally realizing a closed-loop 
mechanism of human-machine collaborative optimization. This study not only provides a new AI 
support solution for high school English teaching but also provides strong theoretical support and a 
practical basis for the development of future educational technology. 
 

2. Related Work 
With the development of AI technology, its application has expanded to personalized learning [13, 

14] and automated feedback systems [15, 16]. These systems can provide personalized suggestions and 
real-time feedback based on students' learning situations, but most of the current AI teaching systems 
still have problems, such as poor adaptability and inflexible feedback. Especially in a highly dynamic 
classroom environment, how to deal with complex contexts and emotional changes is still a challenge. 

In terms of discourse analysis, the application of artificial intelligence technology has brought new 
opportunities for teaching [17, 18]. Traditional discourse analysis mainly focuses on the grammatical 
and semantic structure of the text, while modern AI discourse analysis pays more attention to the 
emotional and contextual information in the language [19, 20]. Through natural language processing 
and sentiment analysis, AI can deeply understand students' language behavior, emotional state, and 
level of understanding. However, existing discourse analysis technology still faces problems of accuracy 
and real-time performance, especially in the classroom, where language is not just a simple transmission 
of text or voice but also includes students' emotions and body language. Therefore, comprehensively 
analyzing students' expressions and adapting to contextual changes in real-time interaction is difficult 
in current discourse analysis research. 

Multimodal data fusion has been an important direction in the field of AI in recent years [21, 22]. 
In educational applications, multimodal fusion technology can combine multiple information sources 
such as speech, text, expression, and body language to fully understand students' learning status [23, 
24]. For example, AI systems can obtain students' emotional state and learning engagement by 
analyzing their speech and text content. However, the current application of multimodal data fusion 
technology in education still faces problems, such as difficulty in data integration and weak feedback 
capabilities. In the classroom interactive environment, how to efficiently integrate multimodal 
information and adjust teaching strategies in real-time remains a challenge [25, 26]. 

In terms of human-computer collaborative teaching, recent studies have shown that AI can be used 
as an auxiliary tool for teachers to help improve teaching effectiveness [27, 28]. AI can not only analyze 
students' performance in real-time and provide personalized feedback but also assist teachers in making 
teaching decisions. Existing research focuses on how to use AI to support personalized teaching [29-
30] and automated feedback [29] but these systems usually rely on fixed rules and models, lack 
sufficient flexibility and adaptability, and cannot effectively deal with complex interactions in the 
classroom. How to achieve collaborative cooperation between teachers, students, and AI in a changing 
teaching environment and improve the adaptability and response speed of AI systems is still a difficult 
point in current research. 
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In response to these problems, this paper proposes an artificial intelligence-based discourse analysis 
framework to address the shortcomings of existing AI teaching systems. By integrating multimodal 
data such as speech, text, expressions, and body language, this paper constructs a cross-modal feature 
dynamic fusion model that can capture students' semantic and emotional states in real-time. The 
adaptive feedback mechanism designed by deep reinforcement learning enables the AI system to 
dynamically adjust according to changes in the teaching scenario and embeds teacher experience into 
the decision-making layer through knowledge distillation technology to optimize teaching decisions. 
These innovations effectively improve the contextual adaptability and interactivity of the system, 
providing a new intelligent tutoring solution for high school English teaching. 
 

3. Construction of an Interactive English Teaching System Driven by Intelligent 
Discourse Modeling 
3.1. Multimodal Acquisition Strategies for Interactive Features of Discourse in High School English Classes 

In this study, multimodal data collection in high school English classes adopt a variety of efficient 
equipment and technologies to ensure the accurate acquisition of voice, text, facial expression, and body 
movement data, facilitating subsequent interaction analysis and emotion recognition. 

The collection of text data uses speech recognition technology to convert the voice data collected in 
the classroom into text in real-time. During each speech, the system stores and updates the converted 
text synchronously, and every language input of teachers and students in the teaching interaction is 
accurately recorded. After the text is converted, the text processing module is used to timestamp and 
analyze the transcribed text to ensure that the emotional tendency and semantic information of each 
speech can be reflected in a timely and accurate manner. 

The facial expression data is collected through high-definition cameras set up in the classroom, 
which monitor the facial expressions of students and teachers in real-time. The facial expression 
recognition system uses key point detection algorithms to extract key feature points of the face and 
analyze the changes in facial expressions based on this. 

The collection of body movements uses a combination of depth sensors and infrared cameras. 
Multiple sensors deployed in the classroom can capture all body movements. The system analyzes 
students' participation status and behavioral patterns in classroom interactions by capturing the body 
postures, gestures, and movement trajectories of students and teachers. The sensor tracks body 
movements in real-time and converts them into three-dimensional coordinate points. The motion 
capture algorithm reconstructs the trajectory of these coordinate points and identifies students' 
standing, sitting, raising hands, walking, and other behavioral actions. After being annotated, the body 
movement data is stored synchronously with the voice and expression data to ensure that they have a 
unified time label in subsequent analysis. The multimodal data format is shown in Table 1. 
 
Table 1.  
Multimodal data formats. 

Modality Type Collection Method Data Format Sampling Frequency 
Voice Microphone .wav 16kHz 

Text Transcription + PPT .txt/.docx Real-time Transcription 
Facial Expression Camera .json 30 fps 

Motion Sensor and Camera .json 30 fps 

 
All data is transmitted to the central processing system via real-time data streams to ensure the 

synchronization and integration of multimodal data. The timestamps of speech, text, facial expressions, 
and body movements are precisely aligned to ensure that the relationship between various types of data 
can be analyzed within the same time window. 
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3.2. Cross-modal Semantic Fusion and Dynamic Context Modeling Mechanism 
In this study, the implementation process of cross-modal semantic fusion and dynamic context 

modeling mechanism is based on a deep learning model, using the Transformer architecture to fuse and 
process multimodal data. The process specifically includes four core steps: data preprocessing, modal 
feature extraction, cross-modal fusion, and dynamic context modeling. 

The speech signal is extracted through a short-time Fourier transform and MFCC (Mel Frequency 

Cepstrum Coefficient) to generate a feature matrix 𝑋(𝑣) ∈ ℝ𝑇×𝐹 , where 𝑇 represents the number of time 

frames, and 𝐹 is the frequency dimension. This feature is extracted through CNN (Convolutional Neural 
Networks) to extract the time-frequency local features: 

𝐻(𝑣) = CNN(𝑋(𝑣)), 𝐻(𝑣) ∈ ℝ𝑇×𝑑 (1) 

𝑑 is the feature map dimension. Then, LSTM (Long Short Term Memory) captures the temporal 
dependency and obtains the hidden state sequence: 

𝑆(𝑣) = LSTM(𝐻(𝑣)), 𝑆(𝑣) ∈ ℝ𝑇×𝑑 (2) 

The text data input is a transcribed sentence sequence 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑁}, which is encoded 
through the pre-trained BERT (Bidirectional Encoder Representations from Transformers) model to 
obtain semantic embedding: 

𝐸(𝑙) = BERT(𝑊), 𝐸(𝑙) ∈ ℝ𝑁×𝑑 (3) 
The expression data consists of a sequence of facial key point images, which are input into the 

ResNet deep convolutional network to extract spatial features: 

𝐹(𝑓) = ResNet(𝐼(𝑓)), 𝐹(𝑓) ∈ ℝ𝑇×𝑑 (4) 

The time series of key points of limb movements 𝐽 = {𝑗1, 𝑗2, … , 𝑗𝑇} is input into the time series 
graph convolutional network to extract dynamic behavior features: 

𝐺(𝑔) = STGCN(𝐼(𝑓)), 𝐺(𝑔) ∈ ℝ𝑇×𝑑 (5) 
After feature extraction, each modal data is aligned through precise time alignment technology to 

ensure that the timestamps of different modalities are consistent and avoid information loss caused by 
timing misalignment. After time alignment, the data streams of speech, text, expression, and body 
movements enter the cross-modal fusion stage. Each modal feature is linearly mapped and embedded 
into the same dimensional space, then standardized through position encoding and input into the 
Transformer model. Transformer's self-attention mechanism calculates the correlation between each 
modality through multi-head self-attention, evaluates the relative importance of each modality at the 
current moment, and fuses the features of each modality through weighted summation. The self-
attention mechanism can capture the global correlation between modalities at each layer, effectively 
avoiding the problem of modality separation in traditional methods. 

For the features obtained after cross-modal fusion, dynamic context modeling further enhances the 
model's ability to perceive context. The context of classroom interaction is dynamically changing, and 
the emotions, tone, intonation, and behavior of teachers and students change over time. Therefore, the 
model needs to dynamically adjust the semantic and sentiment analysis results at each moment 
according to the changes in the time series. Based on the time series modeling capability of 
Transformer, the model can capture and model the time dependencies in classroom interactions through 
the contextual information of historical data. The output at each moment depends not only on the input 
at the current moment but also on the state at the previous moment. In this way, the model can adjust 
the weight of different modal data at the current moment according to the emotional state and semantic 
information at the previous moment so that the model gives appropriate attention to different modalities 
in a dynamic context. 

The application of emotion perception strengthens the model's response to emotional fluctuations in 
the classroom. During classroom interaction, the emotional and semantic expressions of teachers and 
students fluctuate. The Transformer's self-attention mechanism can capture these fluctuations and 
model them. The model can adjust the current moment's emotion analysis strategy based on historical 
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emotion information in a timely manner, thereby more accurately identifying emotional changes in the 
classroom, which in turn affects subsequent teaching decisions and feedback. 
 
3.3. Design of Adaptive Feedback Mechanism 

The adaptive feedback mechanism is built based on the Proximal Policy Optimization (PPO) 
algorithm, and its core goal is to select the optimal feedback strategy for real-time context and modal 
state in a dynamic classroom environment. PPO achieves stability and efficiency in the policy update 
process through the policy gradient optimization mechanism, which is suitable for real-time policy 
selection in high-dimensional state space. The mechanism uses temporal situational states and multi-
dimensional emotion vectors to form the state space, and the action space is defined as the set of 
feedback behaviors that the system can choose, including specific feedback methods such as language 
guidance, expression imitation, rhythm adjustment, and task reconstruction. 

The state representation vector is composed of the semantic context features of the current moment, 
the change in intonation frequency, the facial expression embedding vector, and the historical 
interaction behavior. The emotional state is converted into continuous variables (such as pleasure, 
tension, and engagement) through real-time analysis by an external model and normalized and 
incorporated into the state vector. In order to improve the temporal sensitivity of state recognition, a 
gated recurrent unit is introduced to compress and model the state sequence so that PPO can extract 
long-term dependencies from the past several steps of the state. 

The action selection is output by the policy network. The policy network structure is a two-layer 
feedforward neural network with 128 and 64 nodes in each layer, and the activation function uses ReLU. 
The network input is the state vector, and the output is the action probability distribution. The entropy 
regularization term is used in the sampling process to adjust the diversity of the policy distribution and 
improve the system's ability to explore different feedback actions in the initial stage. The value function 
network structure is symmetrical and is used to estimate the expected return of each state-action pair. It 
also participates in the advantage function calculation as a baseline in the policy update stage. 

The policy update uses a clipping objective function to limit the ratio of the new and old policies 
within a certain range to prevent performance degradation caused by large policy updates. In each 
epoch, the policy network and the value network are updated for multiple rounds. The optimization goal 
is to maximize the expected reward, minimize the value function error, and minimize the negative value 
of the policy distribution entropy to control the policy stability. 

The reward function design adopts the modality perception mechanism and dynamically assigns 
values based on the teacher-student behavioral responses after system feedback. Short-term positive 
rewards come from indicators such as the migration of students' facial expressions to positive emotions, 
the stabilization of speech speed and tone, and the reduction of interactive response delays; negative 
rewards are triggered by negative emotional migration of students, lack of response after feedback, or 
decreased participation. In order to solve the sparse reward problem, an intermediate reward item based 
on the gradient of emotional fluctuations is introduced, and the direction of strategy adjustment is 
guided by calculating the rate of change of emotional variables at consecutive moments. 

Feedback behavior decision-making uses a single-step action as the basic unit, but considering that 
classroom behavior has the characteristics of sequential decision-making, the policy network uses the 
time difference method to estimate the expected return during the training phase. After the system 
completes a teaching unit, it uses the trajectory playback mechanism to update the policy buffer and 
evaluate the policy performance changes in the form of a sliding window. 
 
3.4. Knowledge Distillation Strategy Embedded with Teachers' Experience Rules 

The integration of teacher experience rules and AI model reasoning results is based on a guided 
knowledge distillation framework, which consists of three parts: teacher rule model, student strategy 
model, and distillation guidance mechanism. Its architecture is shown in Figure 1. 
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Figure 1.  
The overall architecture of the knowledge distillation strategy guided by teacher rules. 

 
The teacher rule model is centered on a structured decision template, which encodes the feedback 

experience accumulated by human teachers in the classroom interaction process into a set of logical 
rules. The rules cover the classification of discourse comprehension errors, the matching relationship 
between the student's emotional state and feedback intensity, and the weight of the interaction stage on 
the feedback strategy. Each rule consists of three parts: conditional judgment, decision output, and 
weight parameter. It is organized in a tree structure so that the rules can be converted into a graph 
structure for neural network embedding and processing. 

The rule model does not directly participate in forward reasoning but is used as a teacher model to 
guide the student model to learn feedback generation strategies. The student model is built based on the 
Transformer structure, accepts cross-modal fusion of speech, text, expression, and action representation 
as input, and outputs feedback behavior suggestions and their confidence after multi-layer encoding and 
state estimation modules. During the training phase, the distillation module uses the behavior labels and 
weight information provided by the teacher rule model as soft targets to jointly optimize the strategy 
distribution and attention allocation mechanism of the student model so that it gradually approaches the 
feedback preferences and structural characteristics of the teacher rules. 

The rule distillation process includes two types of guidance signals: behavioral level and structural 
level. At the behavioral level, the teacher model generates feedback suggestions and probability 
distribution for each training sample scenario based on the rule set. The student model needs to fit the 
distribution at the same time during training and gradually approach the behavioral preferences 
reflected by the teacher's experience while maintaining the autonomous exploration space. At the 
structural level, the conditional path of each rule in the teacher model is encoded as a vector and trained 
to align with the output of the Transformer attention layer in the student model. This strengthens the 
student model's explicit attention to rule logic when generating feedback and improves the consistency 
of its decision-making path with the teacher's experience. 

Rule embedding is implemented using a graph structure encoder, which converts the node 
representation in the teacher's rule graph into a vector and inputs it into the attention module of the 
student model to form a rule-guided item, which is embedded in the attention allocation stage of the 
attention calculation formula to guide the student model to consider the key factors shown by the 
teacher model when making decisions among multimodal features. Under this guidance, the student 
model not only learns specific feedback behavior samples but also absorbs the strategic basis of how the 
teacher model makes judgments and trade-offs in different teaching contexts, thereby having stronger 
generalization and explanation capabilities. 
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3.5. Closed-Loop Optimization Architecture for Intelligent Human-Machine Collaboration 
The overall architecture of the intelligent human-machine collaborative system consists of a 

perception module, a decision module, an execution module, and an evaluation module, forming a 
closed-loop structure covering the entire process of collection, analysis, feedback, and regulation. In the 
system operation process, the perception module receives multimodal input in real-time and encodes it 
into a context-state representation. The decision module generates feedback actions based on the 
current state. The execution module completes the specific feedback push. The evaluation module 
quantitatively analyzes the feedback effect and uses the evaluation results as environmental rewards to 
update the strategy network, forming a dynamic feedback path driven by reinforcement learning. The 
closed-loop optimization architecture of the intelligent human-machine collaborative feedback system is 
shown in Figure 2. 
 

 
Figure 2.  
Closed-loop optimization architecture of intelligent human-machine 
collaborative feedback system. 

 
The entire system is executed around the teaching interaction cycle, continuously receiving student 

status changes and teaching feedback performance. After each interaction cycle, the cycle update 
scheduling mechanism calls the local distillation training and strategy re-optimization process, 
dynamically adjusts the strategy parameters and rule embedding representation, and enhances the 
system's adaptability to variant contexts and strategy drift. The system's built-in strategy degradation 
discrimination mechanism can automatically trigger high-frequency fine-tuning or low-frequency 
distillation training according to changes in feedback stability during the teaching process, improving 
the consistency of feedback behavior and the quality of teaching response. The integrated parameter 
update channel linkage rule embedding optimization and strategy generation network training 
constitutes a closed-loop optimization mechanism with periodic retraining, adaptive fine-tuning, and 
experience incremental distillation as the core, realizing the long-term stable evolution and short-term 
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situational adaptation of the feedback strategy, and supporting the continuous and effective operation of 
the AI decision-making system in high-frequency and high-complexity classroom interaction scenarios. 
 

4. Experimental Design and Implementation 
4.1. Multimodal High School English Classroom Corpus Collection 

The experimental data comes from a one-semester English course in two public high schools, 
covering 14 teaching units and a total of 42 natural teaching scenes, involving 6 English teachers and 
93 students. The classroom is configured as a standard multimedia classroom without special 
modifications. The audio and video data is provided by a Blue Yeti microphone (USB interface, sampling 
rate 48kHz), a Logitech Brio 4K camera (30fps), a Xiaomi DeepSense camera, and OBS Studio screen 
recording software. 

The speech signal is processed by pydub and librosa libraries, and short-time Fourier transform and 
13-dimensional MFCC feature extraction are performed. The first 60 frames are retained to form the 
audio feature matrix. The video image is frame-cut, and the facial feature extraction is completed by the 
media pipe.face_mesh module, which outputs the coordinates of 478 facial mesh key points; the text is 
transcribed in real-time by iFlytek speech recognition SDK (Software Development Kit), and the 
transcription results are manually reviewed twice, with a sentence-level error correction accuracy of 
more than 98%; the body movements are extracted by the mediapipe .pose a model to extract 33 
skeleton key point coordinates, and the frame rate is limited to 15fps to match the device processing 
capability. 

Multimodal data is timestamped by a custom Python script. All modalities are based on speech and 
dynamic time warping is used to adjust frame synchronization and output structured interaction 
sequences. Data annotation is completed using the labelstudio platform. Emotional labels are divided 
into four categories: high concentration, high pleasure, neutral, and negative, based on clues such as 
teacher tone, expression, and student reaction. Pragmatic behavior annotation includes seven labels: 
teacher questions, explanations, feedback, student responses, silence, and active questions. The 
annotation team consists of four people, including teaching researchers and experienced teachers. A 
double-label consistency mechanism is used, and the Kappa consistency is 0.78. 

All features are normalized by Z-score, and data enhancement methods include sentence length 
perturbation (±15%), frame interpolation, and volume perturbation (±3dB). Finally, a multimodal 
sample structure is generated for training: speech (60×13), text (sentence-level BERT embedding, 768 
dimensions), expression (64-dimensional compressed vector), and action (33×2 skeleton coordinates). 
 
4.2. Model Training and Parameter Setting 

The cross-modal fusion model training is implemented using the PyTorch framework and is 
completed in a common commercial hardware environment, including an NVIDIA RTX 3060 GPU 
(12GB video memory), an Intel i7-12700F processor, and 32GB RAM. The model input is a multimodal 
feature sequence, which comes from speech (CNN+LSTM output), text (BERT embedding), expression 
(ResNet extraction), and body movement (ST-GCN encoding). All modal features are linearly mapped 
to 128 dimensions and then input into the Transformer module after position encoding. The 
Transformer adopts a two-layer structure; each layer contains 4 attention heads, and the hidden 
dimension is 256. The Dropout layer is applied to the model to suppress overfitting, and the ratio is set 
to 0.3. 

The context modeling part is embedded in a single-layer GRU (Gated Recurrent Unit) with 128 
hidden units, which is used to learn the temporal dependencies in the context of continuous teaching. 
The training optimizer is Adam, the initial learning rate is set to 1e-4, the number of training rounds is 
40, and the multi-label cross-entropy loss function is used for error backpropagation. The early stopping 
mechanism dynamically determines the convergence based on the change of the F1-score of the 
validation set. 



2544 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 6: 2536-2552, 2025 
DOI: 10.55214/25768484.v9i6.8431 
© 2025 by the authors; licensee Learning Gate 

 

The PPO feedback strategy adopts a dual network structure, with the policy network and the value 
function network configured symmetrically. The policy network input is the current fused state vector 
and the last three rounds of feedback embedding, totaling about 256 dimensions, with a two-layer MLP 
(Multilayer Perceptron) structure, with 128 and 64 hidden units, respectively, the activation function is 
ReLU, and the output layer is connected to the softmax distribution. In PPO training, the shear 
coefficient is set to 0.2, the GAE (Generalized Advantage Estimation) parameter is set to 0.95, the 
discount factor is set to 0.9, and the entropy regularization term coefficient is set to 0.01. The number of 
interaction steps per round is set to 50, the total number of episodes is set to 10, the policy buffer 
capacity is set to 1000, and the time difference method is used to estimate the return. The strategy 
update saves the weight every 2 rounds, and the convergence criterion is that the average reward 
increases by less than 1% for three consecutive rounds. The key parameter settings of the model are 
shown in Table 2. 
 
Table 2.  
Key parameter settings of the model. 

Module Parameter Setting Value 
Transformer Encoder Number of Layers 2 

Attention Heads Per Layer 4 

Modal Mapping Dimension Unified Dimension for All Modalities 128 
GRU Hidden Units Dynamic Context Modeling 128 

Initial Learning Rate Adam Optimizer 1e-4 
Dropout Rate Applied Throughout Model 0.3 

Policy Network Structure MLP Hidden Layers [128, 64] 

PPO Clipping Coefficient ε  0.2 

Discount Factor γ 0.9 

GAE Parameter λ  0.95 

 
4.3. Teaching Experiment 

93 students are randomly divided into three groups, corresponding to the traditional teaching group 
(Group 1), the general discourse analysis assisted teaching group (Group 2), and the multimodal 
intelligent discourse analysis assisted teaching group based on this paper (Group 3). All experiments are 
carried out in a standard multimedia classroom environment, and the teaching equipment and 
acquisition configuration remained consistent. The traditional teaching group adopts conventional high 
school English teaching content and methods without any artificial intelligence auxiliary tools. The 
general discourse analysis assisted teaching group provides assisted teaching based on unimodal text 
discourse analysis technology. The system only uses transcribed text data to analyze and provide 
feedback on classroom discourse. The feedback strategy is relatively static and lacks cross-modal 
context perception capabilities. This group fully applies the multimodal discourse analysis model and 
adaptive feedback mechanism based on voice, text, facial expressions, and body movements to capture 
the semantic and emotional changes of teachers and students in real-time and realize intelligent 
teaching feedback driven by dynamic context. The three groups of experiments last for one semester, 
covering the same 14 teaching units to ensure the consistency of teaching content and teaching 
progress. Each group of experiments is equipped with English teachers with the same qualifications to 
teach. The teachers maintain their original teaching style in the traditional group and provide feedback 
according to the system suggestions in the auxiliary teaching group. 

In addition to the formal model training and teaching experiments, two ablation experiments are 
designed to verify the impact of the key modules of the system on semantic recognition and teaching 
feedback quality. The first ablation experiment removes the multimodal input and retains only the text 
corpus input. The output is used to compare the semantic recognition accuracy and analyze the 
recognition gain of the multimodal discourse analysis model after the introduction of modal features 
such as expressions and actions; the second ablation experiment targets the teacher experience 
distillation module. While keeping the rest of the model structure and parameters consistent, the 
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teacher rule embedding branch is removed to evaluate the performance differences of the system in 
recommending feedback content and adjustment strategies, respectively, to analyze the contribution of 
the distillation strategy to the quality of teaching decisions. 
 

5. Conclusion 
5.1. Classroom Interactivity 

In order to compare and analyze the characteristics of different teaching methods in the dimension 
of classroom interaction, teacher response delay and student interaction density are selected as 
representative indicators to measure the timeliness of teaching response and the activeness of student 
classroom participation, respectively. The relevant distribution and confidence region are shown in 
Figure 3. 
 

 
Figure 3.  
Distribution of teacher response delay and student interaction density under three teaching methods 

 
Figure 3 shows the performance differences between the three teaching methods in terms of 

classroom interaction. The horizontal axis is the teacher's response delay, and the smaller the value, the 
faster the response; the vertical axis is the student interaction density, and the larger the value, the more 
active the student participation. Group 1 has an average response delay of about 4.16 seconds and an 
average interaction density of about 8 times/minute; Group 2 has a response delay of 3.14 seconds and 
an interaction density of about 11 times/minute; Group 3 performs best, with a teacher response delay 
of 2.19 seconds and a student interaction density of 14 times/minute, and a more concentrated 
distribution, indicating that the teaching behavior is more efficient and the student participation is more 
active. 

From the perspective of model mechanism, the traditional teaching model has a relatively simple 
form of interaction, which leads to delayed teacher response and lack of sufficient motivation for 
students to participate; discourse teaching applies real context and is task-driven, which improves the 
coherence of teacher dialogue and the frequency of interaction so that teachers respond faster and 
students are more active. The multimodal AI teaching method integrates intelligent mechanisms such 
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as speech recognition, emotion detection, and real-time feedback, which can dynamically capture student 
behavior and emotional changes and quickly make personalized responses, thereby greatly shortening 
the teacher's response delay and promoting high-frequency interaction. 
 
5.2. Changes in Students'Emotional State in English Learning 

In order to further explore the impact of different teaching strategies on the evolution of students' 
emotional states in the process of English learning, the PANAS (Positive and Negative Affect Schedule) 
scale, widely used in the field of emotional psychology, is used to quantitatively model students' positive 
emotional experiences. This experiment uses 14 teaching units as the time series dimension to collect 
and simulate student emotional rating data under three methods: traditional teaching, discourse-based 
teaching, and multimodal AI teaching. The results are shown in Figure 4. 

 

 
Figure 4.  
Distribution of students' emotional states under different teaching modes. 

 
As can be observed from Figure 4, Group 1 presents a relatively low-density concentrated area in 

terms of emotion scores, mainly distributed between 2.3 and 3.5, and the distribution is relatively 
discrete; Group 2 shows a trend of density moving toward high segments, indicating that students 
maintained a high level of emotional experience in most teaching units; Group 3 forms an obvious high-
density concentrated zone in the range of 3.4 to 4.3, especially in units 5 to 12, indicating that the 
overall emotions of this group of students are maintained at a higher level during the learning process, 
and the fluctuations are relatively small. 

The above differences in emotional states reflect the potential impact of different teaching methods 
on the stimulation of students' positive emotions. Under traditional teaching methods, emotional 
stimulation relies on the direct stimulation of teacher behavior and textbook content, which is easily 
disturbed by classroom rhythm and individual differences, thus leading to large fluctuations in 
emotional levels. The discourse-driven approach guides students to participate in language 
comprehension and generation through situational semantics, which partially improves learning 
motivation and emotional involvement, as reflected in the positive shift of scoring density. On this basis, 
multimodal AI further integrates multimodal inputs such as voice, vision, and interactive feedback to 
form a more accurate adaptation and regulation mechanism for students' emotional states, significantly 
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improving the continuity and stability of students' emotional experience in each teaching unit. This 
maintenance of positive emotions is not only conducive to stimulating interest in learning but may also 
reversely promote the improvement of language processing efficiency. 
 
5.3. Comparison of Teaching Results 

In order to explore the impact of multimodal teaching on students' comprehensive learning 
performance, the experiment compares the three dimensions of learning outcomes, classroom 
participation, and satisfaction, as shown in Figures 5 and 6. 

 

 
Figure 5.  
Comparison of teaching results of different teaching groups. 

 
The average scores of Group 3 in each unit are around 80.83 points. The scores of Group 2 are 

mainly distributed between 68.07 and 77.43 points, with an overall performance of above average, while 
the scores of the traditional group are mostly concentrated between 62.25 and 71.08 points. 

This phenomenon of grade differentiation shows that different teaching models have different 
effectiveness in knowledge construction. The multimodal group uses AI to help integrate text, images, 
and audio, making the learning materials more perceptually advantageous and inspiring students to 
maintain continuous attention in each unit, thereby promoting steady improvement in grades. The task-
driven approach of the discourse group helps with the logical understanding of knowledge but lacks 
multimodal feedback support, and its effectiveness is inferior to the former. Traditional teaching, 
however, makes it difficult to form a strong unit learning rhythm due to the single interactive method 
and delayed feedback, resulting in large fluctuations in some units. These trends clearly reflect the 
direct traction of teaching design on academic output. 
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Figure 6.  
Comparison of class participation and learning satisfaction. 

 
In terms of participation, Group 3 has an overall average of 69.53%, with the highest reaching a 

peak of nearly 74.66%, indicating that its teaching environment can effectively mobilize students to 
continue to participate. Group 2 is between 60.39–66.85%; Group 1 has an average of about 60.17%. In 
terms of satisfaction, Group 3 is above 3.51 points, with the highest reaching 4.54 points; Group 2 
fluctuates between 3.05–4.18, while Group 1 is concentrated between 2.74–3.86 points and is generally 
in a weaker perception range. 

This set of data reveals the dual impact mechanism of teaching methods on students' subjective 
experience and classroom engagement. The multimodal group maintains its lead in both participation 
and satisfaction, indicating that its system not only enhances cognitive appeal but also provides positive 
feedback at the emotional level, prompting students to establish a stable learning rhythm and high 
satisfaction; the discourse group helps maintain a certain degree of participation in terms of structural 
clarity, but due to the lack of sensory stimulation and personalized feedback, its satisfaction is average; 
the traditional group is at a disadvantage in terms of participation willingness and satisfaction due to 
the lack of interaction and strategic support. These trends reinforce the potential advantages of 
multimodal AI teaching in stimulating students' initiative and positive emotions. 
 
5.4. Effect of Multimodal Discourse Analysis Model on Improving Accuracy 

In order to systematically evaluate the impact of multimodal information fusion on the classification 
performance of the model, an accuracy comparison experiment based on different input combinations is 
designed. The experimental setting includes four input modes: "text", "text + facial expression", "text + 
facial expression + action," and "full modality". The results of the first ablation experiment are shown in 
Figure 7. 
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Figure 7.  
Comparison of model analysis accuracy. 

 
In all input combinations, the accuracy of the multimodal fusion model is higher than that of the 

non-fusion model, and as the input modality increases, the accuracy of the fusion model gradually 
increases. Under full-modal input, the average accuracy of the fusion model is close to 88%, while the 
non-fusion model remains at around 80%, showing that multimodal fusion significantly improves 
classification performance. The reason behind this performance improvement is mainly due to the fact 
that multimodal fusion can integrate different types of information, make up for the limitations of a 
single modality, and improve the model's expression and discrimination capabilities. Text information 
provides the basis for semantic content, while facial expressions and movements as visual signals 
capture subtle changes in emotions and behaviors, which helps enhance contextual understanding and 
emotion recognition, thereby improving overall recognition accuracy. The multimodal fusion 
mechanism effectively integrates this heterogeneous information, achieves information 
complementarity, reduces the impact of noise, and enables the model to capture target features more 
comprehensively, thereby showing better recognition results under different input combination 
conditions, reflecting the robustness and advantages of the fusion strategy in complex environments. 
 
5.5. The Impact of Teacher Experience Embedding on the Quality of System Teaching Decisions 

In order to evaluate the impact of teacher knowledge distillation technology on the performance of 
the recommendation system and decision-making module, the experiment covers two dimensions: 
recommendation quality and decision performance. The recommendation accuracy, relevance score, 
diversity index, decision consistency score, strategy adjustment response time, and decision stability 
index are compared to analyze the contribution and optimization effect of knowledge distillation on the 
overall performance of the system. The relevant statistical significance is tested by the P value to ensure 
the scientificity and reliability of the results. Table 3 shows the results of the experiment. 
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Table 3.  
Comparison of teaching decision quality. 

Metric Category Metric Name 
With Teacher 

Knowledge Distillation 
Without Teacher 

Knowledge, Distillation 
P-value 

Recommendation 
Quality 

Recommendation Accuracy (%) 87.3 79.8 <0.05 

Recommendation Relevance 
Score 

4.25 / 5 3.68 / 5 <0.05 

Recommendation Diversity 
Index 

0.68 0.52 <0.05 

Decision 
Performance 

Decision Consistency Score 0.91 0.75 <0.05 
Strategy Adjustment Response 
Time (minute) 

1.85 3.42 <0.05 

Decision Stability Index 0.89 0.72 <0.05 

 
After enabling teacher knowledge distillation, the recommendation accuracy rate is significantly 

improved to 87.3%, the recommendation relevance score is also improved from 3.68 to 4.25, and the 
diversity index increases from 0.52 to 0.68, indicating that the recommendation results are not only 
more accurate but also more diverse. In terms of decision performance, the decision consistency score 
increases from 0.75 to 0.91, the strategy adjustment response time is shortened from 3.42 minutes to 
1.85 minutes, and the decision stability index increases from 0.72 to 0.89. All indicators show significant 
statistical differences (P values are all less than 0.05), reflecting the comprehensive improvement of 
system performance by knowledge distillation. 

The reason behind these data is mainly due to the fact that teacher knowledge distillation guides the 
student model to learn the rich knowledge of the teacher model, realizes the effective transfer and fusion 
of knowledge, and thus enhances the generalization ability and prediction accuracy of the model. The 
distillation process not only optimizes the relevance and diversity of the recommendation results but 
also improves the response speed and stability of the decision-making module, reflecting the 
improvement of the model's adaptability and execution efficiency in a dynamic environment. This 
mechanism promotes the coordinated optimization of the recommendation and decision-making systems 
by strengthening the capture of potential patterns and complex features and further promotes the 
improvement of the overall performance of the system. 
 
5.6. Delayed Post-test Analysis of Students' After-class English Usage Behavior and Learning Outcomes 

In order to explore the impact of different teaching modes on students' after-class English use 
behavior and learning outcomes, each group of students took a one-month delayed post-test after 
completing classroom learning to re-evaluate their mastery of the same knowledge points. At the same 
time, the students' after-class English use frequency, active output ratio, and actual practice time are 
continuously tracked. Through the collection and comparison of multi-dimensional indicators, the 
impact of different teaching interventions on students' language application habits and learning 
continuity is revealed. The results are shown in Table 4. 
 
Table 4.  
Comparison of delayed post-test scores and post-class English usage behaviors. 

Group Description Group 1 Group 2 Group 3 
Sample Size 31 31 31 

Delayed Post-Test Score 71.4 76.9 83.7 
Weekly Post-class English Usage Frequency 2.1 3.4 5.2 

Proportion of Active English Output (%) 24.3 35.6 51.8 
Average Duration of English Practice (minutes/week) 30 45 70 

Frequency of Using English Apps (times/week) 1.8 2.9 4.7 

Number of English Conversations per week 1.2 2.1 3.8 
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From the delayed post-test results, group 3 performs best, with an average score of 83.7 points, 
higher than group 1's 71.4 points and group 2's 76.9 points. In terms of the frequency of English use 
after class, group 3 uses English an average of 5.2 times per week, much higher than group 1's 2.1 times 
and group 2's 3.4 times; the proportion of active English output also increases significantly, reaching 
51.8% for group 3, while group 1 and group 2 are 24.3% and 35.6%, respectively. In addition, group 3 
students lead in weekly English practice time, frequency of using English learning applications, and 
number of English conversations, reaching 70 minutes, 4.7 times, and 3.8 times, respectively, showing 
more active and systematic after-class language application behavior. 

These data reflect that multimodal intelligent discourse analysis-assisted teaching has a significant 
effect on promoting students' language learning continuity and active participation. The multimodal 
fusion intelligent feedback mechanism can accurately capture students' context and emotional state and 
can adjust teaching strategies in an individualized manner, enhance the immersion and pertinence of the 
learning experience, and thus stimulate students' willingness to actively practice and apply English in 
practice. Compared with the traditional and single discourse analysis-assisted mode, the closed-loop 
feedback and optimization mechanism formed by the intelligent model inside and outside the classroom 
effectively improves students' language output ability and communication confidence, promotes the 
internalization of learning motivation and the deep integration of language acquisition, and reflects the 
positive promotion of technology-driven teaching innovation on language learning effects. 
 

6. Conclusion 
This paper proposes a multimodal intelligent discourse analysis model for high school English 

teaching. The model integrates multimodal data such as speech, text, facial expressions, and body 
movements, processes them through the Transformer architecture, models the dynamic context, and 
then uses deep reinforcement learning and knowledge distillation technology to achieve adaptive 
feedback. This method improves classroom interactivity and the stability and enthusiasm of students' 
emotional state in English learning and optimizes teaching results. However, this study still has 
shortcomings. The experiment does not cover the teaching differences in different regions, and the 
stability of the model in extremely complex scenarios needs to be improved. In the future, expanding the 
multimodal data type, further optimizing the generalization ability of the model, and exploring the 
application potential in different disciplines and teaching scenarios in order to provide stronger support 
for the development of intelligent education. 
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