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Abstract: This study presents a Mamdani-type fuzzy logic model for classifying Parkinson’s disease 
(PD) based on voice signals. The model demonstrates improved performance compared to several 
existing methods, achieving 97.2% accuracy, 0.9696 sensitivity, 1.0 specificity, and an F-measure of 0.98. 
These metrics suggest that the proposed model offers higher classification precision than previous 
approaches. By leveraging fuzzy logic, the model enhances interpretability and addresses some 
uncertainties inherent in medical data. While the results are promising, further validation with more 
extensive and diverse datasets is necessary before the model can be integrated into clinical decision 
support systems for the early diagnosis of PD. 

Keywords: Parkinson’s disease; fuzzy model. 

 
1. Introduction  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects millions of 
individuals worldwide. It is characterized by motor symptoms such as tremors, bradykinesia, rigidity, 
and non-motor symptoms, including disturbances in the sense of smell, sleep problems, depression, 
cognitive decline, and voice impairments [1-5]. Recent studies have shown that vocal symptoms, such 
as dysphonia and changes in pitch, are among the earliest indicators of PD, often preceding noticeable 
motor impairments [5]. Notably, approximately 90% of PD patients exhibit vocal problems in the early 
stages, with symptoms ranging from stuttering to deterioration in vocal quality [6, 7]. 

The early detection of PD is critical for managing its progression and improving patient outcomes. 
Traditional diagnostic methods rely heavily on clinical assessments, which are often subjective and can 
miss early signs of the disease. Researchers have proposed a range of non-invasive methods for early 
detection, including the acoustic analysis of voice signals, physiological signals, and gait analysis [2, 8, 
9]. These approaches provide insights into the disease's progression and reduce the need for frequent 
physical clinical visits, thus easing the clinicians’ workload  [6]. Given the significance of vocal 
symptoms in PD, telemedicine studies have increasingly focused on verbal disorder-based systems [10, 
11]. Speech processing, particularly the non-invasive detection of anomalies in physiological speaking, 
has emerged as a promising method, with features like Jitter, Shimmer, and Fundamental Frequency 
being pivotal in PD studies [12]. Automated tools that analyze voice signals offer a non-invasive, cost-
effective method for early detection. However, many existing machine learning (ML) methods used for 
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voice-based PD classification, such as Support Vector Machines (SVMs) and neural networks, suffer 
from a lack of interpretability, often referred to as the "black box" problem [7, 13, 14]. This limits their 
clinical applicability, as healthcare professionals require transparent and understandable models to 
inform their decisions. 

In contrast, fuzzy logic provides a promising solution by combining rule-based reasoning with the 
ability to handle uncertainty and imprecision in medical data. A Mamdani-type fuzzy logic system, in 
particular, offers a transparent decision-making process through linguistic rules derived from expert 
knowledge. This study introduces a Mamdani-type fuzzy logic model designed to classify PD using 
voice signals. The model aims to address the limitations of existing ML approaches by enhancing 
interpretability while maintaining high classification accuracy. 
The key contributions of this work are: 

1. Development of a fuzzy logic model that outperforms several existing methods regarding 
accuracy, sensitivity, and specificity. 

2. Introduction of an interpretable rule-based system that provides insights into decision-making. 
3. A comprehensive evaluation of the model's performance using well-established metrics and 

comparisons with state-of-the-art methods. 
In the following sections, we review existing literature on PD classification using voice signals, 

describe the methodology and design of the fuzzy logic system, and present a detailed evaluation of the 
model’s performance in comparison to existing benchmarks. 
 

2. Literature Review 
The classification of Parkinson’s Disease (PD) based on voice signals has gained increasing 

attention in recent years due to its non-invasive nature and potential for early detection. Several 
methods have been proposed, ranging from traditional machine learning (ML) algorithms to more 
complex deep learning approaches. However, many of these methods face limitations that reduce their 
clinical applicability, particularly in terms of interpretability and handling uncertainty in medical data. 

 
2.1. Machine Learning Approaches for PD Classification 

The study and classification of Parkinson's disease (PD) have been an area of extensive research. 
Among the multiple studies conducted, several have employed the UCI dataset for their experiments. 
Sakar, et al. [6] explored the applicability of the Tuneable Q-factor Wavelet Transform (TQWT) on 
voice signals of PD patients for feature extraction. Their study juxtaposed the efficacy of TQWT 
against traditional voice signal processing techniques for PD classification. The findings were 
promising, with TQWT outperforming other methods by achieving a peak accuracy of 0.86 using the 
SVM-RBF classifier on voice recordings from 252 participants, validated using the Leave-one-subject-
out technique. 

Akyol [15], on the other hand, ventured into deep learning, employing a Deep Neural Network 
(DNN) with 753 features. The dataset and specific results for this approach are detailed in the discussion 
section. Similarly, Xiong and Lu [16] used multiple machine learning methods, including Logistic 
Regression (LR), Support Vector Machines (%SVM), and Random Forests (RF). The results were 
validated using 10-fold cross-validation, and the best classification accuracy for all datasets was 0.76. 

Another noteworthy contribution is from Grover, et al. [7], who focused on forecasting the severity 
of PD utilizing deep neural networks. Their method was applied to the Parkinson’s Telemonitoring 
Voice Data Set from UCI, achieving a classification accuracy of 94.4422% for training datasets and 
62.7335% for test datasets. 

Zainudin, et al. [17] adopted a different approach, using radial basis function networks for PD 
classification. Their study was based on the UCI dataset involving 500 PD patients, and R2 values of 
0.7450 and 0.970 were found for multiple linear regression and radial basis function, respectively. 
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Lastly, Hariharan, et al. [2] presented a comprehensive approach, proposing hybrid intelligent 
systems for PD classification. They integrated techniques like Principal Component Analysis (PCA) and 
linear discriminant analysis (LDA) for feature pre-processing, followed by LS-SVM, PNN, and GRNN 
classification. Their combined approach achieved a remarkable classification accuracy of 100% on a 
dataset with 31 individuals. 
 
2.2. Fuzzy Logic in Medical Applications 

In contrast, fuzzy logic systems have been used in various medical applications because they can 
model uncertainty and provide interpretable decisions [18-20]. Fuzzy systems allow for reasoning in 
the form of linguistic rules, making the decision-making process transparent. Fuzzy logic presents a 
distinct advantage in clinical decision-making due to its capacity to handle uncertain and vague data, 
often characteristic of patient symptoms [21-23]. By allowing degrees of truth rather than binary logic, 
fuzzy logic systems effectively interpret symptoms that are not clear-cut. This flexibility is enhanced by 
using linguistic "if-then" rules, which provide transparency and interpretability crucial in medical 
practice. Such interpretability fosters trust among clinicians, who can easily understand and validate the 
decision-making process [24, 25]. Moreover, fuzzy logic-based systems, especially when integrated into 
Clinical Decision Support Systems (CDSS), improve decision-making by combining data-driven models 
with expert knowledge, offering nuanced diagnoses and treatment suggestions that are easy to follow 
and explain [18, 20, 26]. 

Recent studies highlight the potential of fuzzy logic in the diagnosis of Parkinson's disease by 
offering a more nuanced and interpretable classification method compared to traditional machine-
learning approaches. Fuzzy logic's ability to handle uncertainty and imprecise data makes it ideal for 
medical conditions like Parkinson's, where symptoms can be gradual, subjective, and difficult to quantify 
[27-30]. 

Despite its strengths, fuzzy logic has been underutilized in PD classification based on voice data. 
While fuzzy models have shown promise in handling ambiguous medical data, limited research has 
applied this technique to PD [27-29]. This study aims to fill this gap by developing a Mamdani-type 
fuzzy logic model that provides high accuracy and makes the decision process interpretable through a 
system of fuzzy rules. 
 
2.3. Limitations of Existing Methods 

The primary limitation of many existing machine learning approaches is their inability to offer 
insight into how predictions are made, which is essential for clinical trust and acceptance. Additionally, 
models like SVMs and DNNs often require large datasets for training, and their performance can 
degrade when faced with noise or uncertainty in the data. In contrast, fuzzy logic systems are inherently 
designed to handle such uncertainty, making them particularly suitable for medical applications where 
data can be noisy or incomplete. 

In light of these comprehensive studies, our work aims to offer a fresh perspective, intertwining 
fuzzy logic to enhance the classification and understanding of Parkinson’s disease through voice signals. 
 

3. Material and Methods 
The methodology used in this study follows the structured framework proposed by Hernández-

Julio, et al. [20]. This framework integrates a step-by-step process for designing and implementing 
data-driven decision support systems, focusing on iterative development and knowledge-based rules. 
Below, we outline each of the relevant steps in the context of this research. For this study, more than 
one thousand fuzzy inference systems were developed. Ultimately, the model with the best performance 
(Classification accuracy) was selected, and the results were validated with that model.  
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3.1. Domain Understanding and Gap Identification (Steps 1-3) 
The first phase of the methodology focuses on gaining a comprehensive understanding of the 

problem domain, Parkinson’s Disease (PD), and identifying gaps in existing voice-based classification 
models. An extensive literature review revealed several challenges in current PD classification 
approaches, such as the lack of model interpretability and the inability to handle uncertainty in the data. 
These limitations highlight the need for a model that is both interpretable and capable of managing data 
uncertainty, motivating this study's adoption of fuzzy logic.  

 

 
Figure 1.  
The proposed five-layer architecture framework. 

 
As illustrated in Figure 1, the framework encompasses a five-layer architecture. The entire 

implementation process of the Fuzzy Model is detailed in Figure 2. Consisting of eleven activity steps, 
the framework's comprehensive breakdown is as follows: 
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Figure 2.  
The proposition of the Fuzzy Model implementation. 
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The dataset used in this study was obtained from the UC Irvine Machine Learning Repository [6]. 
It consists of voice recordings of 188 patients with PD (107 men and 81 women) aged 33 to 87 

(65.1±10.9) at the Department of Neurology at Cerrahpaşa Faculty of Medicine, Istanbul University. 
The control group comprises 64 healthy individuals (23 men and 41 women) aged between 41 and 82 
(mean age 61.1 ± 8.9). Each subject phonated the vowel "a" three times, with recordings taken using a 
microphone set to a 44.1 kHz sampling rate. The dataset features 756 instances with 754 attributes - 
753 input variables and one output variable. Importantly, this dataset has no missing values, and all 
attributes are of integer or real type. This dataset, donated in November 2018, presents a classification 
challenge. [6]. The dataset contains a rich collection of features, summarized in Table 1. The baseline 
features of the dataset are visually represented in Figure 3. 
 
Table 1.  
Summary of the feature collections utilized in the research (excluding TQWT). 

Feature set Measure Explanation # of features 

Baseline features 

Jitter variants 

Variations in jitter are utilized to detect the 
irregularities present in the vibrating pattern of the 
vocal cords. This subset of features quantifies the 
fluctuations in fundamental frequency from one vocal 
fold cycle to the next. 

5 

Shimmer variants 

Shimmer variations are also utilized to capture the 
vibratory pattern of the vocal cords. In this case, this 
subset of features quantifies the fluctuations in 
amplitude from one vocal fold cycle to the next. 

6 

Fundamental 
frequency 
parameters 

The frequency of vibration of the vocal folds was 
examined. This frequency's mean, median, standard 
deviation, minimum, and maximum values were 
employed for analysis. 

5 

Harmonicity 
parameters 

Because of incomplete closure of the vocal folds, 
speech pathologies often lead to increased noise 
components. Parameters like Harmonics to Noise 
Ratio and Noise to Harmonics Ratio were utilized as 
features, which help quantify the balance between 
signal information and noise in the speech. 

2 

Recurrence 
Period Density 
Entropy (RPDE) 

RPDE gives information about the ability of the 
vocal folds to sustain stable vocal fold 
oscillations and quantifies the deviations from F0. 

1 

Detrended 
Fluctuation 
Analysis (DFA) 

DFA quantifies the stochastic self-similarity of the 
turbulent noise. 1 

Pitch Period 
Entropy (PPE) 

PPE measures the impaired control of fundamental 
frequency F0 using a logarithmic scale. 

1 

Time- frequency 
features 

Intensity 
Parameters 

Intensity is connected to the power of the speech 
signal, typically measured in decibels (dB). This 
study employed the mean, minimum, and maximum 
intensity values as features. 

3 

Formant 
Frequencies 

Frequencies enhanced by the vocal tract, known as 
formants, were utilized as features in this study. The 
first four formants were explicitly selected for 
analysis. 

4 

Bandwidth 
The first four bandwidths were utilized as features 
within the frequency range spanning the formant 
frequencies. 

4 

Mel Frequency 
Cepstral 
Coefficients 
(MFCCs) 

MFCCs 
MFCCs are used to detect the impacts of Parkinson's 
disease on the vocal tract, distinct from its effects on 
the vocal folds. 

84 
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Wavelet Transform 
based Features 

Wavelet 
transform (WT) 
features related to 
F0 

WT features quantify the deviations in F0 182 

Vocal fold features 

Glottis Quotient 
(GQ) 

GQ provides insights into the durations of glottis 
opening and closing, indicating the regularity in 
glottis movement. 

3 

Glottal to Noise 
Excitation (GNE) 

GNE measures the level of turbulent noise resulting 
from inadequate closure of the vocal folds within the 
speech signal. 

6 

Vocal Fold 
Excitation Ratio 
(VFER) 

VFER calculates the quantity of noise generated due 
to abnormal vocal fold vibration, utilizing nonlinear 
energy and entropy principles. 

7 

Empirical Mode 
Decomposition 
(EMD) 

EMD decomposes a speech signal into an elementary 
signal 

6 

 

 
Figure 3.  
Image of the baseline features dataset. 

 
3.2. Initial System Design (Steps 4-5) 

Following domain analysis, the next phase involved designing the initial system architecture. This 
phase includes defining the features to be extracted from the voice data, as well as the preprocessing 
steps: 

Feature Selection: Acoustic features such as jitter, shimmer, harmonic-to-noise ratio (HNR), 
Baseline, and Mel Frequency Cepstral Coefficients (MFCCs) were selected based on their relevance in 
identifying voice impairments linked to PD. 
 
3.2.1 Data Preprocessing: 

Data Cleaning: Noisy and irrelevant data were filtered to improve model performance. 
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Normalization: Feature values were normalized to a standard scale to prevent biases during model 
training. 

Data Splitting: There were two types of data-splitting methods. Random sampling: The dataset was 
split into training and testing sets in different ratios (%): 50-50, 70-30, 80-20, 100-0, ensuring a robust 
evaluation of the model’s performance. The other method used was the Cross-Validation with k = 10 
folds. 

 
3.3. Iterative Design and Development (Steps 6-9) 

This phase focuses on the iterative design and construction of the decision support system, 
primarily focusing on the fuzzy logic model. 
 
3.3.1. Knowledge Database Creation (Steps 7–8): 

A knowledge database was built using voice features systematically analyzed for their relevance in 
distinguishing between PD and healthy individuals. 

Pivot Tables: Pivot tables were used to analyze the relationships between the acoustic features and 
the binary classification outcome (PD vs. healthy). This analysis was the foundation for the feature 
selection process, identifying which features contributed the most to the classification. 
 
3.3.2. Rule Base Creation (Step 9): 

A knowledge rule base was constructed based on the insights gained from the pivot table analysis. 
Fuzzy if-then rules were generated to model the relationships between voice features and the likelihood 
of PD. The knowledge rule base forms the core of the fuzzy inference system, allowing the model to 
make transparent decisions based on these rules. 
 
3.4. Implementation and Evaluation of the Fuzzy Logic Models (Steps 10-11) 

The next phase involves the implementation and evaluation of the Mamdani-type fuzzy logic model: 
 
3.4.1. Mamdani-Type Fuzzy System 

The fuzzification process converted numerical values of the voice features into linguistic variables 
such as “Very low,” “Low,” “Moderately low,” “Medium-low,” “Medium-high,” “Moderately high,” 
“High,” and “Very high.” Triangular and trapezoidal membership functions defined the boundaries of 
these linguistic variables. 

The inference engine applied the fuzzy if-then rules to combine these linguistic variables and 
generate a fuzzy output representing the likelihood of PD. 

Finally, the defuzzification process converted the fuzzy output into a crisp classification (either PD 
or healthy). 
 
3.4.2. Evaluation 

In this stage, the performance and reliability of the developed fuzzy model are rigorously assessed 
employing several evaluation metrics, which include: 
Classification Accuracy 
Sensitivity 
Specificity 
Function Measure 
Area Under the Curve (AUC) 
Kappa Statistics 

A detailed exploration and explanation of these metrics, including their respective mathematical 
formulations, are delineated in [31]. (Please refer to Appendix A for a thorough exposition of the 
experiments conducted.) 
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3.4.2.1. Calculating Classification Accuracy  
Classification accuracy is a pivotal metric that quantitatively measures the model's ability to classify 
instances correctly. It is computed as follows: 

During this phase, the efficacy of the fuzzy model was assessed using the subsequent metrics: 
classification accuracy, sensitivity, specificity, Function Measure, Area under the curve (AUC), and 
Kappa statistics. These evaluation metrics are comprehensively described in [31] with their respective 
formulae (All the experiments are available in Appendix A). The classification accuracy was determined 
by computing the ratio of the sum of true positives (TP) and true negatives (TN) achieved through the 
classification algorithms to the total count of occurrences, as defined by the equation (1). 
 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 
Where: 

TP represents True Positives 
TN symbolizes True Negatives 
FP denotes False Positives 
FN indicates False Negatives 

 
The accuracy value (ACC) represents the ratio of the correctly classified instances (positive and 

negative) to the total cases in the dataset, thereby providing a concise yet comprehensive measure of the 
model's classification precision. Consequently, this metric provides an overall snapshot of how 
effectively the fuzzy model echoes the observed classification outcomes, offering a transparent insight 
into its general predictive capability. 
 

4. Results 
We validated the best fuzzy model, juxtaposing it with alternative models that similarly aimed to 

predict the output variable through the interaction of inputs.  
The performance of the proposed Mamdani-type fuzzy logic model was evaluated using two 

different methods: 10-fold cross-validation and random sampling (different ratios). The accuracy, 
measured using R² coefficients, was computed for various feature sets, including VFF, Wavelet 
Transform (WT), TQWT, MFCCs, Intensities, Baseline, and the combination of all features. The 
results highlight the robustness of the model across different datasets and feature sets. 

 
4.1. Performance Evaluation Using Cross-Validation (10-Folds) 

The cross-validation results in Table 2 present the R² accuracy coefficients across different datasets 
and feature sets. As seen, the model achieved consistently high performance across most datasets, with a 
maximum R² value of 0.975 for several feature sets, including VFF, WT, TQWT, and MFCCs. The 
performance remained stable for the training data, with an R² value of 1.0 across most feature sets. In 
contrast, the test set performance showed some variability, particularly with intensities, with a lower 
test R² value of 0.638. 

 
Table 2. 
Mean of Accuracy percentage (R² coefficients) for datasets and number of features (Cross-validation 10-folds). 

Datasets/Features VFF WT TQWT MFCC Intensities BWF Baseline All Features 
All dataset 0.975 0.975 0.975 0.975 0.640 0.975 0.971 0.975 
Training 1.000 1.000 1.000 1.000 0.634 0.999 0.994 1.000 

Test 0.744 0.744 0.747 0.744 0.638 0.750 0.762 0.744 

(1) 



2600 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 6: 2591-2608, 2025 
DOI: 10.55214/25768484.v9i6.8453 
© 2025 by the authors; licensee Learning Gate 

 

These results demonstrate the model's ability to generalize across different feature sets, with a 
slight drop in performance when using intensities as the primary feature. 
 
4.2. Performance Evaluation Using Random Sampling (80-20%) 

Table 3 shows the accuracy results obtained using random sampling with an 80-20% train-test split. 
The model achieved strong performance on the training sets, with R² values 1.0 for most feature sets. 
However, the test set performance varied slightly, with the highest R² value of 0.861 achieved for VFF 
and Baseline features. The intensities dataset again showed the lowest performance on the test set, with 
an R² value of 0.748. 
 
Table 3. 
Accuracy percentage (R² coefficients) for datasets and number of features (Random sampling 80-20%). 

Datasets/Features VFF WT TQWT MFCC Intensities BWF Baseline All Features 
All dataset 0.972 0.968 0.971 0.971 0.787 0.968 0.972 0.968 

Training 1.000 1.000 1.000 1.000 0.797 1.000 1.000 1.000 
Test 0.861 0.841 0.854 0.854 0.748 0.841 0.861 0.841 

 
4.3. Analysis and Comparisons 

The results indicate that the proposed fuzzy logic model performs consistently well across various 
feature sets and evaluation methods. Notably: 

• The VFF, WT, TQWT, and MFCC feature sets showed the highest performance in cross-
validation and random sampling methods, with test R² values ranging between 0.744 and 0.861. 

• The intensities feature set consistently underperformed compared to the other sets, with R² 
values of 0.640 in cross-validation and 0.748 in random sampling. This suggests that intensities 
alone may not provide sufficient discriminatory power for PD classification. 

• The baseline and all-features set performed well, with the test set R² values close to those of 
VFF, WT, and TQWT, indicating that these feature combinations can offer robust classification 
performance. 

 
The cross-validation results show stable model performance across different training and test splits. 

In contrast, the random sampling results confirm that the model can generalize well to unseen data, 
mainly using the Baseline, VFF, TQWT, and MFCC feature sets. 

Table 4 reveals the number of clusters utilized for each subset or group of features, having derived 
the values from training with 100% of the dataset. The chief aim was to discern the number of clusters 
necessary to achieve 100% classification accuracy with a single iteration. Once this value was identified, 
training could proceed with other percentages. As previously mentioned, the minimum value for 
training with the complete dataset was two. If the cluster number is five, then prior numbers did not 
accomplish 100% classification accuracy. Similarly, if the value exceeds ten (as in Intensity-Based), it 
could not attain 100% classification accuracy. Nonetheless, training occurred with the optimal number 
calculated using pivot tables (Section 5). Table 4 displays the number of clusters for each input variable 
for optimal performance in individual datasets. 
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Table 4.  
Clusters numbers for every input variable for the best performance in individual datasets. 

Feature Group Number of Clusters 
WT—182 5 

Baseline—21 8 
VFF—22 4 

TQWT—432 2 
All features—753 2 

MFFCs—84 2 
Bandwidth + Formant—8 10 

Intensity-Based—3 27 
Note: WT: Wavelet Transformation. VFF: Vocal Fold Features. TQWT: Tuneable Q-Factor wavelet transform. MFFCs: Mel Frequency 
Cepstral Coefficients. 

 
Table 5 and Figure 4 present the performance outcomes of the models for the PD dataset and its 

corresponding sub-datasets. Table 4 showcases experiment results obtained with individual feature 
subsets, delineating performance metrics (specificity, sensitivity, precision, recall, F-measure, and Area 
Under Curve) for all datasets. Figure 4 illustrates the confusion matrices for training (80%) and 
validation (20%) datasets for the baseline feature group, consisting of 21 features. Class 0 represents 
healthy individuals, while Class 1 denotes Parkinson’s Disease patients. 
 
Table 5.  
Experiment results were obtained with individual feature subsets. 

Feature Groups—Feature 
Numbers 

Sensitivity Specificity Precision Recall F-Measure Area under Curve 
Training: 50–50% Testing 

WT—182 0.8554 1.0000 1.0000 0.8554 0.9392 0.8099 

Baseline—21 0.8938 1.0000 1.0000 0.8938 0.9439 0.8255 

VFF—22 0.8854 1.0000 1.0000 0.8854 0.9392 0.8099 
TQWT—432 0.8854 1.0000 1.0000 0.8854 0.9392 0.8099 

All features—753 0.8854 1.0000 1.0000 0.8854 0.9392 0.8099 
MFFCs—84 0.8854 1.0000 1.0000 0.8854 0.9392 0.8099 

Bandwidth + Formant—8 0.8812 1.0000 1.0000 0.8812 0.9369 0.8021 
Intensity-Based—3 0.8489 0.5400 0.8369 0.8489 0.8429 0.6997 
 Training 70–30% Testing 
WT—182 0.9400 1.0000 1.0000 0.9400 0.9691 0.9063 

Baseline—21 0.9276 1.0000 1.0000 0.9276 0.9625 0.8854 

VFF—22 0.9353 1.0000 1.0000 0.9353 0.9666 0.8984 
TQWT—432 0.9322 1.0000 1.0000 0.9322 0.9649 0.8932 

All features—753 0.9322 1.0000 1.0000 0.9322 0.9649 0.8932 
MFFCs—84 0.9353 1.0000 1.0000 0.9353 0.9666 0.8984 

Bandwidth + Formant—8 0.9338 1.0000 1.0000 0.9338 0.9658 0.8958 
Intensity-Based—3 0.8270 0.5839 0.8901 0.8270 0.8574 0.6716 
 Training 80–20% Testing 
WT—182 0.9641 1.0000 1.0000 0.9641 0.9817 0.9453 

Baseline—21 0.9696 1.0000 1.0000 0.9696 0.9800 0.9401 

VFF—22 0.9641 1.0000 1.0000 0.9641 0.9817 0.9453 
TQWT—432 0.9625 1.0000 1.0000 0.9625 0.9809 0.9427 

All features—753 0.9608 1.0000 1.0000 0.9608 0.9800 0.9401 
MFFCs—84 0.9353 1.0000 1.0000 0.9353 0.9666 0.8984 

Bandwidth + Formant—8 0.9592 1.0000 1.0000 0.9592 0.9792 0.9375 
Intensity-Based—3 0.8480 0.5876 0.8706 0.8480 0.8591 0.7061 
 Training 100–0% Testing 
WT—182 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Baseline—21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

VFF—22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
TQWT—432 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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All features—753 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
MFFCs—84 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Bandwidth + Formant—8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Intensity-Based—3 0.8270 0.5839 0.8901 0.8270 0.8574 0.6716 
Note: WT: Wavelet Transformation. VFF: Vocal Fold Features. TQWT: Tuneable Q-Factor wavelet transform. MFFCs: Mel Frequency Cepstral 
Coefficients. Bold values indicate the best performance. 

 
Table 6.  
Matrix confusion of the datasets (training (a) and test (b)) for the baseline feature group, with 21 features. Class 0 means 
healthy people, and Class 1 means Parkinson’s disease patients. 

(a) 

  Class 0 Class 1 
Class 0 165 0 
Class 1 0 440 

(b) 
  Class 0 Class 1 

Class 0 4 23 
Class 1 0 124 

 

In Appendix A, all the fuzzy inference models developed in the experiments are listed. The 
model with the optimal configuration of the best fuzzy inference system used to predict Parkinson’s 
disease, including inputs, output, and samples from the knowledge rule base is located in the folder 
path folder/80-20/21 baseline trained Acc_0.972 1      0.861_#Vars_21__NaVars_more than 20 
variables_Parkinson_Outputs.fis. 
 

5. Discussion 
The performance of the proposed Mamdani-type fuzzy logic model for classifying Parkinson’s 

Disease (PD) based on voice signals was evaluated using two methods: 10-fold cross-validation and 
random sampling (80-20%). The results demonstrate the model's effectiveness in achieving high 
accuracy across multiple feature sets but also reveal specific insights regarding the contribution of 
different acoustic features.  
 
5.1. Key Findings 

The fuzzy logic model consistently achieved high R² accuracy coefficients for several feature sets, 
particularly VFF, WT, TQWT, and MFCC. In both cross-validation and random sampling, these 
feature sets resulted in test set R² values ranging from 0.744 to 0.861, showing the robustness of these 
features in distinguishing between PD patients and healthy controls. 

The VFF and Baseline features sets showed the highest performance in both methods, with a test R² 
of 0.861 in random sampling and 0.744 - 0.762 in cross-validation, respectively. This suggests that vocal 
fold frequency characteristics are highly predictive of PD, likely due to their sensitivity to early vocal 
changes caused by the disease. 

Similarly, WT and TQWT feature sets also performed strongly, showing that these time-frequency 
transformation techniques can capture the subtle variations in vocal signals associated with PD. 

In contrast, the intensities feature set performed poorly compared to the others, with test R² values 
of 0.638 in cross-validation and 0.748 in random sampling. This indicates that intensity-based features 
alone are insufficient to classify PD accurately, likely because changes in vocal intensity may be less 
consistent or pronounced in the early stages of the disease. 
 
5.2. Comparative Analysis of Evaluation Methods 

When comparing the two evaluation methods (cross-validation and random sampling), the random 
sampling method showed slightly better performance on the test set, particularly for the VFF and 
baseline feature sets. The highest test R² value obtained was 0.861 for VFF and baseline under random 
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sampling. At the same time, the cross-validation method resulted in slightly lower values, with a 
maximum test R² of 0.762 for the baseline feature set. 

This difference in performance could be attributed to the inherent variability in cross-validation, 
where the model is tested on different subsets of the data. In contrast, random sampling provides a fixed 
training and test set, which may lead to more stable results in some instances. However, both methods 
confirm the robustness of the fuzzy logic model across different feature sets, mainly when using 
frequency-domain features like VFF and TQWT. 
 
5.3. Implications for Clinical Applications 

The results of this study have several implications for the potential clinical application of the fuzzy 
logic model in early PD detection: 

• Vocal fold frequency characteristics (VFF) and time-frequency transformations (WT, TQWT) 
effectively detect the subtle vocal impairments associated with PD, making them valuable 
features for developing non-invasive diagnostic tools. 

• The high accuracy and stability of the model across multiple evaluation methods suggest that 
the fuzzy logic system could be implemented in clinical decision support systems to aid in the 
early detection of PD. The interpretability of the fuzzy logic model also makes it a suitable 
choice for clinical environments where transparency in decision-making is critical. 

• While the intensity-based features did not perform as well, their inclusion in combination with 
more predictive features (e.g., VFF, TQWT) may still provide complementary information, 
particularly in later stages of the disease when vocal intensity might change more dramatically. 

To validate our results, we juxtaposed them with various studies from existing literature, with a 
selection criterion based on their recentness and demonstrated effectiveness in classification tasks using 
similar Parkinson’s Disease datasets. 

Reference [32] devised a method intertwining minimum average maximum (MAMa) tree and 
singular value decomposition (SVD) for future extraction, comprising pre-processing, feature extraction, 
feature selection, and classification stages. Two cases were employed in the application, each utilizing a 
different combination of these stages, and 1-NN and k-NN classifiers were identified as providing 
optimal classification accuracies for Case 1 and Case 2, respectively. Remarkably, our results exhibited 
higher classification accuracy with fewer features than this study. 

In another study, Reference [15] scrutinized the influence of neuron numbers and activation 
functions in a Deep Neural Network (DNN) model, optimizing its performance via a growing and 
pruning methodology. Although a superior performance on the test dataset was achieved, our 
algorithms consistently achieved a 100% classification accuracy rate on the training dataset. 
Furthermore, our results for 80–20% of training datasets surpassed those acquired by the author, even 
with a reduced feature set. 

In a different approach, Reference [16] employed six supervised machine learning algorithms, 
obtaining a maximum classification accuracy of 76% using linear discriminant analysis (LDA) across all 
datasets. Our results showcased competitive with or superior performance compared to these findings. 

Moreover, Reference [33] explored the future extraction process using Wrappers feature subset 
selection and four classification techniques. Despite achieving notable outcomes, our performance 
metrics results prevailed in comparison. 

Reference [34] applied a gender-based dataset division using a Simple Logistic hybrid system. 
Although reasonably accurate results for both genders were obtained, our results demonstrated superior 
accuracy and AUC values. 

While Reference [6] adopted the tuneable Q-factor wavelet transform (TQWT) and several 
machine learning classifiers for PD classification, our proposed method yielded higher metrics without 
relying on this classifier. 
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Following the processes and stages for designing fuzzy systems as laid out by Hernández-Julio, et 
al. [20] and Hernández-Julio, et al. [19], this approach was characterized by several distinctions and 
similarities in comparison to previously cited studies and established frameworks: 

• Identification of Variables: Both our approach and others identified input and output variables for 
Parkinson's disease classification using similar datasets. 

• Formulating Membership Functions: Unlike other methodologies that use various algorithms to 
define membership functions, the framework proposed by Hernández-Julio, et al. [20] allows for a 
manual choice of the number of functions via clustering techniques, thereby avoiding reliance on 
randomness or evolutionary algorithms. 

• Rule Base Generation: Using pivot tables does not require calculations, random factors, or manual 
parameters to create the fuzzy rule base, which distinguishes our method from those that involve 
random weights and objective functions. The simplicity and directness of this technique stand out 
by focusing on minimizing redundant information. 

The parameters applied within the framework, such as the choice of input and output variables, 
selection of clustering algorithms, and data partition method, are straightforward and do not necessitate 
adjustments for random values, weights, or other variables (Figure 5). Additionally, internal 
adjustments were confined to those used for clustering methods. The minimalistic approach toward 
computational demand and our algorithms' accurate and efficient processing contribute to a 
straightforward comprehension of the rules. 
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Figure 5.  
Required parameters of the proposed framework. 

 
The efficacy of our framework has been demonstrated across varied domains, including Medicine 

[18, 20]. Bioengineering [34]. Aquaculture [35] and Colombian Business Finances [36] indicating its 
versatile applicability to diverse problems contingent on data availability. 

According to the results, the FIS with the best performance revealed optimal performance using the 
baseline dataset with fewer features (applying random sampling and cross-validation) and allocating 
80% for training and the remaining 20% for validation. With a classification accuracy of 97.2%, 
sensitivity and recall of 0.9696, specificity and precision of 1.0, F-Measure of 0.98, and an AUC of 
0.9401 for complete datasets, these results can potentially be harnessed in telediagnosis and 
telemonitoring systems for preliminary disease detection, thereby mitigating the necessity for frequent 
clinic visits and alleviating clinician workloads, irrespective of pandemic circumstances. The Fuzzy 
Model, applicable individually or to patient subsets (Appendix B), is thus presented as a viable tool for 
Parkinson’s disease classification. 
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5.4. Limitations and Future Directions 
Despite the promising results, several limitations of this study should be addressed in future 

research: 

• The dataset used in this study is relatively small and consists of voice recordings from a limited 
population. To ensure the model's generalizability, future work should involve more extensive and 
diverse datasets, including data from different age groups, genders, and stages of PD progression. 

• Although the fuzzy logic model showed high accuracy, adding more advanced feature selection 
techniques could further optimize the model’s performance. For instance, combining pivot table 
analysis with machine learning-based feature selection could help refine the most important 
features for classification. 

• The current study focuses on voice signals as the primary data source. Future research could 
explore combining voice data with other non-invasive biomarkers, such as gait analysis or 
handwriting patterns, to develop a more comprehensive early detection system for PD. 

 

6. Conclusions 
In conclusion, the selected Mamdani-type fuzzy logic model demonstrated strong classification 

performance for PD detection using voice signals, with VFF, Baseline, and TQWT feature sets showing 
the highest accuracy. The results underscore the potential of non-invasive voice-based diagnostic tools 
for early PD detection. Future work should focus on validating the model with larger datasets and 
exploring the integration of multiple data sources to improve diagnostic accuracy further. 
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