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Abstract: The purpose of this study was to address critical limitations in existing finite-difference 
schemes for solving convective transfer equations in aero-hydrodynamic calculations, particularly the 
non-conservative behavior of the widely used Courant-Isaacson-Rees scheme under specific velocity 
distributions. The methodology involved a comprehensive analysis of finite-difference schemes using the 
mass conservation equation for transported substances in compressible media. Test calculations were 
performed on one-dimensional and two-dimensional problems with varying velocity fields, including 
cases with velocity sign changes and zero-velocity zones. The proposed scheme uses max and min 
functions to blend positive and negative velocity components. This approach maintains conservation. 
The findings demonstrate that the traditional Courant scheme loses conservation when velocity signs 
change, particularly at stagnation points, leading to mass loss or artificial mass generation. In contrast, 
the new conservative finite-difference scheme maintains exact mass conservation, stability, and 
symmetry. It performs well with all tested velocity distributions, even in challenging cases where 
traditional schemes struggle. In conclusion, the developed scheme eliminates non-conservative behavior 
that affected existing methods, ensuring accurate representation of physical processes in hydrodynamic 
calculations. The practical implications include the ability to use larger time steps in numerical 
calculations while maintaining accuracy and stability, making it particularly valuable for complex aero-
hydrodynamic simulations involving flow separation, stagnation points, and variable velocity fields. 
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1. Introduction  

This research aimed to develop a finite-difference scheme for hydrodynamic calculations, avoiding 
the drawbacks of  the Courant scheme. Our goal was to create a scheme that is stable, conservative, 
transferable, and symmetrical for any velocity distribution. In hydrodynamics, researchers work with 
fundamental equations, including the Navier-Stokes equations, the equation of  conservation of  thermal 
energy, and the equation of  conservation of  mass of  the transported substance [1-9]. 

The Navier-Stokes equations are central to hydrodynamics, describing the motion of  fluid 
substances. Derived from the conservation of  momentum, these equations apply to both relativistic and 
non-relativistic fluids. They show how the energy-momentum tensor and particle number current are 
conserved, depending on local hydrodynamic variables like temperature, fluid velocity, and chemical 
potential. To ensure the stability and causality of  these equations, fitting non-equilibrium definitions for 
the hydrodynamic variables must be used [1, 2]. 

https://orcid.org/0000-0002-8345-0028
https://orcid.org/0000-0002-9152-4592
https://orcid.org/0000-0003-2490-2693


163 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 7: 162-175, 2025 
DOI: 10.55214/25768484.v9i7.8557 
© 2025 by the authors; licensee Learning Gate 

 

Recent advances in hydrodynamic modeling have gone beyond the traditional Navier-Stokes 
framework to address limitations in modeling complex flows. For instance, high-order accurate entropy-
stable adaptive moving mesh finite difference schemes have been developed for special relativistic 
hydrodynamics, demonstrating superior performance in handling complex flow phenomena [10]. The 
Burnett hydrodynamics provides a higher-order extension of  the Navier-Stokes equations, derived 
through various theoretical approaches like the Chapman-Enskog and Grad's methods [3, 4]. 

Contemporary research has also explored innovative numerical methods for transport equations. 
Deep neural networks have emerged as powerful tools for approximating solutions of  linear transport 
equations, achieving high accuracy and efficiency, with theoretical confirmation of  convergence to 
analytical solutions [11]. Moreover, numerical schemes for 2D transport equations have been 
developed, which are unconditionally stable, achieving second-order accuracy and preserving 
fundamental physical properties [12]. 

The Vlasov-Navier-Stokes system models the interaction between particles and a fluid, especially in 
high-friction regimes where the particles are much lighter than the fluid. This leads to the development 
of  Transport-Navier-Stokes systems, which consider non-constant fluid density. The hydrodynamic 
limit of  this system is crucial for understanding how particle-fluid interactions evolve over time [5]. 

These equations all contain terms that account for the conservative transfer of  momentum, energy, 
or substance. Researchers refer to these terms as inertial, quadratic, or convective terms [1-9]. 
Essentially, these terms represent the components of  the differential operator: the divergence (or 
convergence) of  the flow of  momentum, thermal energy, or the mass of  the transported impurity. 

To find approximate solutions to these equations, researchers use finite difference methods, as well 
as finite element methods [13-18]. The specific requirements of  the problem determine whether to use 
a finite difference (FD) or finite element (FE) method. When dealing with complex geometries and 
boundary conditions, engineers tend to prefer FE due to its flexibility and accuracy, whereas they often 
opt for FD for simpler, regular domains. Both methods are essential in computational mathematics, 
particularly when solving differential equations [17]. 

New work on finite difference schemes focuses on improving conservation properties and accuracy. 
A new method has been proposed for the finite difference approximation of  the advective term in heat or 
solute transport equations. By averaging the advective term at cell boundaries instead of  at cell centers 
[19] this method ensures mass conservation. It consistently produces better results than traditional 
centered schemes while always preserving mass conservation. 

Finite differences are used to form algebraic analogs of  differential terms. The resulting algebraic 
equations are then solved using algebraic methods. In computer hydromechanics, researchers face many 
challenges when solving these algebraic equations, which relate to the differential equations of  
compressible medium mechanics [20-22]. A key problem is providing a clear description and precise 
definition of  the terms that explain how momentum, thermal energy, or substances move in a 
conservative manner. 

Advanced computational methods have been developed to address high-dimensional problems in 
transport equations. AI tools have shown promise in solving complex neutron transport equations, with 
deep neural networks able to predict multiplication factors with engineering-standard accuracy [23, 
24]. These approaches offer new alternatives for engineering design and practical calculations. 

Many schemes have been devised for constructing an adequate algebraic analog of  the differential 
terms responsible for transfer. These schemes are easily recognizable and often bear the names of  the 
scientists who developed or studied them. Some schemes, when studied in detail, appear like clever tricks 
performed on numbers. For example, the well-studied "leapfrog" scheme [25] can be seen as a clever 
trick by introducing slight variability in the transfer speed. 

The Courant-Isaacson-Rees scheme (hereafter referred to as the Courant scheme), also known as the 
"upstream scheme" [26] is the most widely used scheme in finite difference methods. Researchers have 
created advanced finite difference schemes for compressible two-medium flows, tackling challenges in 
multiphase flow calculations [27]. 
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Using explicit calculation methods [13, 27] and setting fixed time steps [25, 26] allows researchers 
to obtain a stable, conservative transfer scheme. It is also important that this scheme is almost always 
invariant (symmetric) with respect to the sign of  velocities. 

However, the Courant scheme may not remain conservative for some velocity distributions. In non-
stationary cases, it can also lose its symmetry and fit with real physical processes. To address these 
limitations, we analyze finite-difference schemes and conduct computational experiments to compare 
results from various methods. 
 

2. Research Results  
To conduct the study, we had to select an equation. We could have chosen the Navier-Stokes 

equation, the continuity equation, the equation of  conservation of  thermal energy, or the equation for 
conservation of  additional mass S. The equation of  conservation of  momentum and the equation of  
conservation of  thermal energy are hard to analyze because they contain not only terms responsible for 
the transfer and conservation of  momentum and heat but also other components. The continuity 
equation is even more difficult to understand than the equation of  conservation of  mass. In these 
equations, the terms responsible for the transfer of  momentum or mass are not fundamentally different. 
All conclusions from the finite-difference scheme for equations (1) and (2) are correct and effective for 
the Navier-Stokes equation, the thermal energy conservation equation, and the continuity equation. We 
chose Equation (1) for our research. Equation (1) is the equation of  conservation of  mass of  additional 

mass S transported by a compressible medium [7-9]. We consider the velocity field V of  the 
compressible medium to be set as: 

  

                                                   (1) 

Equation (1) can be written in expanded form (2): 

                            (2) 

Equations (1) and (2), written for the one-dimensional case ((3) and (4)), will be studied. All 
conclusions obtained for a one-dimensional problem remain valid for both plane and spatial forms of  
equations (1) and (2): 

                                                           (3) 

                                     (4) 

Explicit finite-difference analogs of  equations (1) and (2) will be studied. Explicit schemes are 
schemes in which, in future and defined time layers, the sought-for variable is recorded in only one 
spatial node [13-15, 25, 28]. Thanks to this, solving algebraic equations becomes simple [13, 25]. 

For the test problem, we choose a solution domain in the form of  a straight-line segment. Let us 
define a velocity field with a modulus equal to one over almost the entire segment, and which changes 
sign to the opposite at the central point of  the segment (see Fig. 1). 
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Figure 1.  
Velocity distribution along the segment for the first test problem. Initial velocity distribution on the calculated 
segment of 100 design nodes. 

 
Figure 1 shows two domains where the modulus of  velocity is less than one. We compared solutions 

obtained using different schemes at variable velocities of  additional mass motion. The velocity diagram 
is symmetrical relative to the solution domain center to evaluate the symmetry of  the resulting solution 
with symmetrical initial data. At the initial time point, an additional mass S of  10 units is specified at 
nodes 10 and 90. The Courant-Isaacson-Rees scheme is used to compare the performance of  the 
proposed scheme. This scheme is widely used in practical hydrodynamics problem calculations due to its 
stability, conservativeness, symmetry, and adequacy. Note that there are other schemes for calculating 
transfer equations, but many are complex or unstable, presenting only scientific interest [25]. The 
Courant-Isaacson-Rees scheme is the most widely used. It has different names, such as "the scheme of  
directed differences," "upstream scheme," or "corner scheme" [20, 21] but its essence and structure 
remain the same. The scheme is written as follows: 

 ,                                (5) 

where Δt and Δx are the time step and the step along the length of  the segment of  the solution 
domain. 

Nevertheless, why was the notation in the form (2) given above? There are a number of  reasons for 
this. 

On its basis and in complete analogy with structure (5), it is possible to write a solution-stable, 
transport, often conservative, and symmetric scheme for calculating additional mass transfer for 
velocities of  the same sign: 

  (6) 

Scheme (6) has the only advantage over scheme (5). In each calculation of   for point i, it is as if  

“rests” on three points . Scheme (5) rests on only two points in each of  the two 
branches of  the possible calculation. 

However, almost no one ever uses scheme (6) in calculations. Researchers dealing with 
hydrodynamic aspects avoid it. They have studied it very little. When using it, calculations often end 
with an emergency stop. The article will answer why scheme (6) is almost never used in calculations. 
Using scheme (6) allowed us to create a new scheme (7). This new scheme is better for consumers than 
scheme (5) and avoids the major issues found in scheme (6) [29, 30]: 
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              (7) 

We expect the extra mass S to move toward the center point. Here, the velocity will change 
direction. 

The calculation is conducted with the maximum time step for explicit schemes; that is, with the 
Courant number K0 equal to one: 

                                                    (8) 

The Courant scheme and its version for equation (2) provide a stable and conservative transfer 
result. Then, at the central point, the calculated content of  additional mass for the Courant scheme 
vanishes to zero. The scheme based on Courant's idea (upstream difference scheme) for the expanded 
form (2) increases the extra mass concentration at the point where the velocity changes sign (Fig. 2). 

 

 
Figure 2.  
Solution to the problem of additional mass transfer according to schemes (5), (6), (7). Calculation results for the 
41st time step (Courant's parameter is equal to one). 

 
Let us recall that at the initial time point, the concentration of substance S was 20 units. At the 41st 

time step, the Courant scheme gave the amount of substance 9.76. Scheme (6) at the 41st step of 
calculation gave 30.24. Only scheme (7) ensured the conservativeness of the calculation, and there were 
20 units of substance left on the calculated segment, as it was at the very beginning. 

It becomes clear why researchers in hydrodynamics avoid using scheme (6) in practical calculations. 
An infinite increase in the estimated amount of  substance will certainly lead to an emergency stop of  
calculations. 

Let us try to slightly change the problem posed. Let there be a section in the central zone of  the 
calculation domain in which there is no motion and velocity is zero. Figure 3 shows the results of  this 
calculation. 

It is interesting that the finite-difference scheme (6) has recovered its conservatism. Courant's 
scheme (5) is still not conservative. 

The new scheme and scheme (6) worked perfectly (conservatively, transfer, symmetrically) in the 
case of  zero velocities in the center of  the calculated zone. 

The point is that the Courant scheme uses strict inequalities. Let us try to write down the Courant 
scheme for non-strict inequalities (9). 

 



167 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 7: 162-175, 2025 
DOI: 10.55214/25768484.v9i7.8557 
© 2025 by the authors; licensee Learning Gate 

 

              (9) 

 

 
Figure 3. 
Solution to the problem of additional mass transfer for schemes (5), (6), and (7) The velocity of motion is zero at two 
central points. Calculation results for the 41st time step (Courant's parameter is equal to one). 

 
Analyzing the results shown in Fig. 4, we note the appearance of  partial conservatism for the 

Courant scheme. However, conservatism always manifests itself  when approaching the zero zone only 
from one side. It is impossible to organize the symmetry of  the solution with respect to the zone of  zero 

velocities when using conditions "⩽" and "⪜." Since calculations according to the options of  the 
Courant scheme (5) occur sequentially, there is always a first and second check when choosing one or 
another calculation option from two possible ones. The second branch of  the calculation will always be 
involved in the calculation. Both calculation options will never be involved at the same time. That is, the 
use of  non-strict conditions for checking the sign of  the velocities will always give rise to asymmetry 
of  solutions. This calculation possibility is absolutely unacceptable and is no longer considered. 
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Figure 4.  
Solution to the problem of additional mass transfer for schemes (5), (6), and (7). The velocity of motion is zero at two central 
points. Calculation results for the 41st time step (Courant's parameter is equal to one). 

 
In the next test problem, we structure our calculations so that when the additional mass reaches the 

central point, the velocity signs switch to their opposites. The results are unusual (Figure 5). First, 
Courant's scheme becomes more unstable. When the Courant number is one, the instability emerges 
with an incorrect negative value of  the substance concentration. Scheme (6) remains non-conservative. 
Moreover, the substance appears stuck to the central zone and doesn't move away. The central zone's 
sign change generates substance infinitely. Only the new scheme (7) proposed for use produces 
acceptable results. Note that when applying the Courant scheme to this test problem, the jaggedness in 
the solution disappears only when the Courant number is half  or less than the theoretical maximum. At 
Courant numbers slightly above 0.5, the jaggedness appears smaller and is eventually "overwritten" by 
the scheme's viscosity. By examining the results of  the Courant scheme (5), we can always find the 
instability of  the jaggedness in the first-time steps after the simultaneous velocity sign change at the 
42nd time step. 

 

 
Figure 5.  
Results of solving the equation of additional mass transfer using schemes (5), (6), (7). 
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Let us consider how the studied schemes behave when the Courant number is 0.8 (Fig. 6). We picked 
this Courant number because it's high enough. This way, the scheme's viscosity doesn't show too much. 
Still, it smooths out the "jaggedness" that appears when we use this scheme (5). 

The new scheme (7) proposed gives a conservative result. The Courant scheme (5) and scheme (6) 
lost their conservatism when transferring additional mass. 

Let's redo the calculation, assuming there's a zone of  zero velocities at the center (Fig. 7). Scheme 
(6) and the new scheme (7) proposed for use give a conservative result. Courant's scheme (5) lost its 
conservatism when transferring additional mass. 

 

 
Figure 6.  
Results of solving the equation of additional mass transfer using schemes (5), (6), and (7). The Courant number is 
equal to 0.88 on the 61st step; the change of sign velocities occurs at the 49th step, a zone of zero velocity is absent. 

 

 
Figure 7. 
Results of solving the equation of additional mass transfer using schemes (5), (6), and  (7). The Courant number is equal to 0.88 
on the 61st step; the change of sign velocities occurs at the 49th step, and there is a zone of zero velocity in the center. 

 
Let us now look at how schemes (5), (6), and (7) can work when moving from a one-dimensional 

problem to a two-dimensional one. Note that the transition to three-dimensional schemes can also be 
easily performed. 

Let us define a two-dimensional velocity field in the form of  two symmetrical circular motions. The 
velocity modulus in each circular motion is equal to one. The steps in space are also equal to one. Figure 
8 shows a field of  two contacting circular motions. At the initial time point, in the nodes highlighted 
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with a darker background, the concentration of  the substance is set to one. An acceptable solution is 
expected in the form of  circular and symmetrical motions of  the additional mass along the 
corresponding circular contours. 
 

 
Figure 8.  
Velocity field for the test problem of transporting additional mass in two closed symmetrical and contacting 
circular motions. 

 
All values of  the velocity components equal to zero are assigned a small positive value to ensure the 

complete utilization of  schemes (10) and (11) under their strict conditions for selecting the “>” and “<” 
calculation branches. 
Courant's scheme (5) can be generalized to two- and three-dimensional spaces with relative simplicity: 

   (10) 

In formulas (10) and (11), Vi,j and Ui,j are components of  the velocity vector along the coordinate axes: 
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(11) 

(12) presents the new scheme proposed for use: 

, , 

, , 

, , 

, , 

              (12) 

 
 

where Uxt,i,j, Wxt,i,j, Uyt,i,j, Wyt,i,j are new variables, calculated through the value of  the substance’s 
motion velocity depending on the sign of  this velocity. 

The Courant scheme produces uneven and insufficient results. It can show negative values, and some 
of  the substance tends to stick at the corners during circular motion (Fig. 9). The Courant parameter is 
set to 0.99. It is interesting that the Courant scheme does not withstand the greatest theoretical value 
of  the Courant parameter. The instability of  the “jaggedness” disappears only when the Courant 
parameter is 0.5. Yet, other problems remain even at a lower Courant number. 

The application of  scheme (11) yields a superior result in comparison to that obtained by scheme 
(10). Nevertheless, the primary disadvantage of  scheme (11) is its incompatibility with practical 
calculations. It lacks conservatism. So, because the substance keeps increasing, the calculation will lead 
to an emergency stop. Substances in the solution area reached 5.20 (as shown in Fig. 10)! 

The expanded structure of  scheme (11) made it possible to construct scheme (12) free of  all errors 
and shortcomings (Fig. 11). 

 

 
Figure 9.  
Result of solving the substance transfer equation (1) using the Courant scheme. 
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Figure 10.  
Result of solving the substance transfer equation (2) according to scheme (11). 

 

 
Figure 11.  
Result of solving the substance transfer equation (2) according to scheme (12). 

 
Let us compare the calculation results obtained using schemes (10), (11), and (12) along the 

supposed trajectory of  substance. The results obtained from schemes (10) and (11) are not acceptable. 
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Figure 12.  
Results of comparisons of solutions to the substance transfer equations (1) - (2) according to schemes (10), (11), and (12). 

 
The results of  scheme (12) show scheme viscosity. It is clear that the substance transfer velocities at 

turns are less than one. When both velocity components at the corner points equal one, the analytical 
solution matches the approximate solution from scheme (12). Then the velocity modulus at the corner 

points would be equal to  and not to 1. We have not yet solved this little paradox. However, it does 
not have a significant impact on the consumer capabilities of  scheme (12). 
 

3. Conclusions 
The proposed finite-difference schemes (7, 12) overcome the calculation issues inherent in the 

common Courant scheme. Numerical experiments show that other finite-difference schemes suffer from 
the same problems as the Courant scheme. Notably, the proposed scheme (12) remains stable in the two-
dimensional case when the Courant parameter equals one, which is not true for other known and studied 
schemes. 

Generalizing Scheme (12) to three-dimensional space is relatively easy. Implementing the proposed 
scheme requires minimal changes to the codes of  fluid mechanics models. In plane and spatial problems, 
points where the sign of  transverse velocities changes often occur when the cross-section of  the flow 
changes. This leads to non-conservative calculations. Salokhiddinov, et al. [31] discusses the loss of  
conservatism in calculations and presents ways to reduce it. Refining the mesh also reduces non-
conservativeness [32]. The lower the absolute velocities around the point of  sign change, the smaller 
the loss of  conservatism [33]. However, "less" does not mean "zero." Schemes (7, 12) ensure exact 
conservatism. The practical result is that the loss of  conservatism in calculations is eliminated, allowing 
for larger time steps in most problems.  
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