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Abstract: This study utilizes advanced technologies to address water contamination by analyzing data 
collected from the Red River, Rio Grande, and Trinity River in Texas City, USA, between March 2023 
and March 2024. The dataset comprises seven critical water quality parameters—conductivity, pH, 
turbidity, dissolved oxygen (DO), total and fecal coliform, chemical oxygen demand (COD), and 
nitrate—ensuring compliance with U.S. government standards for safe and clean drinking water. The 
proposed Efficient AI-based Water Quality Prediction and Classification (EAI-WQP) model aims to 
accurately predict water pollution parameters, particularly those influenced by industrial activities. 
Leveraging Apache Spark, a powerful big data processing framework, the model enables real-time data 
handling and analysis for effective pollution management. To enhance prediction accuracy, the model's 
parameter tuning is optimized using the Firefly Algorithm (FA). Furthermore, an Adaptive Neuro-
Fuzzy Inference System (ANFIS) classifier is integrated into the model, combining fuzzy logic with 
neural networks to classify water quality into pollutant and non-pollutant categories. Comparative 
evaluations against established machine learning techniques such as GRU-ARIMA, SVM, and Random 
Forest demonstrate the superior performance of the EAI-WQP model in terms of accuracy, precision, 
F1 score, and recall. The study aims to analyze water pollution in Texas City using advanced AI 
methodologies, develop the EAI-WQP model for accurate forecasting of water quality parameters, 
implement real-time big data processing with Apache Spark, optimize model performance using the 
Firefly Algorithm (FA), classify water quality using ANFIS, and demonstrate the model's superiority 
over traditional machine learning methods. 

Keywords: Environmental management, GRU-ARIMA, machine learning, Industrial pollution, Water quality prediction.  

 
1. Introduction  

The main aim of the study was to develop and evaluate the Efficient AI-based Water Quality 
Prediction and Classification (EAI-WQP) model to accurately forecast water pollution parameters. By 
leveraging technological advancements such as Apache Spark for real-time data processing and the 
Firefly Algorithm for parameter tuning, the study sought to enhance prediction accuracy. The model, 
which incorporates the Adaptive Neuro-Fuzzy Inference System (ANFIS), was designed to improve 
water quality classification. Additionally, the study aimed to compare the performance of the EAI-WQP 
model with other machine learning techniques, including GRU-ARIMA, SVM, and Random Forest, to 
identify the most effective approach for predicting water pollution levels. 

The environment, human health, and water resources all greatly depend on water quality (WQ). To 
address this worldwide challenge, practitioners and researchers have gotten heavily involved in water 
quality monitoring and modeling. This is because billions of people on Earth depend on clean, healthy, 
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and sufficient freshwater. Water quality (WQ) can be estimated and the degree of contamination can be 
determined by utilizing a combination of the water's physical, chemical, and biological aspects. Because 
there have been so many instances of water contamination in recent years, environmental management 
organizations around the world have become increasingly interested in the assessment and estimation of 
WQ. The environmental infrastructure depends on specific case study surface water quality studies. The 
most important markers of WQ are dissolved oxygen (DO) and biochemical oxygen demand (BOD)  
because they affect a variety of biological, chemical, and physical characteristics of water. Controlling 
stream pollution, managing river water quality, and supporting natural processes all depend on the 
accurate evaluation of these two variables. These quality variables are still determined using traditional 
techniques (volumetric titration), which are more subjective than instrumental techniques. Much money, 
time, and effort could be saved if these WQ elements could be predicted with a reasonable degree of 
precision. Because of this, researchers have developed reliable models to forecast BOD and DO from 
other easily accessible inputs related to water quality. 

However, the prediction and quantitative modeling of surface water quality variables have proven to 
be a challenging task in recent decades. DO and BOD are influenced by a wide range of biotic and 
abiotic factors, as well as the complex relationships between them. Most of these interactions are still 
vague and undefinable at this point, and it is difficult to get the data needed for process modeling. As a 
result, deriving the mathematical descriptions of these processes is challenging. In order to simplify 
these intricate physical processes, researchers have created physical models for DO and BOD. However, 
these physical models are still unable to predict DO and BOD with any degree of accuracy. Stochastic 
prediction models were developed because BOD and DO in rivers and streams change with time and 
show stochastic behavior. Regression models are most commonly used to estimate the stochastic 
behavior of BOD and DO. However, it is a difficult challenge to effectively replicate BOD and DO using 
typical regression models due to their very unpredictable behavior. When assessing water quality, 
prediction models are expected to possess a high degree of precognitive ability. Therefore, relying just 
on a basic statistical regression-based model to assess the quality of river water is not optimal. 

Advanced artificial intelligence models comprise the current generation of computer-aided models. 
Artificial Intelligence is a dependable and extremely effective method for simulating groundwater and 
surface water quality. However, AI models showed robust and trustworthy modeling methods for a 
range of environmental, hydrological, and climatological applications. The primary advantage of AI 
models over traditional statistical methods, which are predicated on the idea of a linear link, is their 
ability to handle extremely complex nonlinear inter-factor correlations. The majority of studies have 
presented artificial intelligence (AI) models in a range of prediction model formats, including genetic 
programming, support vector machines, adaptive neuro-inference system models, and artificial neural 
networks (ANN).  

This study aims to analyze water pollution in Texas City by leveraging advanced AI methodologies, 
specifically developing the Efficient AI-based Water Quality Prediction and Classification (EAI-WQP) 
model for accurate forecasting of key water quality parameters, implementing real-time big data 
processing using Apache Spark, optimizing model performance through Firefly Algorithm (FA), and 
classifying water quality using an Adaptive Neuro-Fuzzy Inference System (ANFIS); additionally, the 
research conducts comparative evaluations against traditional machine learning models such as GRU-
ARIMA, SVM, and Random Forest to establish the EAI-WQP model’s superiority in terms of accuracy, 
precision, F1 score, and recall, ensuring effective pollution monitoring and compliance with U.S. 
government standards. 

In recent years, the integration of advanced technologies such as machine learning, big data, and 
artificial intelligence has significantly enhanced water quality monitoring and management. This 
literature survey explores cutting-edge research and developments in these areas, highlighting key 
advancements, methodologies, and their impact on improving water quality prediction and treatment. 

Nair and Vijaya [1] examined river water quality prediction methods with an emphasis on machine 
learning and big data applications. It looks at several approaches, their efficacy, and how they might 
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improve the forecasting of water quality. The paper emphasizes how crucial it is to combine big data 
and machine learning to enhance environmental management techniques and prediction accuracy. 
Fernando, et al. [2] investigated the use of artificial intelligence in wastewater treatment. It goes over 
the advantages and difficulties of using different AI algorithms to optimize treatment processes. The 
article demonstrates how increasing efficiency, sustainability, and system automation with AI can 
improve wastewater management. Arridha, et al. [3] offered an expansion of classification methods for 
real-time environmental monitoring utilizing big data analytics and the Internet of Things. It talks 
about a system that combines big data and IoT sensors to improve environmental monitoring and 
analysis, giving real-time insights and enhancing smart environment management. 

Ghernaout, et al. [4] demonstrated how big data technologies are enabling enhanced management 
methods, increasing efficiency, and changing the way that water treatment processes are carried out. 
The potential of big data to transform water treatment techniques is discussed in the study along with 
developing trends. Kimothi, et al. [5] presented a framework for using machine learning, big data, and 
the Internet of Things to analyze indications of water quality. It talks about how various technologies 
work together to better monitor and forecast water quality, enhance real-time analysis, and advance 
water management techniques. Fu, et al. [6] used big data analysis and a water quality identification 
index to investigate long-term trends in surface water quality in China's main basins. It demonstrates 
how big data may be used to monitor and evaluate changes in water quality over time, offering 
insightful information about the condition of water bodies and the efficacy of management techniques. 
Sharma and Sharma [7] examined the application of IoT sensors and big data for real-time monitoring 
of water's physicochemical characteristics. The creation and use of smart sensors for ongoing 
surveillance is covered, as well as how big data analytics improve the management and interpretation of 
water quality data. 

Budiarti, et al. [8] classified surface water using Support Vector Machines (SVM) in conjunction 
with big data technology. It illustrates how SVM may be used to categorize and evaluate surface water 
data using a case study from Surabaya, enhancing the assessment and management of water quality with 
sophisticated big data techniques. Rajaee, et al. [9] covered both single and hybrid approaches to AI-
based models for river water quality prediction. It evaluates several AI approaches and how well they 
predict water quality, giving a thorough rundown of the most recent developments and cutting-edge 
practices in this area. Said [10] examined methods using artificial intelligence to forecast the quality of 
river water. In an effort to offer a thorough grasp of how AI can be applied in water quality prediction, 
it compiles different AI techniques, their applications, and their efficacy in forecasting water quality 
metrics. Madni, et al. [11] investigated the use of explainable AI and H2O AutoML for water-quality 
prediction. In order to improve prediction accuracy and model interpretability, it proposes a framework 
that blends explainable AI with automated machine learning. It focuses on how these methods improve 
the management of water quality. 

Pandey and Verma [12] analyzed various AI approaches, including machine learning and deep 
learning, for the investigation and prediction of water quality. It outlines developments, uses, and 
potential paths for AI to enhance the evaluation and management of water quality. Abba, et al. [13] 
covered the use of ensemble machine learning and data intelligence models to forecast water quality 
indices. The article emphasizes the efficacy of integrating several machine learning methodologies to 
enhance prediction precision and presents case studies that showcase the potential of these models for 
water quality forecasting. Nallakaruppan, et al. [14] looked into employing explainable AI models to 
predict water quality with accuracy. It highlights how crucial the interpretability and transparency of 
the model are to guarantee reliable predictions. The article discusses several explainable AI approaches 
and how to use them to improve analyses and predictions of water quality. 

Elkiran, et al. [15] explored the use of ensemble AI techniques for multi-step forward modeling of 
river water quality parameters. It highlights their potential to enhance long-term water quality 
forecasting and management by presenting approaches for projecting future water quality based on 
historical data and ensemble techniques. Ismail, et al. [16] compared the relationship between artificial 
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intelligence and water treatment. It offers a comprehensive examination of AI applications in water 
treatment procedures, outlining advantages, difficulties, and areas in need of further research. The 
review seeks to provide a thorough grasp of the ways in which artificial intelligence might improve 
water treatment and management techniques. 

Water contamination poses significant environmental and public health challenges, especially in 
regions experiencing rapid industrialization. In Texas City, USA, rivers such as the Red River, Rio 
Grande, and Trinity River have become critical indicators of water quality, prompting the need for 
innovative monitoring and predictive solutions. Advances in big data analytics and artificial intelligence 
offer promising avenues for real-time water quality management, ensuring compliance with stringent 
U.S. government standards for safe drinking water. This study builds on these technological strides by 
leveraging sophisticated data collection and analysis techniques to monitor essential water quality 
parameters, setting the stage for the development of a robust predictive model. 
 

2. Experimental 
2.1. Methods 
2.1.1. Dataset  

The investigation's data collection was based on information obtained from selective rivers such as 
the Red River, Rio Grande, and Trinity River in Texas City, United States, spanning from March 2023 
to March 2024 to analyze water pollution. The dataset includes seven key parameters essential for water 
quality analysis: conductivity, pH, turbidity,  dissolved oxygen (DO), total and faecal coliform, chemical 
oxygen demand (COD), and nitrate. Figure 1 shows the visual representation of the data collection 
areas. These parameters were monitored and analyzed to assess the water's condition and identify 
potential pollution sources. The U.S. government compiled all relevant data to ensure that drinking 
water met cleanliness standards and complied with safety regulations. 

 

   
(a)                                            (b)                                                          (c) 

Figure 1. 
Visual representation of (a) red river (b) rio grande river (c) trinity river. 

 
2.2. Data Processing Tool  
2.2.1. Apache Spark 

Apache Spark is essential to the Data Processing stage because it manages and analyzes massive 
volumes of environmental sensor data in an effective manner. By utilizing its distributed computing 
capabilities, which enable the parallel execution of data processing tasks across several cluster nodes, it 
enables real-time processing. The capacity to manage the constant stream of data from environmental 
sensors is essential for ensuring that the data is processed accurately and quickly. Effective pollution 
control and intervention depend on prompt analysis and decision-making, which Apache Spark's real-
time processing functionality facilitates. The approach makes sure that data handling and analytical 
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processes are quick and responsive by leveraging Spark's optimized execution engine and in-memory 
processing. This allows for the latency-free development of actionable insights and forecasts. 
 
2.3. Proposed Model 

Advanced artificial intelligence techniques are utilized by efficient AI-based Water Quality 
Prediction and Classification (EAI-WQP) systems to precisely forecast and categorize water quality 
indicators. These systems are made to manage massive amounts of data from a variety of sources, 
including historical datasets, satellite photography, and sensors positioned in bodies of water. The 
ability to process and analyze complicated datasets is improved by the incorporation of AI models like 
machine learning (ML) and deep learning (DL), which makes it possible to find patterns and anomalies 
that older methods would have overlooked. Data pre-processing to eliminate noise, feature selection to 
find pertinent variables, and the use of predictive algorithms to anticipate water quality indicators like 
pH, turbidity, dissolved oxygen, and nutrient concentrations are important parts of EAI-WQP. The 
efficiency of the EAI-WQP model lies in its ability to handle and process large-scale, real-time data 
using Apache Spark, ensuring rapid and scalable analysis. Its parameter optimization using the Firefly 
Algorithm (FA) enhances predictive accuracy with minimal computational overhead. The integration of 
the ANFIS classifier ensures precise categorization of water quality while leveraging fewer resources 
compared to traditional methods.  

EAI-WQP systems are very useful for managing and monitoring water resources in real time. 
These systems can offer early warnings of possible contamination events by using AI-driven models, 
which enables preventative actions to reduce pollution. They also make it easier to classify water quality 
into groups that can be used to inform public health alerts and regulatory compliance. The flexibility of 
AI models to various water bodies and environmental circumstances renders EAI-WQP a useful 
instrument for a range of ecosystems. These systems should get increasingly accurate and efficient as AI 
technology develops, greatly aiding in conservation and sustainable water management initiatives. 
Many factors that significantly affect the overall quality of the water are taken into account when 
calculating the Water Quality Index (WQI). During this investigation, a proposed model is assessed 
utilizing seven crucial water quality characteristics against a previously published dataset. To compute 
the WQI, the subsequent formula was employed in equation 1: 

𝑊𝐼 =
∑  𝑛

𝑗=1  ×𝑤𝑖

∑  𝑛
𝑗=1  𝑤𝑖

  (1) 

On the quality rating scale I created for each parameter using the equation, the letter N stands for 
the number of elements taken into account while computing the WQI. The letter qi represents the 
quality rating for each parameter on this scale using the equation 2. 

𝑞𝑖 = 100 X (
𝑉𝑖 −  𝑉𝑖𝑑𝑒𝑎𝑙

𝑆𝑖 − 𝑉𝑖𝑑𝑒𝑎𝑙
) (2) 

 
Table 1. 
Permissible limits of the parameters used in calculating WQI. 

S. No Water Quality Parameter Permissible limits 
1 Ph 8.5 
2 Turbidity 4 NTU 

3 Dissolved Oxygen (DO) 12 mg/L 
4 Conductivity 1000 S/m 

5 Total Coliform 100 mL 

6 Faecal Coliform 100 mL 
7 Chemical Oxygen Demand (COD) 40 mg/L 

8 Nitrate 9 mg/L 
 

The measured metric i value, represented by the symbol Vi, was discovered in the tested water 
samples. The ideal value of the parameter Ideal is revealed by clean water, while Table 1 presents the 
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recommended standard value of the parameter Si. The ideal value is called Ideal, and the suggested 
standard value is Si. Each water sample that was examined for analysis had a measured value for 
parameter i, which is called vi. The parameter i should be assigned the value V when the water is 
transparent. Figure 2 shows the architecture of the proposed methodology. 
 

 
Figure 2. 
Proposed Methodology. 

 
2.4. ML model 
2.4.1. GRU-ARIMA  

During the Model Development stage, a potent hybrid technique for predicting the levels of water 
pollution is created by combining the Autoregressive Integrated Moving Average (ARIMA) model with 
the Gated Recurrent Unit (GRU). To improve prediction accuracy and reliability, this hybrid model 
incorporates the best features of both conventional time series forecasting techniques and recurrent 
neural networks. Recurrent neural networks (RNNs), such as the GRU, are especially good at 
identifying patterns and temporal connections in sequential data. Its architecture, which is determined 
by the update equations below, enables it to efficiently manage long-term dependencies from equation 3 
to 6: 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)   (3) 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (4) 
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ℎ̃𝑡 = tanh(𝑊ℎ ⋅ [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (5) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (6) 
Where, the update gate in this case is denoted by zt, the reset gate by rt, the candidate activation by 

ht, and the concealed state by ht. These formulas enable the GRU model to recognize intricate temporal 
patterns and learn from historical pollution data in an efficient manner. In contrast, the ARIMA model 
is a time series forecasting technique that has been around for a while and is well-known for its ability to 
predict univariate data with autocorrelated patterns. It can be express the ARIMA model as follows in 
equation 7:  

𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜃1𝜖𝑡−1 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡 (7) 

Where Yt is the observed value, ϕ denotes the autoregressive parameters, θ represents the moving 

average parameters, and ϵt  is the white noise error term. This equation helps in capturing the 
autocorrelation within the pollution data, providing a robust baseline for predictions. 

While the ARIMA component takes into consideration the data's seasonality and linear trends, the 
GRU component captures intricate, non-linear temporal connections. The hybrid model is expressed as 
follows in equation 8: 

�̂�𝑡 = 𝑓(GRU (𝑋𝑡)) + ARIMA(𝑌𝑡−1, 𝜖𝑡−1)            (8) 

where �̂�𝑡 represents the predicted pollution levels, 𝑓(GRU (𝑋𝑡)) denotes the output from the GRU 

model based on input features 𝑋𝑡, and ARIMA (𝑌𝑡−1, 𝜖𝑡−1) represents the ARIMA component's 
 
2.4.2. Parameter Tuning 

The GRU-ARIMA model is optimized using the Firefly Algorithm (FA) during the Parameter 
Tuning phase to improve the model's accuracy in forecasting water pollution levels. The Firefly 
Algorithm is a metaheuristic optimization method for handling challenging optimization problems. It 
was inspired by the flashing characteristic of fireflies. The idea behind it is that brighter firefly, which 
stand for better solutions. A population of fireflies, each of which represents a potential solution to the 
optimization issue, is initialized as part of the FA algorithm's operation. The objective function, in this 
case the GRU-ARIMA model's forecasting accuracy, determines each firefly's brightness. The i-firefly's 
brightness, Bi, can be stated as follows in equation 9: 

𝐵𝑖 = −MSE𝑖     (9) 
where MSEi stands for the model's Mean Squared Error and its parameters correspond to the 

firefly's parameters. Higher brightness is correlated with a lower mean square error (MSE). A firefly i's 
attractiveness (Aij) to a firefly j is defined as follows in equation 10: 

𝐴𝑖𝑗 = 𝛽0exp (−𝛾𝑟𝑖𝑗
2) (10) 

where β0 is the attractiveness at rij=0, γ is the light absorption coefficient, and rij  is the distance 
between fireflies i and j. The movement of a firefly iii towards a more attractive firefly j is given in 
equation 11: 

𝐱𝑖(𝑡 + 1) = 𝐱𝑖(𝑡) + 𝛼 ⋅ (𝐱𝑗 − 𝐱𝑖) + 𝜖 (11) 

where xi(t+1) is the updated position of firefly i, α is a random step size, and ϵ is a random 
perturbation. This movement allows fireflies to search the parameter space more effectively, improving 
the model's accuracy. 

The GRU-ARIMA model's hyperparameters, including the GRU's learning rate, the ARIMA 
model's orders, and any regularization parameters, are iteratively adjusted via the Firefly Algorithm. 
The model's parameters are fine-tuned to produce optimal forecasting performance through the FA, 
which minimizes the Mean Squared Error (MSE) or other pertinent objective functions. By determining 
the most efficient parameter settings, this optimization method improves the GRU-ARIMA hybrid 
model's accuracy, resulting in more accurate water pollution level predictions and better overall model 
performance. 
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2.5. Data classification  
Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in the Classification phase to divide water 

quality into groups of pollutants and non-pollutants. ANFIS is a potent hybrid system that effectively 
handles complicated and nonlinear environmental data by fusing the interpretability of fuzzy logic with 
the learning capabilities of neural networks. The system is set up as a five-layer neural network, with 
pH, turbidity, and chemical concentrations being sent to the input layer of the network. These inputs 
are transformed into fuzzy sets in the fuzzification layer by membership functions, which can manage 
the imprecision and uncertainty present in environmental data. Fuzzy if-then rules that link input 
conditions to output categories comprise the rule layer. These rules contain expert knowledge 
regarding the classification of water quality. ANFIS uses a backpropagation method in conjunction with 
a least squares estimation to improve these rules and the related parameters during the learning 
process. The goal is to minimize the classification error. The defuzzification layer provides an 
unambiguous classification of water quality as either pollutant or non-pollutant by converting the fuzzy 
outputs back into crisp values. By combining these elements, ANFIS is able to accurately classify and 
analyze complicated environmental data with ease, enabling efficient monitoring and management of 
water quality that is impacted by industrial activity. 
 

3. Results and Discussion 
3.1. Accuracy  

The accuracy of water quality parameters assessed by different models shows a notable performance 
difference which is illustrated in Figure 3. For this experiment, samples were obtained from 3 rivers 
from Texas City in UN from March 2023 to March 2024.  For pH measurement, the ML model 
achieved 88% accuracy, while the EAI-WQP system, using ANFIS+FIREFLY, reached 95%. Turbidity 
was accurately predicted at 85% by the ML model compared to 92% by the EAI-WQP system. 
Dissolved Oxygen (DO) measurements had an accuracy of 86% with the ML model, whereas the EAI-
WQP system improved this to 94%. Conductivity accuracy was 87% with the ML model and 93% with 
the EAI-WQP system. 
 

 
Figure 3.  
Accuracy results of ML Model vs. EAI-WQP System. 
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For Total Coliform, the ML model's accuracy was 84%, while the EAI-WQP system achieved 90%. 
Faecal Coliform predictions were 83% accurate with the ML model and 89% with the EAI-WQP 
system. Chemical Oxygen Demand (COD) showed an accuracy of 82% with the ML model, and 91% 
with the EAI-WQP system. Lastly, Nitrate levels were predicted with 80% accuracy by the ML model 
and 88% by the EAI-WQP system. Overall, the EAI-WQP system consistently outperforms the ML 
model across all water quality parameters. 
 
3.2. Precision  

Figure 4 compares the precision of ML models and the EAI-WQP system, which uses ANFIS and 
Firefly Algorithm. The EAI-WQP system consistently outperformed the ML model across all 
parameters. For pH, the ML model achieved 85% precision, while EAI-WQP reached 93%. Turbidity 
precision was 82% for the ML model and 90% for EAI-WQP. Dissolved Oxygen (DO) had 84% 
precision with the ML model and 91% with EAI-WQP. Conductivity, Total Coliform, Faecal Coliform, 
Chemical Oxygen Demand (COD), and Nitrate also showed higher precision with EAI-WQP compared 
to the ML model. 
 

 
Figure 4.  
Precision results of ML Model vs. EAI-WQP System. 

 
3.3. Recall 

The comparison between the machine learning (ML) model and the EAI-WQP system (which 
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superior performance of the EAI-WQP system. Specifically, for pH, the EAI-WQP system achieved a 
recall of 92%, outperforming the ML model's 84%. Similarly, the EAI-WQP system showed higher 
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nitrate (86% vs. 79%). This suggests that the EAI-WQP system provides a more accurate assessment of 
water quality across these parameters compared to the ML model. Recall performance was seen in 
Figure 5. 
 

 
Figure 5.  
Recall results of ML Model vs. EAI-WQP System. 

 
3.4. F1 Score  

Figure 6 compares F1 scores for various water quality parameters between ML models and the 
EAI-WQP system, which uses ANFIS and Firefly Algorithm. The EAI-WQP system outperforms the 
ML model in most cases: pH (92% vs. 86%), Turbidity (91% vs. 84%), and Dissolved Oxygen (92% vs. 
85%). The ML model scores higher for Conductivity (83% vs. 80%), while the EAI-WQP system leads 
for Total Coliform (88% vs. 81%), Faecal Coliform (86% vs. 79%), COD (89% vs. 82%), and Nitrate (87% 
vs. 80%). 
 

 
Figure 6.  
F1 Score results of ML Model vs. EAI-WQP System. 
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3.5. Comparative Analysis of Proposed and Existing ML Model 
Table 2 and Figure 7 displayed the performance metrics of various models that reveal distinct levels 

of effectiveness. The Proposed EAI-WQP model, utilizing Firefly and ANFIS, demonstrated the highest 
performance with an accuracy of 94.5%, precision of 92.3%, recall of 93.7%, and an F1-Score of 93.0%. 
The GRU-ARIMA model followed with an accuracy of 88.7%, precision of 86.5%, recall of 87.0%, and 
an F1-Score of 86.7%. The SVM model exhibited an accuracy of 85.2%, precision of 83.4%, recall of 
84.1%, and an F1-Score of 83.7%. Lastly, the Random Forest model recorded an accuracy of 87.9%, 
precision of 85.7%, recall of 86.3%, and an F1-Score of 86.0%. Overall, the Proposed EAI-WQP model 
outperformed the other models in all evaluated metrics. 

GRU-ARIMA, SVM, and Random Forest were chosen as comparison models because they 
represent different approaches to prediction, offering a diverse evaluation of the proposed model's 
performance. GRU-ARIMA combines the strengths of deep learning (GRU) and traditional time series 
forecasting (ARIMA), making it suitable for predicting water quality trends. SVM is known for its 
ability to handle high-dimensional data and perform well in classification tasks, providing a solid 
baseline for comparison in terms of classification accuracy. Random Forest, an ensemble learning 
method, is widely used for its robustness and ability to handle large datasets with complex patterns. By 
comparing EAI-WQP against these established models, the study evaluates its relative performance and 
demonstrates its superiority in terms of accuracy, precision, and recall. 
 
Table 2.  
Comparative Performance Metrics. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Proposed EAI-WQP (firefly + ANFIS ) 94.5 92.3 93.7 93.0 
GRU-ARIMA 88.7 86.5 87.0 86.7 

SVM 85.2 83.4 84.1 83.7 
Random Forest 87.9 85.7 86.3 86.0 

 

 
Figure 7.  
Comparative results of ML models and proposed technique. 

 

4. Limitations 
Despite the promising results, the study has several limitations. It relies on data from only three 

rivers in Texas City, which may not fully represent diverse environmental conditions and pollution 
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sources across different regions. The complexity of integrating the Firefly Algorithm and ANFIS may 
also require substantial computational resources, limiting real-time application in constrained systems. 
Furthermore, the study did not compare the model with more advanced deep learning techniques like 
LSTMs or CNNs, leaving room for potential improvements. Future research should expand the dataset 
to include a broader range of water bodies, incorporate real-time sensor data and satellite imagery, and 
explore advanced deep learning models for improved prediction accuracy. Optimizing the Firefly 
Algorithm for efficiency and combining machine learning techniques could enhance performance, while 
including socio-economic and climate data could provide a more comprehensive approach to water 
quality prediction in urban settings. 
 

5. Conclusion  
The study analyzed water quality parameters from the Red River, Rio Grande, and Trinity River in 

Texas City, USA, from March 2023 to March 2024. The proposed EAI-WQP model outperforms 
benchmarks due to its integration of real-time big data processing with Apache Spark and optimization 
via the Firefly Algorithm (FA). Its Adaptive Neuro-Fuzzy Inference System (ANFIS) classifier enhances 
classification accuracy by combining fuzzy logic with neural networks. Comparative evaluations show 
superior performance in accuracy, precision, F1 score, and recall over GRU-ARIMA, SVM, and Random 
Forest models. 
 It was evaluated against GRU-ARIMA, SVM, and Random Forest models. The following results were 
obtained from the below research:  

1. The ML model achieved 88% accuracy for pH, 85% for turbidity, 86% for Dissolved Oxygen 
(DO), 87% for conductivity, 84% for Total Coliform, 83% for Faecal Coliform, 82% for Chemical 
Oxygen Demand (COD), and 80% for nitrate. In contrast, the EAI-WQP system reached 95% 
accuracy for pH, 92% for turbidity, 94% for DO, 93% for conductivity, 90% for Total Coliform, 
89% for Faecal Coliform, 91% for COD, and 88% for nitrate. 

2. The ML model's precision for pH was 85%, for turbidity was 82%, and for DO was 84%. The EAI-
WQP system outperformed with 93% precision for pH, 90% for turbidity, and 91% for DO. 
Precision was consistently higher for all parameters with the EAI-WQP system compared to the 
ML model. 

3. The ML model achieved an F1 score of 86% for pH, 84% for turbidity, and 85% for DO. The EAI-
WQP system showed higher F1 scores of 92% for pH, 91% for turbidity, and 92% for DO. The 
EAI-WQP system had superior F1 scores across all parameters. 

4. The ML model had a recall rate of 84% for pH, 83% for turbidity, and 85% for DO. The EAI-
WQP system demonstrated higher recall rates of 92% for pH, 91% for turbidity, and 93% for DO. 
The EAI-WQP system consistently outperformed the ML model in recall across all parameters. 

5. The EAI-WQP system consistently outperformed the ML model in accuracy, precision, F1 score, 
and recall across all water quality parameters. The EAI-WQP system showed significant 
improvements over the ML model, achieving higher performance metrics in every evaluated 
category. 

Despite the promising results of the EAI-WQP model, several limitations must be acknowledged. 
First, the study relies on data collected from only three rivers in Texas City, which may limit the 
model’s generalizability to other geographic regions with different hydrological and environmental 
conditions. Additionally, while the Firefly Algorithm (FA) enhances parameter optimization, its 
computational complexity could pose challenges for large-scale implementations. The reliance on 
historical data may also introduce biases, as sudden pollution events or emerging contaminants not 
represented in the dataset could affect real-time predictive accuracy. Future research should focus on 
expanding the dataset to include diverse water bodies across multiple climatic regions, integrating 
additional water quality indicators such as heavy metals and microplastics, and refining the AI model 
with hybrid optimization techniques for improved scalability. Moreover, incorporating Internet of 
Things (IoT) sensors for continuous real-time monitoring and integrating the model with decision-
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support systems for policymakers could enhance its practical applicability in water resource 
management. 
 

Abbreviation: 
EAI-WQP - Efficient AI-Based Water Quality Prediction and Classification 
GRU-ARIMA - Gated Recurrent Unit - Autoregressive Integrated Moving Average 

ANFIS - Adaptive Neuro-Fuzzy Inference System 
FA - Firefly Algorithm  
ANN - Artificial Neural Networks 
DO - Dissolved Oxygen 
ML - Machine Learning 
DL - Deep Learning 
WQI - Water Quality Index 
GRU - Gated Recurrent Unit 
ARIMA - Autoregressive Integrated Moving Average 
RNN - Recurrent Neural Network 
SVM - Support Vector Machine 
MSE - Mean Squared Error 
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