
Edelweiss Applied Science and Technology
ISSN: 2576-8484
Vol. 9, No. 7, 566-579
2025
Publisher: Learning Gate
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

© 2025 by the authors; licensee Learning Gate
History: Received: 2 May 2025; Revised: 12 June 2025; Accepted: 16 June 2025; Published: 8 July 2025
* Correspondence: 6025231063@student.its.ac.id

Development of code smell detection model based on graph neural network
to detect long method, large class, and duplicated code

Joko Slamet1*, Siti Rochimah2

1.2Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia; 6025231063@student.its.ac.id (J.S.) siti@its.ac.id (S.R.).

Abstract: This study aims to develop and evaluate a GNN-based model for automatically detecting code
smells in Python by leveraging the structural information derived from Abstract Syntax Trees (ASTs).
The study employed a quantitative approach by training a Graph Neural Network (GNN) model on
code represented as Abstract Syntax Trees (ASTs). The proposed GNN model demonstrated high
effectiveness in detecting specific types of code smells using a processed dataset, achieving 96.3%
accuracy for Long Method detection and 95.2% for Large Class detection. Furthermore, the model
effectively identified Long Method, Large Class, and Duplicated Code when tested on real-world
datasets. On the ERPNext dataset, it reached 95.95% accuracy, 99.84% precision, 95.95% recall, and
97.78% F1-score. On the Odoo dataset, it attained 93.29% accuracy, 99.74% precision, 93.29% recall, and
96.29% F1-score. These results show that the proposed GNN model outperformed traditional machine
learning algorithms such as Decision Tree, Random Forest, Support Vector Machine (SVM), Stochastic
Gradient Descent (SGD), Multi-Layer Perceptron (MLP), and Linear Regression. The results confirm
that the GNN-based approach effectively detects code smells in Python programs, surpassing classical
machine learning techniques. This model provides a practical tool for enhancing code quality and
maintainability. Future work could explore real-time integration of this model into development
environments and expand detection to other code smell types.

Keywords: Code smell detection, Duplicated code, Graph neural network, Large class, Long method, Python programming
language.

1. Introduction

In recent years, maintaining high software quality has become a critical concern in large-scale
software development. One of the most persistent threats to code quality is the presence of code smells,
which are symptoms in the source code that may indicate deeper design or structural issues [1]. While
not directly causing program failure, code smells tend to degrade maintainability, increase technical
debt, and introduce potential bugs in the long term [2]. Among the various types of code smells, Long
Method, Large Class, and Duplicated Code are considered the most impactful due to their high
frequency and detrimental influence on readability, testing, and modularity [3-5].

Code smell detection has traditionally relied on manual code review or rule-based static analysis
tools, which are limited in scalability and often subjective. In response, many recent studies have applied
machine learning (ML) techniques to automate code smell detection, using classifiers such as Decision
Trees, Random Forests, Support Vector Machines (SVM), and Multilayer Perceptron trained on hand-
engineered code metrics [6]. While these models offer improvements over rule-based tools, their
dependence on manually extracted features introduces bias, limits generalization, and poses scalability
issues in real-world scenarios.

To address these limitations, the software engineering community has shifted toward deep learning
approaches that eliminate the need for manual feature engineering. Techniques such as Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have shown promising results in

https://orcid.org/0009-0007-4316-1460
https://orcid.org/0000-0002-5603-749X

567

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

detecting code smells directly from raw code representations [7-9]. However, these approaches often
fail to fully capture the rich structural and semantic relationships inherent in source code, which are
crucial for detecting complex smells such as Large Class and Long Method.

Recent developments in Graph Neural Networks (GNNs) offer a more expressive framework for
modeling code structure, particularly when applied to representations such as Abstract Syntax Trees
(ASTs) or Function Call Graphs (FCGs). GNNs can learn contextual relationships between code
elements, making them well-suited for detecting patterns that indicate code smells [10, 11].

Despite their potential, few studies have explored the use of GNNs for code smell detection in
Python, a language increasingly used in modern software systems. The majority of existing works still
focus on Java and use conventional ML-based detection techniques. For instance, Sandouka and
Aljamaan [6] created a labeled Python dataset and evaluated various traditional ML models to detect
Long Method and Large Class smells, but their models relied on static code metrics and lacked
structural learning capability. In addition to this benchmark dataset, we also perform experiments using
real-world codebases from ERPNext and Odoo two large-scale Python-based open-source enterprise
resource planning (ERP) systems. These additional experiments aim to evaluate the generalization
capability and robustness of the proposed model in more practical, industry-level scenarios.

The key contribution of this study lies in the novel application of Graph Neural Networks for
detecting Long Method, Large Class, and Duplicated Code smells in Python source code. Unlike
traditional ML approaches, our method utilizes AST-based graph representations to better capture
structural and contextual relationships in the code. Furthermore, we provide a comprehensive empirical
evaluation by comparing our GNN-based approach with previous machine learning methods. This
demonstrates the effectiveness and adaptability of the proposed model in diverse software environments.

2. Literature Review
Several studies have investigated the problem of code smells in software systems, particularly

focusing on their impact on software maintainability, complexity, and error-proneness. A growing body
of research has explored both traditional and modern approaches to automatically detect code smells,
especially Duplicated Code, Long Method, and Large Class, which are among the most frequently
encountered and studied types in the literature.

Long Method and Large Class are smells closely related to violations of the Single Responsibility
Principle (SRP). Long Method is characterized by lengthy and overly complex procedures that reduce
code readability, hinder unit testing, and complicate debugging [5]. Large Class refers to classes
overloaded with multiple responsibilities, often becoming central points of complexity and tightly
coupled with other parts of the system [12]. Meanwhile, Duplicated Code is widely recognized for its
prevalence and ease of detection. According to Kaur et al, it is the most studied code smell, with 35 out
of 74 publications specifically addressing it Kaur [4]. Duplicated Code refers to repeated code blocks
that often arise due to copy-paste practices. Although straightforward to identify, this smell poses
serious maintainability risks. If changes are made to one copy of the duplicated code without
synchronizing others, inconsistencies and bugs may occur.

To mitigate issues in software quality analysis, early studies have applied traditional machine
learning (ML) techniques for code smell detection. These methods typically rely on manually
engineered features, selected by practitioners and automatically extracted using static analysis tools
such as Radon. Radon computes various software metrics, including cyclomatic complexity, Halstead
complexity, and raw metrics such as lines of code, number of functions, and classes. These features are
then used to train classification models such as Decision Tree, Random Forest, Support Vector Machine
(SVM), Stochastic Gradient Descent (SGD), and Linear Regression [6].

The Decision Tree algorithm is known for its interpretability and rule-based structure, making it
effective for identifying threshold-driven patterns in code smells. Khleel and Nehéz [13] demonstrated
its effectiveness in detecting Long Method and Data Class smells [13]. Random Forest, as an ensemble
of decision trees, reduces overfitting and improves generalization by averaging multiple model outputs,

568

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

as shown by Sandouka and Aljamaan [6] in their evaluation on Python-based datasets [6]. Support
Vector Machine constructs an optimal hyperplane in a high-dimensional space to maximize class
separation, and Panigrahi, et al. [14] demonstrated that SVM with SMOTE outperforms weighted-
SVM, with the RBF kernel achieving the best results among various SVM kernel types [14]. Stochastic
Gradient Descent is a linear model optimized using iterative weight updates, offering scalability to large
datasets; its role as a baseline model was explored by Liu, et al. [15] in comparative evaluations
involving various code smell types [15]. Linear Regression, although traditionally used for regression
tasks, has also been employed for binary classification of code smells by mapping feature combinations
to probability estimates; Gupta, et al. [16] showed that while it performs reasonably on simple smells,
its linear nature limits its accuracy on more complex patterns [16]. While these conventional models
offer useful benchmarks, their reliance on handcrafted features and limited contextual understanding of
source code highlights the potential of more expressive models such as Graph Neural Networks.

While traditional machine learning models such as Decision Tree, Random Forest, Support Vector
Machine, and Stochastic Gradient Descent have shown promise in detecting code smells, their reliance
on manually engineered features often limits their ability to capture deeper semantic and structural
relationships within source code. Graph Neural Networks (GNNs) have emerged as a powerful
alternative due to their ability to model code as graphs, capturing both syntactic and contextual
dependencies through representations such as Abstract Syntax Trees (AST) and Control Flow Graphs
(CFGs) [17-19]. Recent studies have demonstrated that GNNs outperform traditional models in tasks
like vulnerability detection, program classification, and code smell identification by leveraging
structural inductive biases and relational information between code elements. However, despite their
growing adoption, existing GNN-based approaches are often evaluated on limited types of code smells
or small-scale datasets, which restricts their generalizability to large, complex software systems [11].
Moreover, few studies perform comprehensive comparisons between GNNs and conventional models
using diverse performance metrics, leaving open questions about the practical advantages of GNNs
across varying project contexts. Therefore, this research seeks to fill that gap by employing a GNN-
based model for detecting multiple code smells across two large-scale datasets and evaluating its
performance using a full set of metrics, such as accuracy, precision, recall, F1-score, and confusion
matrix.

3. Methodology
The methodology employed in this study follows a systematic approach consisting of several key

steps: dataset preparation, code smell labeling, Abstract Syntax Tree generation, GNN model
development, training process, and evaluation, as illustrated in Figure 1. This comprehensive approach
ensures a thorough analysis of the effectiveness of Graph Neural Networks in detecting code smells in
Python programs.

569

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

Figure 1.
Methodology for Code Smell Detection Using Graph Neural Network

3.1. Dataset

This study employs two types of datasets to support the development and evaluation of a code
smell detection model: processed datasets and raw source code datasets. The first type, processed
datasets, is adopted from the work of Sandouka and Aljamaan [6] who focused on detecting code smells
using machine learning techniques. These datasets, provided in CSV format, include the Python Large
Class Smell Dataset and the Python Long Method Smell Dataset, both of which contain pre-extracted
code metrics and binary labels indicating the presence or absence of code smells. Each entry in these
datasets includes features such as lines of code (LOC), logical lines of code (LLOC), number of
comments, blank lines, and the is_code_smell label. These structured and labeled datasets offer a reliable
basis for training and validating our Graph Neural Network (GNN) model.

In addition to the processed data, this study also incorporates raw source code datasets collected
from two popular open-source ERP systems, ERPNext and Odoo. These repositories were cloned from
their official GitHub sources and selected due to their maturity, active development communities, and
widespread use. ERPNext has approximately 7.3k forks and 21.8k stars, while Odoo has around 27.2k
forks and 42.1k stars. To ensure relevance and manageability, only specific folders were extracted: the
controller folder from ERPNext and the tools folder from Odoo. These modules were chosen for their
structural complexity and representativeness of real-world software systems, making them suitable for
code smell detection research, particularly for identifying Long Method, Large Class smells, and
Duplicated Code [20].

Table 1.
Sample metrics from processed datasets.

loc lloc comments blanks difficulty effort bugs LargeClass
469 247 10 53 5.764423 6945.013 0.401602 1
141 84 1 31 1 18.09474 0.006032 1

473 259 51 59 7.418478 8019.327 0.360331 1

1267 721 78 161 6.986014 29168.97 1.391779 1
174 114 16 19 4.5 1708.999 0.126592 1

11 8 0 3 1.5 216 0.048 0
109 92 2 11 4.846154 15166.08 1.04317 0

34 27 0 5 1.8 202.6584 0.037529 0

570

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

As shown in Table 1, instances with higher metrics, tend to be labeled as code smells (1), while
instances with lower metrics typically do not contain smells (0). This pattern helps in training machine
learning models to recognize potential code smells based on these structural metrics [21].

The labeling process is only conducted in experiments that utilize the raw dataset. In this study, the
identification of code smells is performed using a metric-based approach. These metrics provide an
objective framework to define thresholds for detecting different types of code smells, such as Long
Method, Duplicated Code, and Large Class.

Long Method refers to a function or method that contains an excessive number of lines of code. The
detection of the Long Method can be performed using Equation (1), where Lines of Code (LOC)
represents the total number of lines in a function, and the threshold denotes the code length limit.
According to the study by Nandani, et al. [22] a method is classified as a Long Method if it exceeds 80
lines of code [22].

𝐿𝑜𝑛𝑔 𝑀𝑒𝑡ℎ𝑜𝑑 => 𝑇𝑟𝑢𝑒 𝑖𝑓 𝐿𝑂𝐶 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (1)
Duplicated Code occurs when there are identical or highly similar blocks of code repeated across

different parts of a program. This study adopts a String Matching or Substring Similarity approach to
detect code duplication. The method compares different code blocks within a project using similarity
algorithms, particularly the Longest Common Subsequence (LCS). The LCS algorithm is used to
measure the similarity between two code sequences, A and B. The formula for LCS similarity is shown
in Equation (2).

𝐿𝐶𝑆(𝐴, 𝐵) =
𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵

min(𝑙𝑒𝑛(𝐴),𝑙𝑒𝑛(𝐵))
 (2)

The numerator refers to the longest subsequence that appears in both A and B while preserving
their order. The denominator represents the minimum length of the two sequences A and B, serving as
a normalization factor. If two or more code blocks have a similarity of 80% or higher, they are
considered duplicates [23].

𝐿𝑎𝑟𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 = 𝑇𝑟𝑢𝑒 𝑖𝑓 𝑊𝑀𝐶 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (3)

Large Class refers to a class that assumes excessive responsibilities or contains an overwhelming
number of functions, thereby violating the Single Responsibility Principle. Large Class detection is
performed using Equation (3). Weighted Method Count (WMC) represents the number of methods
within a class, while the threshold defines the method count limit. According to Turkistani & Liu, a
class is considered a Large Class if it contains more than 47 methods [24].

571

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

3.2. Abstract Syntax Tree

Figure 2.
Abstract Syntax Tree.

After dataset preparation, the study extracts call graphs from each source code using the Abstract

Syntax Tree (AST), as shown in Figure 2. In this process, each function within the code is represented
as a node, while function calls from one function to another serve as edges (relationships) within the
graph, following the approach outlined by Ward, et al. [18]. This representation captures the structural
and semantic relationships between functions, enabling a deeper understanding of the program's
behavior. The AST facilitates a systematic decomposition of source code into a tree structure, allowing
for efficient parsing and analysis. By transforming source code into graph form, it becomes suitable
input for Graph Neural Networks (GNN), which can leverage topological patterns to detect code smells.
This method ensures that both syntactic structure and functional interaction are preserved in the
modeling process.

3.3. Graph Neural Network

The generated function call graph is then converted into a format compatible with PyTorch
Geometric to facilitate the training process of the Graph Neural Network (GNN). Each node in the
graph is equipped with features that represent the structural information of the corresponding function,
such as the number of calls made by the function, the number of parameters received, or the function's
complexity based on specific metrics [25]. This information provides additional context for the GNN to
understand the characteristics of each function in the graph, ultimately improving the model's ability to
accurately detect and classify code smells.

The Graph Neural Network (GNN) model used in this project is the Graph Convolutional Network
(GCN), specifically designed to work with directed graphs, where the direction of each edge plays a
crucial role in defining relationships between nodes. Figure 3 illustrates the architecture of the GNN
model, showing how graph data is processed through multiple hidden layers. This model employs three
convolutional layers to process and analyze data in the Function Call Graph (FCG), which represents
each function in the program as a node, with edges indicating function calls between functions [26].

572

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

Figure 3.
Graph Neural Network Architecture showing input processing through hidden layers with ReLU activation.

3.2.1. Message Passing and Node Representation
The core mechanism behind GNNs is message passing. In this process, each node updates its

representation by receiving and aggregating information from its neighboring nodes. This is done
iteratively across multiple layers, allowing a node to gradually incorporate more context from its
surrounding subgraph [27]. As a result, the final node embeddings encode not only the features of the
node itself but also the structure and features of its neighborhood. This iterative aggregation enables
the network to learn how information flows through the graph, which is critical for tasks like
classification, prediction, and anomaly detection on graph-structured data.

3.2.2. Graph Convolutional Networks (GCNs)
One widely adopted variant of GNN is the Graph Convolutional Network (GCN). GCNs apply a

form of graph convolution where each node's representation is updated by combining it with normalized
contributions from its neighbors. Unlike traditional convolutional layers used in image processing,
graph convolution operates on irregular structures and does not require a fixed grid layout. GCNs are
efficient and scalable, making them suitable for large graphs. They also maintain permutation
invariance, meaning that the order of the nodes does not affect the result—a crucial property for graph
data [28].

3.2.3. Output Representations and Learning Objectives
Depending on the task, GNNs can be used to produce representations at the node level, edge level,

or whole-graph level. For example, in node-level tasks such as code smell detection, the final output of
each node is passed through a classifier to determine whether it exhibits certain characteristics or
anomalies. For graph-level tasks, the node embeddings are aggregated into a single graph
representation, which is then used for prediction or classification. Training is typically done using
supervised learning with labeled data, where the model is optimized to minimize the difference between
predicted and actual labels [29].

3.4. Training Model GNN

Figure 4 presents the training loss over time for four different datasets: Long Method, Large Class,
Odoo, and ERPNext. The Long Method (a) and Large Class (b) datasets are binary classification tasks,
where the label is 1 if the code contains the corresponding code smell (Long Method or Large Class)
and 0 otherwise. In both cases, the training loss drops sharply in the early epochs and quickly stabilizes

573

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

at a low value, indicating fast convergence and effective learning of simple binary patterns. In contrast,
the Odoo (c) and ERPNext (d) datasets are multi-class classification tasks with four classes: Long
Method, Large Class, Duplicated Code, and No Smell. The training loss in these datasets decreases
more gradually and shows more fluctuations, reflecting higher complexity due to the increased number
of classes and greater variation in code structure.

(a) Long Method Dataset (b) Large Class Dataset

(c) Odoo Dataset (d) ERPNext Dataset

Figure 4.
Training Loss Over Time.

Figure. 5 illustrates the class-wise accuracy of our GNN model across training epochs for different

code smell types. The graph shows four distinct learning curves representing No Smell, Long Method,
Large Class, and Duplicated Code categories. The model demonstrates rapid improvement in accuracy
during the first 40 epochs, with Duplicated Code (red line) and Large Class (green line) detection
showing faster convergence compared to Long Method (orange line) and No Smell (blue line). This
suggests that structural patterns associated with Large Class and Duplicated Code are more distinctive
and easier for the model to recognize. The No Smell category requires more training epochs to reach
high accuracy, indicating that distinguishing clean code from code with smells is a more nuanced task
for the model.

574

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

(a)ERP Dataset (b)Odoo Dataset

Figure. 5.
Class-wise accuracy of the GNN model across training epochs for different code smell types.

The training process shows some fluctuations, particularly for Large Class detection, which exhibits

occasional drops in accuracy even after epoch 60. These fluctuations may be attributed to the relative
scarcity of Large Class instances in the training data. Nevertheless, all categories eventually achieve
accuracy above 95% by the end of training, demonstrating the effectiveness of the GNN approach for
code smell detection [30, 31].

4. Results and Discussion
In this section, it is explained the results of the research and at the same time, a comprehensive

discussion is provided. Results can be presented in figures, graphs, tables, and other formats that make
the reader understand easily. The discussion can be made in several sub-sections.

4.1. Comparative Analysis with Conventional Machine Learning Models

The experimental results demonstrate that our GNN model significantly outperforms traditional
machine learning approaches for code smell detection. Tables 3 and 4 present a comparative analysis of
accuracy metrics for Long Method and Large Class detection, respectively.

Our evaluation compares the GNN model against several established machine learning algorithms,
including Decision Tree, Random Forest, Support Vector Machine (SVM), Stochastic Gradient Descent
(SGD), Multilayer Perceptron (MLP), and Linear Regression. Each model was trained and evaluated
using identical datasets to ensure a fair comparison. The traditional models rely on manually extracted
features such as lines of code (LOC), logical lines of code (LLOC), comment density, and cyclomatic
complexity, while our GNN model leverages the structural information encoded in function call graphs.
[33].

The key advantage of the GNN approach lies in its ability to automatically learn relevant features
from graph representations of code, thereby capturing complex relationships and dependencies that are
difficult to express as explicit metrics. This capability is particularly valuable in the context of code
smell detection, where the presence of a smell often depends on structural patterns rather than simple
metric thresholds.

4.1.1. Long Method Detection Performance

As shown in Table 3, the GNN model achieves the highest accuracy (96.3%) for Long Method
detection, surpassing all traditional machine learning models. Decision Tree (95.9%) and Random
Forest (95.5%) perform relatively well but still fall short of the GNN's capability. This superior

575

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

performance can be attributed to the GNN's ability to capture structural dependencies in code through
the function call graph representation, which is particularly important for identifying Long Method
smells.

Table 3.
Long method detection accuracy: Graph Neural Network vs. Conventional machine learning models.

Research Model Accuracy
Sandouka and Aljamaan [6] Decision Tree 95.9%

Random Forest 95.5%
Linear Regression 85.3%

Support Vector Machine 93.7%
Multilayer Perceptron 90.2%

Stochastic Gradient Descent 90.9%

Proposed Graph Neural Network 96.3%

4.1.2. Large Class Detection Performance

Table 4 presents similar findings for Large Class detection, where the GNN model again achieves
the highest accuracy at 95.2%. Interestingly, the performance gap between GNN and the best
traditional model (Stochastic Gradient Descent at 94.4%) is smaller for Large Class detection compared
to Long Method detection. This suggests that while structural information is valuable for Large Class
detection, traditional metrics-based approaches can still be effective for this particular code smell.

The relatively strong performance of traditional models for Large Class detection can be explained
by the fact that this code smell is often characterized by straightforward metrics such as the number of
methods or lines of code in a class. Nevertheless, the GNN model's superior performance highlights the
value of incorporating structural information, even for code smells that have a strong correlation with
simple metrics.

Table 4.
Large class detection accuracy: Graph Neural Network vs. Conventional Machine Learning Models

Research Model Accuracy

Sandouka and Aljamaan [6] Decision Tree 90.4%
Random Forest 92.7%

Linear Regression 87.7%
Support Vector Machine 92.5%

Multilayer Perceptron 91.8%
Stochastic Gradient Descent 94.4%

Proposed Graph Neural Network 95.2%

4.2. Evaluation Results of Code Smell Detection Model

Table 5 presents the performance metrics of the GNN model in detecting code smells, specifically
Long Method, Large Class, and Duplicated Code. The evaluation results indicate that the detection
model performs better on the ERPNext dataset compared to the Odoo dataset across all key metrics.
Specifically, the model achieves an accuracy of 95.95% on ERPNext and 93.29% on Odoo, reflecting a
higher overall correctness in classification. Both datasets yield high precision, with ERPNext at 99.84%
and Odoo at 99.74%, indicating the model’s effectiveness in reducing false positives. For recall,
ERPNext again shows better performance at 95.95%, compared to Odoo’s 93.29%, suggesting a higher
ability to identify all relevant code smells. This balance is further validated by the F1-Score, where
ERPNext scores 97.78% and Odoo scores 96.29%. These results suggest that the model is more robust
and effective when applied to the ERPNext dataset in detecting code smells.

576

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

Table 5.
Performance comparison of code smell detection model on ERPNext and Odoo datasets.

Dataset Accuracy Precision Recall F1-Score

ERPNext 95.95% 99.84% 95.95% 97.78%
Odoo 93.29% 99.74% 93.29% 96.29%

4.3. Model Interpretability and Practical Implications

To gain deeper insights into how our GNN model makes predictions, we analyzed the feature
importance and attention mechanisms within the graph convolutional layers. This analysis revealed the
specific structural patterns that the model focuses on when detecting each type of code smell.

For Long Method detection, the model primarily attends to complex control flow structures, nested
loops, and high cyclomatic complexity within methods. We observed that methods with a high number
of conditional statements and deeply nested blocks were consistently classified as Long Method smells,
even when their raw line count was moderate. This suggests that the GNN model learns to recognize
not just the length of methods but also their structural complexity.

For large-class detection, the analysis showed that the model puts significant weight on the number
of methods in a class and the complexity of interactions between them. Classes with numerous methods
that interact extensively with each other were more likely to be flagged as Large Class smells.
Interestingly, the model also identified classes with high coupling to other classes as potential Large
Class candidates, suggesting it captures the design principle that classes should have high cohesion and
low coupling. For Duplicated Code detection, our analysis revealed that the model focuses on semantic
similarities rather than exact textual matches. It successfully identified code segments with similar
Abstract Syntax Tree (AST) structures as potential duplications, even when variable names and
formatting differed. This demonstrates the advantage of the graph-based approach over traditional
token-based similarity measures [17].

These insights have significant practical implications for software development. By understanding
which structural patterns contribute most to code smell detection, developers can proactively avoid
these patterns during coding. Furthermore, the model can be integrated into Integrated Development
Environments (IDEs) as a real-time code quality advisor, alerting developers to potential code smells as
they write code and suggesting refactoring strategies. Our experiments also revealed areas where the
model could be further improved. For instance, contextual factors such as the domain of the software
and project-specific coding conventions can influence what constitutes a code smell. Future work could
explore techniques to adapt the model to different project contexts and developer preferences,
potentially through transfer learning or few-shot learning approaches.

4.4. Limitations and Future Research Directions

While our GNN model demonstrates superior performance in detecting code smells in Python,
several limitations should be acknowledged. First, the model's performance is dependent on the quality
and diversity of the training dataset. Our current dataset, though substantial, may not represent all
possible variations of code smells in real-world Python projects [32]. Future work should focus on
expanding the dataset to include more diverse and complex code samples from various domains and
project types.

Second, the model's effectiveness may vary across different programming styles and paradigms.
Python supports multiple programming paradigms, including procedural, object-oriented, and
functional programming. Our current model primarily focuses on object-oriented code, and its
performance on functional or procedural code may require further evaluation [33].

Third, the current approach treats code smell detection as a binary classification problem (smell
present or absent) without considering the severity of the smell. In practice, the impact of a code smell
depends on its severity and the specific context of the project. Future research could explore multi-level
classification or regression approaches to assess the severity of detected code smells [34]

577

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

An interesting direction for future research is the integration of natural language processing (NLP)
techniques to analyze code comments and documentation alongside the structural analysis. This multi-
modal approach could provide a more comprehensive understanding of code quality by considering both
the structural aspects of code and the developers' intentions expressed in comments.

Additionally, the application of explainable AI techniques could enhance the practical utility of the
model by providing more detailed explanations of detected code smells. Such explanations would not
only help developers understand why certain code segments are flagged as smells but also guide them in
refactoring decisions [35].

Finally, extending the model to support incremental analysis would be valuable for real-time
integration with development workflows. Rather than analyzing the entire codebase after each change,
an incremental approach would focus only on modified code segments, providing immediate feedback to
developers during the coding process and significantly reducing computational overhead for large
project

5. Conclusions
This research successfully developed a Graph Neural Network (GNN) model for detecting three

prevalent code smells in Python: Long Method, Large Class, and Duplicated Code. As stated in the
introduction, our goal was to leverage the structural information in code through graph representations
to improve detection accuracy compared to traditional approaches. The results have demonstrated the
effectiveness of this approach, with the GNN model achieving superior accuracy compared to
conventional machine learning methods.

The proposed Graph Neural Network (GNN) model demonstrated high effectiveness in detecting
specific types of code smells using a processed dataset, achieving 96.3% accuracy for Long Method
detection and 95.2% for Large Class detection. These results show that the proposed GNN model
outperformed traditional machine learning algorithms such as Decision Tree, Random Forest, Support
Vector Machine (SVM), Stochastic Gradient Descent (SGD), Multi-Layer Perceptron (MLP), and
Linear Regression

Furthermore, the model effectively identified Long Method, Large Class, and Duplicated Code when
tested on real-world datasets. On the ERPNext dataset, it reached, the model achieved 95.95% accuracy,
99.84% precision, 95.95% recall, and a 97.78% F1-score. On the Odoo dataset, it reached 93.29%
accuracy, 99.74% precision, 93.29% recall, and a 96.29% F1-Score. These results validate the
effectiveness of GNNs in learning structural patterns from actual codebases.

The proposed approach addresses the limitations of previous detection methods by eliminating the
need for manual feature engineering and capturing complex relationships between code elements
through graph representations. By converting Python code into Abstract Syntax Trees and then into
function call graphs, our model can learn structural patterns that characterize different code smells,
providing a more robust and context-aware detection mechanism.

Future research could focus on extending the model to handle additional code smell types and
adapting it to different programming languages and paradigms. The integration of natural language
processing techniques to analyze code comments alongside structural analysis presents an interesting
direction for multi-modal code smell detection. Additionally, incorporating explainable AI techniques
could enhance the practical utility of the model by providing developers with clear explanations for
detected code smells and specific refactoring recommendations.

The proposed GNN-based approach has significant implications for improving code quality in
software development. By providing accurate and automated code smell detection, it can help developers
identify and refactor problematic code early in the development process, leading to more maintainable
and robust software systems. The potential integration of this model into development environments
could provide real-time feedback to developers, promoting better coding practices and reducing
technical debt in Python projects.

578

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

Transparency:
The authors confirm that the manuscript is an honest, accurate, and transparent account of the
study; that no vital features of the study have been omitted; and that any discrepancies from
the study as planned have been explained. This study followed all ethical practices during writing.

Copyright:
© 2025 by the authors. This open-access article is distributed under the terms and conditions of the
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

References
[1] D. Albuquerque, E. Guimarães, M. Perkusich, H. Almeida, and A. Perkusich, "Integrating interactive detection of

code smells into scrum: Feasibility, benefits, and challenges," Applied Sciences, vol. 13, no. 15, p. 8770, 2023.
[2] P. Gnoyke, S. Schulze, and J. Krüger, "Evolution patterns of software-architecture smells: An empirical study of

intra-and inter-version smells," Journal of Systems and Software, vol. 217, p. 112170, 2024.
[3] T. Sharma, P. Singh, and D. Spinellis, "An empirical investigation on the relationship between design and

architecture smells," Empirical Software Engineering, vol. 25, pp. 4020-4068, 2020. https://doi.org/10.1007/s10664-
020-09847-2

[4] A. Kaur, "A systematic literature review on empirical analysis of the relationship between code smells and software
quality attributes," Archives of Computational Methods in Engineering, vol. 27, no. 4, pp. 1267-1296, 2020.
https://doi.org/10.1007/s11831-019-09348-6

[5] A. Kovačević et al., "Automatic detection of Long Method and God Class code smells through neural source code
embeddings," Expert Systems with Applications, vol. 204, p. 117607, 2022. https://doi.org/10.1016/j.eswa.2022.117607

[6] R. Sandouka and H. Aljamaan, "Python code smells detection using conventional machine learning models," PeerJ
Computer Science, vol. 9, p. e1370, 2023.

[7] Y. Zhang and C. Dong, "MARS: Detecting brain class/method code smell based on metric–attention mechanism and
residual network," Journal of Software: Evolution and Process, vol. 36, no. 1, p. e2403, 2024.
https://doi.org/10.1002/smr.2403

[8] G. Giray, K. E. Bennin, Ö. Köksal, Ö. Babur, and B. Tekinerdogan, "On the use of deep learning in software defect
prediction," Journal of Systems and Software, vol. 195, p. 111537, 2023. https://doi.org/10.1016/j.jss.2022.111537

[9] O. Fawaz, M. Amaan, S. Sahu, M. Adnan, and A. Gupta, "Experimentation of code smells using deep learning
techniques," presented at the 2023 6th International Conference on Contemporary Computing and Informatics (IC3I)
(Vol. 6, pp. 369-373). IEEE, 2023.

[10] L. Šikić, A. S. Kurdija, K. Vladimir, and M. Šilić, "Graph neural network for source code defect prediction," IEEE
Access, vol. 10, pp. 10402-10415, 2022.

[11] J. Zhou et al., "Graph neural networks: A review of methods and applications," AI open, vol. 1, pp. 57-81, 2020.
[12] A. T. Imam, B. R. Al-Srour, and A. Alhroob, "The automation of the detection of large class bad smell by using

genetic algorithm and deep learning," Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 6,
pp. 2621-2636, 2022.

[13] N. A. A. Khleel and K. Nehéz, "Detection of code smells using machine learning techniques combined with data-
balancing methods," International Journal of Advances in Intelligent Informatics, vol. 9, no. 3, pp. 402-417, 2023.
https://doi.org/10.26555/ijain.v9i3.981

[14] R. Panigrahi, S. K. Kuanar, and L. Kumar, "Method level refactoring prediction by weighted-svm machine learning
classifier," Studies in Systems, Decision and Control, vol. 452, 2023. https://doi.org/10.1007/978-981-19-6893-8_8

[15] L. Liu et al., "Revisiting code smell severity prioritization using learning to rank techniques," Expert Systems with
Applications, vol. 249, p. 123483, 2024.

[16] A. Gupta, B. Suri, V. Kumar, S. Misra, T. Blažauskas, and R. Damaševičius, "Software code smell prediction model
using Shannon, Rényi and Tsallis entropies," Entropy, vol. 20, no. 5, p. 372, 2018.
https://doi.org/10.3390/e20050372

[17] W. Xu and X. Zhang, "Multi-granularity code smell detection using deep learning method based on abstract syntax
tree," in Proceedings of the International Conference on Software Engineering and Knowledge Engineering, SEK, 2021.

[18] I. R. Ward, J. Joyner, C. Lickfold, Y. Guo, and M. Bennamoun, "A practical tutorial on graph neural networks," ACM
Computing Surveys, vol. 54, no. 10s, pp. 1-35, 2022. https://doi.org/10.1145/3503043

[19] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, "A comprehensive survey on graph neural networks," IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4-24, 2020.
https://doi.org/10.1109/TNNLS.2020.2978386

[20] D. Nurmukhamet and A. Tick, "Implementing ERP through the use of mobile technologies: A case study," presented
at the 2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI),
IEEE, 2022, pp. 311–316, 2022.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10664-020-09847-2
https://doi.org/10.1007/s10664-020-09847-2
https://doi.org/10.1007/s11831-019-09348-6
https://doi.org/10.1016/j.eswa.2022.117607
https://doi.org/10.1002/smr.2403
https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.26555/ijain.v9i3.981
https://doi.org/10.1007/978-981-19-6893-8_8
https://doi.org/10.3390/e20050372
https://doi.org/10.1145/3503043
https://doi.org/10.1109/TNNLS.2020.2978386

579

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 9, No. 7: 566-579, 2025
DOI: 10.55214/25768484.v9i7.8672
© 2025 by the authors; licensee Learning Gate

[21] S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, "Code smell detection using ensemble machine learning
algorithms," Applied Sciences, vol. 12, no. 20, p. 10321, 2022.

[22] H. Nandani, M. Saad, and T. Sharma, "DACOS - a manually annotated dataset of code smells," in Proceedings - 2023
IEEE/ACM 20th International Conference on Mining Software Repositories, MSR 2023, 2023.

[23] M. Djukanovic, G. R. Raidl, and C. Blum, "Finding longest common subsequences: New anytime A∗ search results,"
Applied Soft Computing, vol. 95, p. 106499, 2020.

[24] B. Turkistani and Y. Liu, "Reducing the large class code smell by applying design patterns," presented at the IEEE
International Conference on Electro Information Technology, 2019.

[25] N. A. A. Khleel and K. Nehéz, "Deep convolutional neural network model for bad code smells detection based on
oversampling method," Indonesian Journal of Electrical Engineering and Computer Science, vol. 26, no. 3, pp. 1725-1735,
2022.

[26] S. Tarwani and A. Chug, "Application of deep learning models for code smell prediction," presented at the 2022 10th
International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions)(ICRITO) (pp. 1-5). IEEE, 2022.

[27] B. Khemani, S. Patil, K. Kotecha, and S. Tanwar, "A review of graph neural networks: Concepts, architectures,
techniques, challenges, datasets, applications, and future directions," Journal of Big Data, vol. 11, no. 1, p. 18, 2024.

[28] X. Shi, F. Lv, D. Seng, J. Zhang, J. Chen, and B. Xing, "Visualizing and understanding graph convolutional network,"
Multimedia Tools and Applications, vol. 80, pp. 8355-8375, 2021.

[29] J. You, J. M. Gomes-Selman, R. Ying, and J. Leskovec, "Identity-aware graph neural networks," in Proceedings of the
AAAI conference on artificial intelligence (Vol. 35, No. 12, pp. 10737-10745), 2021.

[30] R. Sandouka and A. Hamoud, "Dataset python code smells detection using conventional machine learning models,"
2024. https://zenodo.org/records/7512516#.ZEg3EnbMLIU

[31] C. Frappe, "Technologies Pvt Ltd (Frappe), “erpnext," 2024. https://github.com/frappe/erpnext
[32] Mahmoud, "Awesome python application," 2024. https://github.com/mahmoud/awesome-python-applications
[33] M. T. Aras and Y. E. Selçuk, "Metric and rule based automated detection of antipatterns in object-oriented software

systems," presented at the 2016 7th International Conference on Computer Science and Information Technology
(CSIT), IEEE, 2016, pp. 1–6, 2016.

[34] A. Bhave and R. Sinha, "Deep multimodal architecture for detection of long parameter list and switch statements
using distilbert," presented at the 2022 IEEE 22nd International Working Conference on Source Code Analysis and
Manipulation (SCAM) (pp. 116-120). IEEE, 2022.

[35] E. A. AlOmar, M. W. Mkaouer, and A. Ouni, "Behind the intent of extract method refactoring: A systematic
literature review," IEEE Transactions on Software Engineering, vol. 50, no. 4, pp. 668-694, 2024.

https://zenodo.org/records/7512516#.ZEg3EnbMLIU
https://github.com/frappe/erpnext
https://github.com/mahmoud/awesome-python-applications

