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Abstract: This study aims to develop and evaluate a GNN-based model for automatically detecting code 
smells in Python by leveraging the structural information derived from Abstract Syntax Trees (ASTs). 
The study employed a quantitative approach by training a Graph Neural Network (GNN) model on 
code represented as Abstract Syntax Trees (ASTs). The proposed GNN model demonstrated high 
effectiveness in detecting specific types of code smells using a processed dataset, achieving 96.3% 
accuracy for Long Method detection and 95.2% for Large Class detection. Furthermore, the model 
effectively identified Long Method, Large Class, and Duplicated Code when tested on real-world 
datasets. On the ERPNext dataset, it reached 95.95% accuracy, 99.84% precision, 95.95% recall, and 
97.78% F1-score. On the Odoo dataset, it attained 93.29% accuracy, 99.74% precision, 93.29% recall, and 
96.29% F1-score. These results show that the proposed GNN model outperformed traditional machine 
learning algorithms such as Decision Tree, Random Forest, Support Vector Machine (SVM), Stochastic 
Gradient Descent (SGD), Multi-Layer Perceptron (MLP), and Linear Regression. The results confirm 
that the GNN-based approach effectively detects code smells in Python programs, surpassing classical 
machine learning techniques. This model provides a practical tool for enhancing code quality and 
maintainability. Future work could explore real-time integration of this model into development 
environments and expand detection to other code smell types. 

Keywords: Code smell detection, Duplicated code, Graph neural network, Large class, Long method, Python programming 
language. 

 
1. Introduction  

In recent years, maintaining high software quality has become a critical concern in large-scale 
software development. One of the most persistent threats to code quality is the presence of code smells, 
which are symptoms in the source code that may indicate deeper design or structural issues [1]. While 
not directly causing program failure, code smells tend to degrade maintainability, increase technical 
debt, and introduce potential bugs in the long term [2]. Among the various types of code smells, Long 
Method, Large Class, and Duplicated Code are considered the most impactful due to their high 
frequency and detrimental influence on readability, testing, and modularity [3-5]. 

Code smell detection has traditionally relied on manual code review or rule-based static analysis 
tools, which are limited in scalability and often subjective. In response, many recent studies have applied 
machine learning (ML) techniques to automate code smell detection, using classifiers such as Decision 
Trees, Random Forests, Support Vector Machines (SVM), and Multilayer Perceptron trained on hand-
engineered code metrics [6]. While these models offer improvements over rule-based tools, their 
dependence on manually extracted features introduces bias, limits generalization, and poses scalability 
issues in real-world scenarios. 

To address these limitations, the software engineering community has shifted toward deep learning 
approaches that eliminate the need for manual feature engineering. Techniques such as Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have shown promising results in 
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detecting code smells directly from raw code representations [7-9]. However, these approaches often 
fail to fully capture the rich structural and semantic relationships inherent in source code, which are 
crucial for detecting complex smells such as Large Class and Long Method. 

Recent developments in Graph Neural Networks (GNNs) offer a more expressive framework for 
modeling code structure, particularly when applied to representations such as Abstract Syntax Trees 
(ASTs) or Function Call Graphs (FCGs). GNNs can learn contextual relationships between code 
elements, making them well-suited for detecting patterns that indicate code smells [10, 11]. 

Despite their potential, few studies have explored the use of GNNs for code smell detection in 
Python, a language increasingly used in modern software systems. The majority of existing works still 
focus on Java and use conventional ML-based detection techniques. For instance, Sandouka and 
Aljamaan [6] created a labeled Python dataset and evaluated various traditional ML models to detect 
Long Method and Large Class smells, but their models relied on static code metrics and lacked 
structural learning capability. In addition to this benchmark dataset, we also perform experiments using 
real-world codebases from ERPNext and Odoo two large-scale Python-based open-source enterprise 
resource planning (ERP) systems. These additional experiments aim to evaluate the generalization 
capability and robustness of the proposed model in more practical, industry-level scenarios. 

The key contribution of this study lies in the novel application of Graph Neural Networks for 
detecting Long Method, Large Class, and Duplicated Code smells in Python source code. Unlike 
traditional ML approaches, our method utilizes AST-based graph representations to better capture 
structural and contextual relationships in the code. Furthermore, we provide a comprehensive empirical 
evaluation by comparing our GNN-based approach with previous machine learning methods. This 
demonstrates the effectiveness and adaptability of the proposed model in diverse software environments. 
 

2. Literature Review 
Several studies have investigated the problem of code smells in software systems, particularly 

focusing on their impact on software maintainability, complexity, and error-proneness. A growing body 
of research has explored both traditional and modern approaches to automatically detect code smells, 
especially Duplicated Code, Long Method, and Large Class, which are among the most frequently 
encountered and studied types in the literature. 

Long Method and Large Class are smells closely related to violations of the Single Responsibility 
Principle (SRP). Long Method is characterized by lengthy and overly complex procedures that reduce 
code readability, hinder unit testing, and complicate debugging [5]. Large Class refers to classes 
overloaded with multiple responsibilities, often becoming central points of complexity and tightly 
coupled with other parts of the system [12]. Meanwhile, Duplicated Code is widely recognized for its 
prevalence and ease of detection. According to Kaur et al, it is the most studied code smell, with 35 out 
of 74 publications specifically addressing it Kaur [4]. Duplicated Code refers to repeated code blocks 
that often arise due to copy-paste practices. Although straightforward to identify, this smell poses 
serious maintainability risks. If changes are made to one copy of the duplicated code without 
synchronizing others, inconsistencies and bugs may occur.  

To mitigate issues in software quality analysis, early studies have applied traditional machine 
learning (ML) techniques for code smell detection. These methods typically rely on manually 
engineered features, selected by practitioners and automatically extracted using static analysis tools 
such as Radon. Radon computes various software metrics, including cyclomatic complexity, Halstead 
complexity, and raw metrics such as lines of code, number of functions, and classes. These features are 
then used to train classification models such as Decision Tree, Random Forest, Support Vector Machine 
(SVM), Stochastic Gradient Descent (SGD), and Linear Regression [6].  

The Decision Tree algorithm is known for its interpretability and rule-based structure, making it 
effective for identifying threshold-driven patterns in code smells. Khleel and Nehéz [13] demonstrated 
its effectiveness in detecting Long Method and Data Class smells [13]. Random Forest, as an ensemble 
of decision trees, reduces overfitting and improves generalization by averaging multiple model outputs, 



568 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 7: 566-579, 2025 
DOI: 10.55214/25768484.v9i7.8672 
© 2025 by the authors; licensee Learning Gate 

 

as shown by Sandouka and Aljamaan [6] in their evaluation on Python-based datasets [6]. Support 
Vector Machine constructs an optimal hyperplane in a high-dimensional space to maximize class 
separation, and Panigrahi, et al. [14] demonstrated that SVM with SMOTE outperforms weighted-
SVM, with the RBF kernel achieving the best results among various SVM kernel types [14]. Stochastic 
Gradient Descent is a linear model optimized using iterative weight updates, offering scalability to large 
datasets; its role as a baseline model was explored by Liu, et al. [15] in comparative evaluations 
involving various code smell types [15]. Linear Regression, although traditionally used for regression 
tasks, has also been employed for binary classification of code smells by mapping feature combinations 
to probability estimates; Gupta, et al. [16] showed that while it performs reasonably on simple smells, 
its linear nature limits its accuracy on more complex patterns [16]. While these conventional models 
offer useful benchmarks, their reliance on handcrafted features and limited contextual understanding of 
source code highlights the potential of more expressive models such as Graph Neural Networks. 

While traditional machine learning models such as Decision Tree, Random Forest, Support Vector 
Machine, and Stochastic Gradient Descent have shown promise in detecting code smells, their reliance 
on manually engineered features often limits their ability to capture deeper semantic and structural 
relationships within source code. Graph Neural Networks (GNNs) have emerged as a powerful 
alternative due to their ability to model code as graphs, capturing both syntactic and contextual 
dependencies through representations such as Abstract Syntax Trees (AST) and Control Flow Graphs 
(CFGs) [17-19]. Recent studies have demonstrated that GNNs outperform traditional models in tasks 
like vulnerability detection, program classification, and code smell identification by leveraging 
structural inductive biases and relational information between code elements. However, despite their 
growing adoption, existing GNN-based approaches are often evaluated on limited types of code smells 
or small-scale datasets, which restricts their generalizability to large, complex software systems [11]. 
Moreover, few studies perform comprehensive comparisons between GNNs and conventional models 
using diverse performance metrics, leaving open questions about the practical advantages of GNNs 
across varying project contexts. Therefore, this research seeks to fill that gap by employing a GNN-
based model for detecting multiple code smells across two large-scale datasets and evaluating its 
performance using a full set of metrics, such as accuracy, precision, recall, F1-score, and confusion 
matrix. 
 

3. Methodology 
The methodology employed in this study follows a systematic approach consisting of several key 

steps: dataset preparation, code smell labeling, Abstract Syntax Tree generation, GNN model 
development, training process, and evaluation, as illustrated in Figure 1. This comprehensive approach 
ensures a thorough analysis of the effectiveness of Graph Neural Networks in detecting code smells in 
Python programs.  
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Figure 1.  
Methodology for Code Smell Detection Using Graph Neural Network 

 
3.1. Dataset 

This study employs two types of datasets to support the development and evaluation of a code 
smell detection model: processed datasets and raw source code datasets. The first type, processed 
datasets, is adopted from the work of Sandouka and Aljamaan [6] who focused on detecting code smells 
using machine learning techniques. These datasets, provided in CSV format, include the Python Large 
Class Smell Dataset and the Python Long Method Smell Dataset, both of which contain pre-extracted 
code metrics and binary labels indicating the presence or absence of code smells. Each entry in these 
datasets includes features such as lines of code (LOC), logical lines of code (LLOC), number of 
comments, blank lines, and the is_code_smell label. These structured and labeled datasets offer a reliable 
basis for training and validating our Graph Neural Network (GNN) model.  

In addition to the processed data, this study also incorporates raw source code datasets collected 
from two popular open-source ERP systems, ERPNext and Odoo. These repositories were cloned from 
their official GitHub sources and selected due to their maturity, active development communities, and 
widespread use. ERPNext has approximately 7.3k forks and 21.8k stars, while Odoo has around 27.2k 
forks and 42.1k stars. To ensure relevance and manageability, only specific folders were extracted: the 
controller folder from ERPNext and the tools folder from Odoo. These modules were chosen for their 
structural complexity and representativeness of real-world software systems, making them suitable for 
code smell detection research, particularly for identifying Long Method, Large Class smells, and 
Duplicated Code [20]. 
 
Table 1.  
Sample metrics from processed datasets. 

loc lloc comments blanks difficulty effort bugs LargeClass 
469 247 10 53 5.764423 6945.013 0.401602 1 
141 84 1 31 1 18.09474 0.006032 1 

473 259 51 59 7.418478 8019.327 0.360331 1 

1267 721 78 161 6.986014 29168.97 1.391779 1 
174 114 16 19 4.5 1708.999 0.126592 1 

11 8 0 3 1.5 216 0.048 0 
109 92 2 11 4.846154 15166.08 1.04317 0 

34 27 0 5 1.8 202.6584 0.037529 0 
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As shown in Table 1, instances with higher metrics, tend to be labeled as code smells (1), while 
instances with lower metrics typically do not contain smells (0). This pattern helps in training machine 
learning models to recognize potential code smells based on these structural metrics [21]. 

The labeling process is only conducted in experiments that utilize the raw dataset. In this study, the 
identification of code smells is performed using a metric-based approach. These metrics provide an 
objective framework to define thresholds for detecting different types of code smells, such as Long 
Method, Duplicated Code, and Large Class. 

Long Method refers to a function or method that contains an excessive number of lines of code. The 
detection of the Long Method can be performed using Equation (1), where Lines of Code (LOC) 
represents the total number of lines in a function, and the threshold denotes the code length limit. 
According to the study by Nandani, et al. [22] a method is classified as a Long Method if it exceeds 80 
lines of code [22]. 

 

𝐿𝑜𝑛𝑔 𝑀𝑒𝑡ℎ𝑜𝑑 => 𝑇𝑟𝑢𝑒 𝑖𝑓 𝐿𝑂𝐶 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (1) 
Duplicated Code occurs when there are identical or highly similar blocks of code repeated across 

different parts of a program. This study adopts a String Matching or Substring Similarity approach to 
detect code duplication. The method compares different code blocks within a project using similarity 
algorithms, particularly the Longest Common Subsequence (LCS). The LCS algorithm is used to 
measure the similarity between two code sequences, A and B. The formula for LCS similarity is shown 
in Equation (2). 

𝐿𝐶𝑆(𝐴, 𝐵) =
𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵

min(𝑙𝑒𝑛(𝐴),𝑙𝑒𝑛(𝐵))
  (2) 

The numerator refers to the longest subsequence that appears in both A and B while preserving 
their order. The denominator represents the minimum length of the two sequences A and B, serving as 
a normalization factor. If two or more code blocks have a similarity of 80% or higher, they are 
considered duplicates [23]. 

 

𝐿𝑎𝑟𝑔𝑒 𝐶𝑙𝑎𝑠𝑠 = 𝑇𝑟𝑢𝑒 𝑖𝑓 𝑊𝑀𝐶 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (3) 
 

Large Class refers to a class that assumes excessive responsibilities or contains an overwhelming 
number of functions, thereby violating the Single Responsibility Principle. Large Class detection is 
performed using Equation (3). Weighted Method Count (WMC) represents the number of methods 
within a class, while the threshold defines the method count limit. According to Turkistani & Liu, a 
class is considered a Large Class if it contains more than 47 methods [24]. 
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3.2. Abstract Syntax Tree 

 

 
Figure 2.  
Abstract Syntax Tree. 

 
After dataset preparation, the study extracts call graphs from each source code using the Abstract 

Syntax Tree (AST), as shown in Figure 2. In this process, each function within the code is represented 
as a node, while function calls from one function to another serve as edges (relationships) within the 
graph, following the approach outlined by Ward, et al. [18]. This representation captures the structural 
and semantic relationships between functions, enabling a deeper understanding of the program's 
behavior. The AST facilitates a systematic decomposition of source code into a tree structure, allowing 
for efficient parsing and analysis. By transforming source code into graph form, it becomes suitable 
input for Graph Neural Networks (GNN), which can leverage topological patterns to detect code smells. 
This method ensures that both syntactic structure and functional interaction are preserved in the 
modeling process. 
 
3.3. Graph Neural Network 

The generated function call graph is then converted into a format compatible with PyTorch 
Geometric to facilitate the training process of the Graph Neural Network (GNN). Each node in the 
graph is equipped with features that represent the structural information of the corresponding function, 
such as the number of calls made by the function, the number of parameters received, or the function's 
complexity based on specific metrics [25]. This information provides additional context for the GNN to 
understand the characteristics of each function in the graph, ultimately improving the model's ability to 
accurately detect and classify code smells. 

The Graph Neural Network (GNN) model used in this project is the Graph Convolutional Network 
(GCN), specifically designed to work with directed graphs, where the direction of each edge plays a 
crucial role in defining relationships between nodes. Figure 3 illustrates the architecture of the GNN 
model, showing how graph data is processed through multiple hidden layers. This model employs three 
convolutional layers to process and analyze data in the Function Call Graph (FCG), which represents 
each function in the program as a node, with edges indicating function calls between functions [26]. 
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Figure 3.  
Graph Neural Network Architecture showing input processing through hidden layers with ReLU activation. 

 

3.2.1. Message Passing and Node Representation 
The core mechanism behind GNNs is message passing. In this process, each node updates its 

representation by receiving and aggregating information from its neighboring nodes. This is done 
iteratively across multiple layers, allowing a node to gradually incorporate more context from its 
surrounding subgraph [27]. As a result, the final node embeddings encode not only the features of the 
node itself but also the structure and features of its neighborhood. This iterative aggregation enables 
the network to learn how information flows through the graph, which is critical for tasks like 
classification, prediction, and anomaly detection on graph-structured data. 
 

3.2.2. Graph Convolutional Networks (GCNs) 
One widely adopted variant of GNN is the Graph Convolutional Network (GCN). GCNs apply a 

form of graph convolution where each node's representation is updated by combining it with normalized 
contributions from its neighbors. Unlike traditional convolutional layers used in image processing, 
graph convolution operates on irregular structures and does not require a fixed grid layout. GCNs are 
efficient and scalable, making them suitable for large graphs. They also maintain permutation 
invariance, meaning that the order of the nodes does not affect the result—a crucial property for graph 
data [28]. 

 

3.2.3. Output Representations and Learning Objectives 
Depending on the task, GNNs can be used to produce representations at the node level, edge level, 

or whole-graph level. For example, in node-level tasks such as code smell detection, the final output of 
each node is passed through a classifier to determine whether it exhibits certain characteristics or 
anomalies. For graph-level tasks, the node embeddings are aggregated into a single graph 
representation, which is then used for prediction or classification. Training is typically done using 
supervised learning with labeled data, where the model is optimized to minimize the difference between 
predicted and actual labels [29]. 

 
3.4. Training Model GNN 

Figure 4 presents the training loss over time for four different datasets: Long Method, Large Class, 
Odoo, and ERPNext. The Long Method (a) and Large Class (b) datasets are binary classification tasks, 
where the label is 1 if the code contains the corresponding code smell (Long Method or Large Class) 
and 0 otherwise. In both cases, the training loss drops sharply in the early epochs and quickly stabilizes 
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at a low value, indicating fast convergence and effective learning of simple binary patterns. In contrast, 
the Odoo (c) and ERPNext (d) datasets are multi-class classification tasks with four classes: Long 
Method, Large Class, Duplicated Code, and No Smell. The training loss in these datasets decreases 
more gradually and shows more fluctuations, reflecting higher complexity due to the increased number 
of classes and greater variation in code structure. 
 

 
(a) Long Method Dataset   (b) Large Class Dataset 

 
(c) Odoo Dataset     (d) ERPNext Dataset 

Figure 4.  
Training Loss Over Time. 

 
Figure. 5 illustrates the class-wise accuracy of our GNN model across training epochs for different 

code smell types. The graph shows four distinct learning curves representing No Smell, Long Method, 
Large Class, and Duplicated Code categories. The model demonstrates rapid improvement in accuracy 
during the first 40 epochs, with Duplicated Code (red line) and Large Class (green line) detection 
showing faster convergence compared to Long Method (orange line) and No Smell (blue line). This 
suggests that structural patterns associated with Large Class and Duplicated Code are more distinctive 
and easier for the model to recognize. The No Smell category requires more training epochs to reach 
high accuracy, indicating that distinguishing clean code from code with smells is a more nuanced task 
for the model. 
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(a)ERP Dataset     (b)Odoo Dataset 

Figure. 5.  
Class-wise accuracy of the GNN model across training epochs for different code smell types. 

 
The training process shows some fluctuations, particularly for Large Class detection, which exhibits 

occasional drops in accuracy even after epoch 60. These fluctuations may be attributed to the relative 
scarcity of Large Class instances in the training data. Nevertheless, all categories eventually achieve 
accuracy above 95% by the end of training, demonstrating the effectiveness of the GNN approach for 
code smell detection [30, 31]. 
 

4. Results and Discussion 
In this section, it is explained the results of the research and at the same time, a comprehensive 

discussion is provided. Results can be presented in figures, graphs, tables, and other formats that make 
the reader understand easily. The discussion can be made in several sub-sections. 
 
4.1. Comparative Analysis with Conventional Machine Learning Models 

The experimental results demonstrate that our GNN model significantly outperforms traditional 
machine learning approaches for code smell detection. Tables 3 and 4 present a comparative analysis of 
accuracy metrics for Long Method and Large Class detection, respectively. 

Our evaluation compares the GNN model against several established machine learning algorithms, 
including Decision Tree, Random Forest, Support Vector Machine (SVM), Stochastic Gradient Descent 
(SGD), Multilayer Perceptron (MLP), and Linear Regression. Each model was trained and evaluated 
using identical datasets to ensure a fair comparison. The traditional models rely on manually extracted 
features such as lines of code (LOC), logical lines of code (LLOC), comment density, and cyclomatic 
complexity, while our GNN model leverages the structural information encoded in function call graphs. 
[33]. 

The key advantage of the GNN approach lies in its ability to automatically learn relevant features 
from graph representations of code, thereby capturing complex relationships and dependencies that are 
difficult to express as explicit metrics. This capability is particularly valuable in the context of code 
smell detection, where the presence of a smell often depends on structural patterns rather than simple 
metric thresholds. 
 
4.1.1. Long Method Detection Performance 

As shown in Table 3, the GNN model achieves the highest accuracy (96.3%) for Long Method 
detection, surpassing all traditional machine learning models. Decision Tree (95.9%) and Random 
Forest (95.5%) perform relatively well but still fall short of the GNN's capability. This superior 
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performance can be attributed to the GNN's ability to capture structural dependencies in code through 
the function call graph representation, which is particularly important for identifying Long Method 
smells. 

 
Table 3. 
Long method detection accuracy: Graph Neural Network vs. Conventional machine learning models. 

Research Model Accuracy 
Sandouka and Aljamaan [6] Decision Tree 95.9% 

Random Forest 95.5% 
Linear Regression 85.3% 

Support Vector Machine 93.7% 
Multilayer Perceptron 90.2% 

Stochastic Gradient Descent 90.9% 

Proposed Graph Neural Network 96.3% 

 
4.1.2. Large Class Detection Performance 

Table 4 presents similar findings for Large Class detection, where the GNN model again achieves 
the highest accuracy at 95.2%. Interestingly, the performance gap between GNN and the best 
traditional model (Stochastic Gradient Descent at 94.4%) is smaller for Large Class detection compared 
to Long Method detection. This suggests that while structural information is valuable for Large Class 
detection, traditional metrics-based approaches can still be effective for this particular code smell. 

The relatively strong performance of traditional models for Large Class detection can be explained 
by the fact that this code smell is often characterized by straightforward metrics such as the number of 
methods or lines of code in a class. Nevertheless, the GNN model's superior performance highlights the 
value of incorporating structural information, even for code smells that have a strong correlation with 
simple metrics.  

 
Table 4. 
Large class detection accuracy: Graph Neural Network vs. Conventional Machine Learning Models 

Research Model Accuracy 

Sandouka and Aljamaan [6] Decision Tree 90.4% 
Random Forest 92.7% 

Linear Regression 87.7% 
Support Vector Machine 92.5% 

Multilayer Perceptron 91.8% 
Stochastic Gradient Descent 94.4% 

Proposed Graph Neural Network 95.2% 

 
4.2. Evaluation Results of Code Smell Detection Model 

Table 5 presents the performance metrics of the GNN model in detecting code smells, specifically 
Long Method, Large Class, and Duplicated Code. The evaluation results indicate that the detection 
model performs better on the ERPNext dataset compared to the Odoo dataset across all key metrics. 
Specifically, the model achieves an accuracy of 95.95% on ERPNext and 93.29% on Odoo, reflecting a 
higher overall correctness in classification. Both datasets yield high precision, with ERPNext at 99.84% 
and Odoo at 99.74%, indicating the model’s effectiveness in reducing false positives. For recall, 
ERPNext again shows better performance at 95.95%, compared to Odoo’s 93.29%, suggesting a higher 
ability to identify all relevant code smells. This balance is further validated by the F1-Score, where 
ERPNext scores 97.78% and Odoo scores 96.29%. These results suggest that the model is more robust 
and effective when applied to the ERPNext dataset in detecting code smells. 
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Table 5. 
Performance comparison of code smell detection model on ERPNext and Odoo datasets. 

Dataset Accuracy Precision Recall F1-Score 

ERPNext 95.95% 99.84% 95.95% 97.78% 
Odoo 93.29% 99.74% 93.29% 96.29% 

 
4.3. Model Interpretability and Practical Implications 

To gain deeper insights into how our GNN model makes predictions, we analyzed the feature 
importance and attention mechanisms within the graph convolutional layers. This analysis revealed the 
specific structural patterns that the model focuses on when detecting each type of code smell. 

For Long Method detection, the model primarily attends to complex control flow structures, nested 
loops, and high cyclomatic complexity within methods. We observed that methods with a high number 
of conditional statements and deeply nested blocks were consistently classified as Long Method smells, 
even when their raw line count was moderate. This suggests that the GNN model learns to recognize 
not just the length of methods but also their structural complexity.  

For large-class detection, the analysis showed that the model puts significant weight on the number 
of methods in a class and the complexity of interactions between them. Classes with numerous methods 
that interact extensively with each other were more likely to be flagged as Large Class smells. 
Interestingly, the model also identified classes with high coupling to other classes as potential Large 
Class candidates, suggesting it captures the design principle that classes should have high cohesion and 
low coupling. For Duplicated Code detection, our analysis revealed that the model focuses on semantic 
similarities rather than exact textual matches. It successfully identified code segments with similar 
Abstract Syntax Tree (AST) structures as potential duplications, even when variable names and 
formatting differed. This demonstrates the advantage of the graph-based approach over traditional 
token-based similarity measures [17]. 

These insights have significant practical implications for software development. By understanding 
which structural patterns contribute most to code smell detection, developers can proactively avoid 
these patterns during coding. Furthermore, the model can be integrated into Integrated Development 
Environments (IDEs) as a real-time code quality advisor, alerting developers to potential code smells as 
they write code and suggesting refactoring strategies. Our experiments also revealed areas where the 
model could be further improved. For instance, contextual factors such as the domain of the software 
and project-specific coding conventions can influence what constitutes a code smell. Future work could 
explore techniques to adapt the model to different project contexts and developer preferences, 
potentially through transfer learning or few-shot learning approaches. 
 
4.4. Limitations and Future Research Directions 

While our GNN model demonstrates superior performance in detecting code smells in Python, 
several limitations should be acknowledged. First, the model's performance is dependent on the quality 
and diversity of the training dataset. Our current dataset, though substantial, may not represent all 
possible variations of code smells in real-world Python projects [32]. Future work should focus on 
expanding the dataset to include more diverse and complex code samples from various domains and 
project types. 

Second, the model's effectiveness may vary across different programming styles and paradigms. 
Python supports multiple programming paradigms, including procedural, object-oriented, and 
functional programming. Our current model primarily focuses on object-oriented code, and its 
performance on functional or procedural code may require further evaluation [33].  

Third, the current approach treats code smell detection as a binary classification problem (smell 
present or absent) without considering the severity of the smell. In practice, the impact of a code smell 
depends on its severity and the specific context of the project. Future research could explore multi-level 
classification or regression approaches to assess the severity of detected code smells [34] 
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An interesting direction for future research is the integration of natural language processing (NLP) 
techniques to analyze code comments and documentation alongside the structural analysis. This multi-
modal approach could provide a more comprehensive understanding of code quality by considering both 
the structural aspects of code and the developers' intentions expressed in comments. 

Additionally, the application of explainable AI techniques could enhance the practical utility of the 
model by providing more detailed explanations of detected code smells. Such explanations would not 
only help developers understand why certain code segments are flagged as smells but also guide them in 
refactoring decisions [35]. 

Finally, extending the model to support incremental analysis would be valuable for real-time 
integration with development workflows. Rather than analyzing the entire codebase after each change, 
an incremental approach would focus only on modified code segments, providing immediate feedback to 
developers during the coding process and significantly reducing computational overhead for large 
project 
 

5. Conclusions 
This research successfully developed a Graph Neural Network (GNN) model for detecting three 

prevalent code smells in Python: Long Method, Large Class, and Duplicated Code. As stated in the 
introduction, our goal was to leverage the structural information in code through graph representations 
to improve detection accuracy compared to traditional approaches. The results have demonstrated the 
effectiveness of this approach, with the GNN model achieving superior accuracy compared to 
conventional machine learning methods. 

The proposed Graph Neural Network (GNN) model demonstrated high effectiveness in detecting 
specific types of code smells using a processed dataset, achieving 96.3% accuracy for Long Method 
detection and 95.2% for Large Class detection. These results show that the proposed GNN model 
outperformed traditional machine learning algorithms such as Decision Tree, Random Forest, Support 
Vector Machine (SVM), Stochastic Gradient Descent (SGD), Multi-Layer Perceptron (MLP), and 
Linear Regression 

Furthermore, the model effectively identified Long Method, Large Class, and Duplicated Code when 
tested on real-world datasets. On the ERPNext dataset, it reached, the model achieved 95.95% accuracy, 
99.84% precision, 95.95% recall, and a 97.78% F1-score. On the Odoo dataset, it reached 93.29% 
accuracy, 99.74% precision, 93.29% recall, and a 96.29% F1-Score. These results validate the 
effectiveness of GNNs in learning structural patterns from actual codebases. 

The proposed approach addresses the limitations of previous detection methods by eliminating the 
need for manual feature engineering and capturing complex relationships between code elements 
through graph representations. By converting Python code into Abstract Syntax Trees and then into 
function call graphs, our model can learn structural patterns that characterize different code smells, 
providing a more robust and context-aware detection mechanism. 

Future research could focus on extending the model to handle additional code smell types and 
adapting it to different programming languages and paradigms. The integration of natural language 
processing techniques to analyze code comments alongside structural analysis presents an interesting 
direction for multi-modal code smell detection. Additionally, incorporating explainable AI techniques 
could enhance the practical utility of the model by providing developers with clear explanations for 
detected code smells and specific refactoring recommendations. 

The proposed GNN-based approach has significant implications for improving code quality in 
software development. By providing accurate and automated code smell detection, it can help developers 
identify and refactor problematic code early in the development process, leading to more maintainable 
and robust software systems. The potential integration of this model into development environments 
could provide real-time feedback to developers, promoting better coding practices and reducing 
technical debt in Python projects. 
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