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Abstract: This study analyzes students' errors in solving mathematical modeling problems based on 
their mathematical ability levels through a quantitative, descriptive, and exploratory approach. It 
involves 72 eighth-grade students at a private school, SMP St. Benediktus. The instruments used are 
the Mathematical Competence Test (MCT) and the Mathematical Modeling Test (MMT). Both 
instruments were validated by three associate professors and one mathematics teacher, with validity 
confirmed by V Aiken’s coefficient of 0.83, exceeding the threshold of 0.4. Students completed the MCT 
and MMT on separate days. Based on the results, students were classified as high (20), medium (19), 
and low ability (33). MMT responses were analyzed using Newman Error Analysis and the six 
modeling processes from the Blum and Leiß framework. The results show that 67 students made errors 
across various stages, mainly in validating (47.56%) and understanding (31.59%), simplifying (37.84%), 
and mathematizing (39.58%). High-ability students often made errors in interpreting (18%) and 
validating (25%) processes, medium-ability students in working mathematically (25%), and low-ability 
students in understanding (38.75%). These results suggest that error types are closely related to 
students' mathematical abilities. Further research should focus on aligning instruction with student 
abilities, supporting adaptive learning, and exploring targeted interventions to address specific errors in 
the modeling process. 
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1. Introduction  

Mathematical modeling plays a vital role in developing students’ competence to solve real-world 
problem in mathematics education. With the rapid advancement of technology and science, modeling is 
increasingly recognized as a key competence for the future, not only fostering mathematical literacy but 
also enhancing society’s ability to adapt to shifting conditions [1]. As such modeling serves a critical 
bridge between real-life scenarios and abstract mathematical representations, providing students with 
the opportunity to apply mathematical tools to problem encountered in daily life, community settings, 
and professional contexts [2].  

In instructional practice, mathematical modeling supports the development of abstract thinking 
through contextual and applicable approaches [3]. This multifaceted process includes identifying the 
real-world problem, selecting relevant variables and parameters, mathematizing situations, and 
validating the resulting models [4].  However, each of these stages presents potential cognitive 
demands, especially as students must not only master mathematical concepts but also transfer them 
across representations and contextual boundaries [5, 6].  

Students’ ability to carry out the modeling process is influenced by their level of mathematical 
competence, which determines how effectively they can navigate each stage from understanding the 
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problem to validating the solution [7, 8]. Prior studies have shown that modeling tasks often require a 
high degree of metacognition and situational understanding [9] and students commonly experience or 
reading comprehension skills [10, 11]. Building on this foundation, the present study aims to analyze 
the types and tendencies of student errors across each stage of modeling cycle, while also investigating 
how these errors vary by students’ mathematical ability levels. Understanding these patterns is essential 
for designing instructional support that targets cognitive barriers at each stage of the modeling process. 

 

2. Literature Review  
2.1. Mathematical Modeling 

Models in a problem are created after the problem is studied to represent the problem. 
Mathematical models are built through adjustment, determination and mathematization of the real 
situation of a problem [4]. In modeling, it is necessary to be precise in choosing things that are set aside 
and things that need to be included in the mathematical model. The important components of 
mathematics are mathematical modeling and its applications that can encourage students' competence in 
solving real problems in mathematics education [11, 12]. This activity requires not only mastery of 
mathematical concepts and procedures, but also skills in critical thinking, choosing appropriate 
representations, and evaluating solutions reflectively [13, 14]. 

Mathematical modeling is defined as the process of translating real-world problems into 
mathematical terms and developing appropriate mathematical strategies to solve the problem [5, 15]. 
As an essential component of mathematics education, modeling allows students to apply their 
mathematical knowledge to realistic and complex contexts, whether from daily life, social issues, or the 
workplace [2, 16].  

This process demands not only conceptual and procedural knowledge, but also metacognitive and 
contextual awareness, especially when transitioning between real contexts and mathematical abstraction 
[6, 17]. Study has highlighted that each stage in modeling process presents unique cognitive 
challenges, which can result in a variety of student errors depending on their level of mathematical 
competence [7, 8]. Unlike traditional problem solving, modeling requires students to navigate a cycle of 
steps involving understanding the situation, simplifying the problem, mathematizing, working 
mathematically, interpreting results, and validating the solution, the ability to mathematize real 
situations, in particular, is noted as one of the most demanding and error-prone stages [14]. Therefore, 
understanding the type and frequency errors across stages and among students of differing ability levels 
is critical for designing effective interventions and instructional scaffolds.  
 
2.2. Modelling Competence and Modeling Cycle  

Modeling ability includes aspects of mathematical knowledge and skills, as well as the willingness to 
carry out the modeling process appropriately and goal-oriented and the willingness to apply it [18]. 
This process also requires the integration of a number of competencies such as reading the context of 
the problem, developing a solution strategy, building a mathematical model, and interpreting and 
validating the results [15]. The phases of the mathematical modeling cycle process are understanding 
the real-world situation; simplifying/idealizing the real-world situation to obtain a model of the real 
world; mathematizing the real-world model, which is designing a plan to solve the problem by 
translating the real-world model into a mathematical model; applying mathematical routines and 
processes; interpreting the mathematical solution by verifying that the problem corresponds to reality; 
validating the results of the previous stage by checking the adequacy of the results and if necessary 
repeating certain stages or even the entire modeling process; and presenting the final results of the 
modeling cycle [19].  

The model proposed by Blum and Leiß [14] offers a structured representation of modeling 
process commonly referred to as the modeling cycle which begin with contextual understanding and 
culminates in validating mathematical results. This framework provides a lens through which student 
responses can be categorized and analyzed, especially when identifying where errors or misconceptions 
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occur. The descriptive model of a modeling process, as seen in Figure 1, can be used as a basis for 
characterizing students’ processes in modelling.  
 

 
Figure 1.  
Modeling cycle followed Blum & Leiß 

 
The modeling process begins with the real situation. By simplifying, structuring, and idealizing this 

problem, a real model can be identified. The mathematizing of the real model leads to a mathematical 
model. Additionally, mathematical solutions can be found by working mathematically. This solution has 
to be interpreted first and then validated. If the solution or the chosen process does not prove to be 
appropriate to reality, particular steps or maybe even the entire modeling process needs to be worked 
through again. 

 
2.3. Newman Error Analysis (NEA) and its Relevance to Modeling  

To further diagnose students’ error, this study also incorporates NEA as a complementary tool. 
NEA categorizes five key types of student errors including reading, comprehension, transformation, 
process skills, and encoding when solving mathematical world problems [20]. Previous studies have 
found strong parallels between Newman’s framework and the stages of the modeling cycle Wijaya, et al. 
[21] making it valuable method to map observed errors during the modeling process.  

The integration of NEA with the modeling cycle enables a nuanced analysis of students’ errors, 
especially when combined with data such as written responses and interviews. Table 1 illustrates how 
each error category aligns with specific stages in modeling process, providing a clear structure for 
evaluating student performance and identifying common patterns of errors [21]. 
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Table 1.  
Newman's error categories and modeling process following Blum and Leiß. 

 

3. Methodology  
This study employs a quantitative descriptive and exploratory approach to examine errors in the 

mathematical modeling process and explore their relationship with students’ mathematical ability levels. 
This study involves 72 eighth-grade students at a Private School namely SMP St. Benediktus, two 
classes VIIIA (24 girls and 13 boys) and VIIIB (20 girls and 15 boys) are randomly chosen form three 
classes.  

This study utilized two instruments are Math competence Test (MCT), comprising 5 essay 
questions covering topics such as numbers, comparison, arithmetic, and geometry; and Mathematical 
Modeling Test (MMT), which included 4 essay questions on social arithmetic, numbers, and geometry. 
Instrument validation was conducted by three associate professors and one mathematics teacher with a 

master’s degree, using a 4-point Likert scale, with an Aiken index threshold of 𝑉 ≥  0.4. The validity 
value exceeded 0.83, indicating strong content validity. 

Data collection occurred over two separate days, where students completed the MCT and MMT 
within 90-minute sessions, under direct observation by researchers. Students’ mathematical ability 

levels were categorized as high ability (skor ≥ 80), medium ability (65 ≤ skor < 80), and low ability 

(skor < 65) based on results MCT. Based on MMT responses students were scored as 1 (correct) and 0 
(incorrect), and errors analyzing using the NEA framework integrated with six modelling processes as 
defined by Blum and Leiß and explore analyzing based on mathematical ability levels.  

 

4. Results  
The result of the analysis was conducted on the Mathematical Competency Test (MCT) and 

Mathematical Modeling Test (MMT) scores is as follows: 
 

Newman's error categories Modeling process Description 

Comprehension: errors in 
understanding the meaning of the 
problem. 

Understanding problems by 
establishing situational models.  

▪ Errors were made by students who could 
not understand the test.  

▪ A student misunderstood a keyword, which 
was usually a mathematical term. 

Establishing real models by 
simplifying situational models.  

▪ Errors in making assumptions about the 
problem and simplifying the situation. 

▪ Errors in recognizing the quantities that 
affect the situation. 

▪ Errors in naming and identifying key 
variables. 

Transformation: errors in 
transforming a word problem 
into an appropriate mathematical 
problem. 

Constructing a mathematical model by 
mathematizing real model. 

Errors in creating a mathematical model.  

Process skill: errors in 
performing mathematical 
procedures. 

Working mathematically to get 
mathematical solutions.  

Errors in applying mathematical knowledge to 
solve problems, such as calculation errors. 

Encoding: errors in representing 
the mathematical solution into an 
acceptable written form.  

Interpreting mathematical solutions in 
relation to the original problem 
situations.  

Errors in connecting the results of calculations 
carried out with the context of the problem. 

Validating the interpreted 
mathematical solution by checking if it 
is appropriate and reasonable for its 
purpose. 

▪ Errors in critically examining and 
reflecting on the found solution. 

▪ Errors in evaluating some parts of the 
model or in repeating the modeling process. 
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Table 2.  
Score MCT and MMT. 

Statistical Results MCT MMT 

N 72 72 
Mean  61.77 66 

Std. Deviation 19.40 19.68 
Highest student score 100 100 

Lowest student score 60 30 

High level (Score ≥ 80)  20 22 

Medium level (65 ≤ Score < 80) 19 15 

Low level (Score < 65) 33 35 

 
Based on Table 2, these statistics provide insights into the overall performance distribution and 

variability among students in both assessments. The MMT mean score (66.60) is slightly higher than 
the MCT mean score (61.77), indicating differences in students’ competencies across the two domains. 
The fairly high variation in scores (as indicated by the standard deviation) suggests a significant 
difference in frequency or types of errors between more proficient students and those who tend to make 
more errors. More than 50% of students are in the medium and low mathematical modeling ability level, 
this indicates that many students make errors in solving mathematical modeling problems. 

The analysis of students’ responses reveals that 67 students made errors in the mathematical 
modeling process, while 5 students managed to complete the entire mathematical modeling process, see 
Table 3.  
 
Table 3.  
Frequencies students made errors in modelling process. 

Items  Understanding Simplifying Mathematizing 
Working within 

mathematics 
Interpreting Validating 

1 14 22 24 25 25 25 

2 28 33 34 38 40 40 
3 19 20 21 24 24 27 

4 30 34 35 39 42 45 

 
Based on Table 3, There is an increasing trend of errors from item 1 to item 4 at all stages. This 

shows that the more complex the problem given, the more likely students are to make errors in all 
aspects of the modeling process. The highest errors are consistently found at the validating (the highest 
at item 4 = 45 errors) and interpreting (item 4 = 42 errors) process. This reflects students are not yet 
accustomed to reflecting or re-checking their modeling results against the context of the problem. 
Although still significant, the understanding process shows a lower frequency of errors relative to other. 
This shows that understanding the initial context of the problem is easier for most students to achieve 
than the mathematization and evaluation processes of the model. The mathematization process 
(changing real problems into mathematical representations) and working within mathematics (solving 
models) also show a high frequency of errors, indicating that students face not only conceptual but also 
procedural challenges in solving mathematical problems.  

These results indicate that students' mathematical modeling abilities are multilevel and interrelated. 
Students who do not understand the problem well will have errors in simplifying, modeling, solving, 
and interpreting and validating solutions. Therefore, learning needs to focus more attention on the 
stages of interpretation and validation, develop students' reflective and critical thinking skills, and 
increase problem-solving exercises that require more than just procedural skills. 
The percentages of errors in each mathematical modeling process are illustrated in Figure 2.  
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Figure 2.  
Percentage of errors in the modeling process. 

 
From the diagram in Figure 2, validating (47.56%) showed the highest error rate. This indicates 

that many students have errors in checking their solutions against the context of the problem. 
Validating requires a deep understanding of the relationship between mathematical results and real 
situations, which is often overlooked. Interpreting (45.48%) also showed high errors. This reflects the 
challenge in presenting calculation results with contextual meaning. Students may not be able to solve 
the model, but fail to interpret the results meaningfully. Working mathematically (43.75%) refers to the 
process of mathematical manipulation. Errors at this stage can come from incorrect algebraic 
procedures, calculation errors, or inappropriate application formulations.  

Mathematizing (39.58%) shows that students still have errors in converting real-world situations 
into mathematical representations. This can be caused by misconceptions or lack of experience in 
building models. Simplifying (37.84%) indicates that the process of harmonizing information from 
context to a form that can be modeled is also a challenge. Students may be unable to identify important 
information and distinguish it from irrelevant information. Understanding (31.59%) has the lowest 
percentage of errors, but is still significant. This shows that although most students can understand the 
context of the problem, there are still some who have errors in understanding the initial information as 
a whole. 

Based on the distribution of error percentages, it can be seen that students experience increasing 
errors along with the complexity of the mathematical modeling process. The lowest errors occurred at 
the understanding process (31.59%), indicating that most students were able to understand the problem 
situation initially. However, as the process progressed, errors increased gradually, reflecting conceptual 
and procedural difficulties. The final process such as interpreting (45.48%) and validating (47.56%) had 
the highest error rates, indicating students' weak ability to connect mathematical results with real-
world contexts and to verify the solutions obtained. This indicates that critical reflection on results and 
contextual understanding are still major challenges in the modeling process. 

The results analysis errors in the mathematical modeling process made by students in the high, 
medium, and low mathematical ability levels are presented.  
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Table 4.  
Student errors based on the level of mathematical ability. 

Groups Understanding Simplifying Mathematizing 
Working 
mathematically 

Interpreting Validating 

High 0% 0% 0% 2.08% 18% 25% 
Medium  5% 12.5% 15% 25% 35% 37.5% 
Low  38.75% 48.75% 52.5% 58.75% 62.5% 66.25% 

 
Based on Table 4, show the lowest error in the understanding process indicates that students are 

generally able to understand the initial context. Errors in the validating process are consistent with the 
highest number of errors, indicating weak student metacognition in evaluating model suitability.  

In understanding and simplifying process, there were no errors (0%) made by high level students 
indicating are able to understanding of the problem context and simplification of information. The 

emergence of initial errors (5% and 12.5%) in medium level students indicates that some students are 
still not consistently able to understand the problem completely. The substantial proportion of errors 

(38.75% and 48.75%) in low level students indicates that errors have arisen since the initial 
interpretation stage of the question. 

In mathematizing and working mathematically process, high level ability students still showed good 

performance, with very low errors (0% and 2.08%). There was an increase in moderate errors 

(15% and 25%) indicating challenges in transforming real-world situations into formal 

representations. Errors continued to increase (52.5% and 58.75%) in low level ability students, 
indicating weaknesses in abstraction and mathematization process.  

In interpreting-validating process, errors began to dominate (18% and 25%) in high level 
students, indicating that even high ability students still need guidance to improve the accuracy of 

interpretation and model evaluation. The highest errors (35% − 66.25%) in medium and low-level 
students, indicating weak reflective and metacognitive skills in interpreting results and assessing model 
accuracy.  

The pattern of errors is progressive according to the level of student ability, where students with 
lower abilities tend to make errors at the initial stage, such as understanding the context of the problem 
(understanding) and the relationship of information (simplifying). This indicates limitations in 
interpreting important elements of the real-world situation that are the opening for the subsequent 
modeling process. 

In contrast, students with higher abilities tend to pass the initial stage well, but still make errors at 
the advanced stages such as mathematization, solving the model (working mathematically), 
interpretation, and validation. This shows that even though they have better initial understanding 
capacity, difficulties still arise when they have to transform the context into a mathematical model and 
ensure that the resulting solution is contextually relevant and accurate. 

The results show that the mathematical modeling process requires not only procedural competence, 
but also deep reflective and contextual abilities. Therefore, an adaptive pedagogical approach-one that 
focuses not only on technical skills, but also on strengthening conceptual understanding and higher-
order thinking skills is needed to support students at all ability levels. 

In this section, an example of errors made by students in the mathematical modeling process.  
Example error made by student with low level mathematical abilities in process understanding and 
simplifying, see Figure 3.   
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Figure 3. 
Examples errors in the understanding and simplifying process.  
 

The interview was conducted based on students' answers to identify assumptions and errors. Below is 
an excerpt.  
 

R: Actually, the area of a shape is found by multiplying its length by its width, not by subtracting. Have you ever 
used the area formula before? 

S: Hmm… I know there is an area formula, but I have trouble remembering it 

R: The area of Talawang is calculated by multiplying its length by its width. If the length is 200 cm and the width 
is 50 cm, how do you think the calculation should be done? 

S: So, I should multiply 200 × 50? 
 

The student's confusion arises not from misinterpretation of the problem context, but from gaps in 
recalling basic mathematical knowledge, specifically the formula for area. Although the student 
eventually arrived at the correct operation with guidance, the initial inclination to subtract suggests a 
misapplication of prior knowledge. The dialogue also highlights a passive engagement with 
mathematical rules the student indicates awareness of the formula's existence but lacks confidence and 
fluency in applying it. This points to challenges in simplifying the situation into a solvable mathematical 
structure, where foundational misunderstandings create barriers before any formal modeling takes 
place. This case emphasizes that errors in early modeling stages often stem from low confidence in 
fundamental skills. Before advancing into more complex phases, first reinforce basic conceptual fluency 
to ensure that simplification is grounded in correct mathematical reasoning. 

Example error made by student with medium level mathematical abilities in process mathematizing, 
see Figure 4.  

 

 
Figure 4.  
Example of errors in the mathematizing process. 
The interview was conducted based on students' answers to identify assumptions and errors. Below is an excerpt. 
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R: Are you assumed each group required a proportional number of feathers, but did the problem state this explicitly? 

S: I assumed that the same factor should apply to men, women, and commanders. 
R: That’s a common error. In your final step, you wrote 3 Ruai feathers = 71 + 9 + 6 = 86 Ruai feathers. What does the 

left-hand side of the equation represent? 

S: I was trying to show the total number of feathers. 
R: The way it is written, 3 Ruai feathers = 86 Ruai feathers, suggests that 3 feathers are equal to 86, which is incorrect.  

 

The student demonstrates a misunderstanding of representational equivalence. By writing 

3 Ruai feathers = 86 Ruai feathers, they not only misrepresented a relationship but also introduced an 
illogical equation suggesting direct equality between unequal quantities. This indicates a failure to 
distinguish between symbolic representation and real-world meaning, a key element in mathematical 
modeling literacy. Further, the assumption that a uniform proportion could be applied to all groups 
(men, women, commanders) without justification from the problem context reflects a premature 
generalization. This example highlights that error during the mathematizing process often stem from 
inappropriate assumptions and misuse of mathematical language or symbols. The misrepresentation of 
relationships and failure to verify the logic behind model construction underscore the need for 
instruction that emphasizes critical thinking, contextual sensitivity, and representational accuracy in 
modeling activities.  

Example error made by student with medium level mathematical abilities in process working 
mathematically, see Figure 5.  

 

 
Figure 5.  
Example of errors in the working mathematically process. 
 
 

The interview was conducted based on students' answers to identify assumptions and errors. Below is 
an excerpt.  
 

R : That is the correct approach. However, let's review your calculations. In one of your steps, you wrote 

"102 ×  270 =  27.540." Do you think this result makes sense? 

S : Hmm… It should be correct because I added the areas and multiplied them. 

R : Actually, there is an error in the mathematical operation at this stage. The total area should be calculated 
by addition, not multiplication.  

S : Oh, I see! I should have just added the values instead of multiplying them. 

 
The student's error lies not in the approach, but in executing the correct mathematical operation. 

While they understood that area values needed to be combined, they mistakenly applied multiplication 
instead of addition demonstrating a misalignment between procedural execution and conceptual 
understanding. This suggests that while the student may possess surface-level familiarity with problem 
requirements, their decision-making during the calculation phase is mechanical rather than reflective. 
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The fact that the student misunderstood the purpose of multiplication versus addition in context also 
highlights weaknesses in interpreting quantitative relationships between mathematical entities. This 
example illustrates that errors during the working mathematically phases are not always due to 
conceptual misunderstanding, but may stem from flawed operational decisions. Instructional emphasis 
should therefore include not only the mastery of concepts and procedures, but also guided reflection on 
the logic behind chosen operations. 

Example error made by student with high level mathematical abilities in process interpreting and 
validating, see Figure 6.  

 

 
Figure 6.  
Example of errors in the interpreting and validating process. 

 
The interview was conducted based on students' answers to identify assumptions and errors. Below 

is an excerpt. 
 

R: Alright, based on what you wrote, do you think your answer is correct? 

S: Hmm… It should be correct because I multiplied the length and width. 
R: Actually, there is an error in the unit notation. When calculating area, the unit should not be cm, but cm², because 

area represents two dimensions, not one dimension like length or width. 
S: I wrote cm without realizing that it should have been cm². 

 
This interview illustrates a subtle yet impactful error that reflects a student’s incomplete 

understanding of mathematical conventions specifically unit usage when interpreting and validating a 
solution. The student correctly performed the procedure (multiplying length by width), but failed to 
recognize the dimensional implications of their result, indicating that procedural fluency is not always 
accompanied by conceptual awareness. This aligns with prior results suggesting that the validation 
process poses significant cognitive demands, particularly in transitioning from computation to 
interpretation. 

This instance reinforces the errors in the interpreting and validating phases are not merely 
technical, but point to deeper issues in students’ conceptual understanding and metacognitive 
monitoring. It highlights the importance of fostering reflective thinking and dimensional reasoning in 
mathematical modeling instruction. 
 

5. Discussion 
The results reveal the students exhibit significant and varied errors across all stages of 

mathematical modeling processes. These errors are closely tied to their mathematical proficiency, with 
low and medium ability students experiencing errors from the earliest phases such as understanding and 
simplifying, while even high ability students demonstrate challenges at more advanced stages like 
interpreting and validating.  
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Errors often occurred simultaneously or in succession, reflecting not only conceptual 
misunderstanding but also lapses in procedural fluency and metacognitive oversight. In the initial 
understanding phase, many students particularly those with lower ability struggles to grasp the context 
or intent of the task. This aligns with prior research suggesting that students often attempt to solve 
problems without thoroughly reading or understanding the context [10, 11]. One contributing factor 
may be the unfamiliar structure of modeling problem compared to conventional classroom exercises.  

In the simplifying and mathematizing process, errors arose when students failed to filter essential 
information or made incorrect assumptions, often applying proportional reasoning without contextual 
justification. This consistent with results who noted that simplification is particularly difficult when 
student lack real-world experience related to the problem situation [8, 22]. The transition from real-
world context to a mathematical model proved especially challenging for students with weaker 
conceptual foundations [9, 23]. The working mathematically process presented frequent errors, 
especially among students with medium mathematical ability. Common errors included incorrect 
operations such as unjustified multiplication or flawed addition, suggesting a lack of procedural fluency 
and number sense. In the interpreting and validating process, even high-ability students made notable 
errors. While they were often successful in producing a correct mathematical solution, they rarely 
questioned or verified the relevance of their answer within the context of the problem [11]. This 
highlights a weakness in metacognitive reflection and a tendency to treat validation as a superficial 
check rather than critical evaluation step [24, 25]. 

These results multifaceted nature of mathematical modeling competence, involves a constellation of 
interrelated sub-competencies that must be developed holistically throughout the modeling process 
[26]. The persistence of errors across all stages particularly in simplifying, mathematizing, and 
validating suggests that students may lack not only procedural fluency but also the broader 
competencies necessary to navigate real-world contexts mathematically. Moreover, the affective and 
metacognitive dimensions of modeling appear to play a critical role in shaping students’ engagement 
and perseverance [27]. Their study emphasizes that learners’ beliefs and dispositions significantly 
influence how they approach and sustain modeling test. These challenges further resonate that 
modeling tasks present a dual challenge: grappling with mathematical demands while simultaneously 
navigating the purpose and intent of the activity [28]. This tension may contribute to persistent errors, 
particularly when students interpret modeling solely as application rather than exploration. Modeling 
not just as the application of existing knowledge, but as a generative process through which 
mathematical ideas are actively constructed and refined [29].  
 

6. Conclusion  
The study shows that errors in mathematical modeling arise across multiple stages: understanding, 

simplifying, working mathematically, interpreting, and validating: due to difficulties in conceptual 
comprehension, procedural fluency, and translating real-world problems into mathematical forms. 
Misinterpretations, incorrect assumptions, computational errors, and gaps in logical reasoning further 
contribute to these errors. Deficiencies in validation indicate a lack of reflection and critical evaluation, 
impacting the accuracy of students’ models.  

The study confirms that errors in students’ mathematical modeling processes occur at multiple 
stages, with distinct patterns based on mathematical ability levels. Moreover, the analysis results 
obtained 67 students who made errors. 67 students made errors, including 39 boys and 28 girls. Errors 
in understanding (31.59%), simplifying (37.84%), mathematizing (39.58%), with the most common 
errors were in working mathematically (43.75%), interpreting (45.48%), and validating (47.56%). Errors 
in understanding were most frequent among low-ability students, suggesting difficulties in grasping 
problem contexts. Medium-ability students struggled most in working mathematically, indicating 
challenges in applying formulas and performing calculations. High-ability students showed more errors 
in interpreting and validating, revealing errors in critically evaluating solutions.  
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Further research can be developing learning approaches or interventions that are tailored to the 
level of student ability. Low-ability students need support in understanding the context of the problem, 
for example through the use of scaffolding, visualization, and simple language. Medium-ability students 
need to be strengthened in aspects of procedural skills, such as practicing concept mastery and applying 
formulas. High-ability students should be facilitated with reflective, evaluative, and open activities 
towards multiple representations to deepen their understanding of the model contextually. There needs 
to be scaffolding action at the interpreting and validating process because they are the highest errors 
made by students at these two final stages, it is important to include activities such as group discussions, 
self-assessment, and peer review to foster students' critical thinking and self-reflection skills. 
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