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Abstract: This study investigates the approach of integrating reasoning into the outputs of large 
language models (LLMs) — combining logical inference techniques with knowledge retrieval — to 
enhance their alignment with truth. We begin by analyzing the statistical foundations of LLMs, which 
operate as probabilistic text generators based on Markovian   assumptions without genuine semantic 
understanding. Next, we discuss the conceptual framework of 'truth' in the AI context, differentiating 
between descriptive truth (objective correctness), pragmatic truth (contextual utility), and verifiable 
knowledge (information supported by independent evidence). We examine advanced reasoning 
techniques — from Chain-of-Thought [1], Tree-of-Thought [2], Retrieval -Augmented Generation 
[3], to self-critique models like CriticGPT [4] - that move LLMs closer to verified knowledge and 
mitigate hallucination tendencies. The paper also explores the philosophical implications: Can modern 
LLMs, equipped with reasoning capacities, be considered 'fallible cognitive agents' - akin to humans in 
their capacity for error correction and learning -or are they merely stochastic parrots mimicking 
language without true understanding? Finally, we open a discussion on the risks, limitations, and ethical 
issues involved in deploying reasoning-integrated AI systems, connecting them with contemporary 
philosophical currents such as pragmatism, anti-realism, and behaviorist perspectives in evaluating 
artificial intelligence. 

Keywords: Chain-of-thought, Epistemic and ethical AI, Large language models, Reasoning Integration, Retrieval-
augmented generation, Tree-of-thought, Truthfulness in AI. 

 
1. Introduction  

Large language models (LLMs), such as GPT-3 and GPT-4, have demonstrated impressive 
achievements in generating and understanding natural language, primarily due to extensive training on 
massive text corpora. However, their capabilities fundamentally rely on statistical emulation of language 
patterns rather than genuine comprehension of the world. Indeed, an LLM essentially functions as a 
probabilistic model predicting the next word based on a sequence of previous words. In other words, it 

operates as an extended Markov model, estimating the probability of a word sequence 1 2, ,..., nW W W by 

multiplying conditional probabilities 1 2 1 1 1( ) ( | ) ... ( | ,..., )n np W p W W p W W W −   [5]. This intrinsic 

"statistical continuity" nature often leads to LLMs being metaphorically referred to as "stochastic 
parrots," producing plausible-sounding language without true semantic understanding. Indeed, 
language models predict words but do not necessarily guarantee factual correctness. Consequently, 
LLMs may confidently generate seemingly persuasive information that is entirely factually incorrect 
because they lack an internal verification mechanism. 
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The issue of hallucinations - when a model confidently provides nonexistent or fabricated 
information - has raised the crucial question: how can language models be guided closer to truthfulness? 
This challenge extends beyond technical dimensions, raising profound philosophical questions. The 
concept of "truth" in the context of AI must be dissected: Does "truth" for an AI equate to objective 
accuracy (descriptive/correspondence truth)? Or should an AI’s response be considered "true" if it is 
useful and persuasive to the user (pragmatic success)? Alternatively, should AI strictly offer verifiable 
knowledge backed by clear evidence? These questions intersect various philosophical traditions—from 
pragmatism, emphasizing utility and application of knowledge, to anti-realist perspectives (post-truth 
theories), skeptical about the existence of a singular objective truth, and cognitive-behavioral viewpoints 
emphasizing intelligence assessment through observable behavior rather than internal mental states. 

Fosso Wamba, et al. [6] comprehensively analyze generative AI, particularly large language 
models such as ChatGPT, from the perspectives of information systems and socio-technical theory, 
highlighting unique characteristics and associated challenges (including potential negative impacts), 
proposing a detailed research agenda for information systems to address profound technological 
impacts. The authors underscore GenAI’s ability to generate creative content, contextualize human 
interactions, and execute knowledge tasks superior to previous AI technologies. However, GenAI’s 
default behavior relies on statistical probabilities without genuine understanding, prone to 
hallucinations and biases, thus posing reliability challenges. Utilizing system theory, the article 
identifies three key generative characteristics of GenAI: strong emergence, novel creativity, and 
independent system outputs like code, text, and images. Concurrently, GenAI has significant disruptive 
potential impacting organizations, individuals, policies, and labor forces, alongside numerous "dark 
sides" such as deepfakes, manipulation, intellectual property infringements, and environmental impacts. 
The research combines systems theory, socio-technical frameworks, and linguistic analyses, focusing on 
GenAI as a "socio-technical system" through the ChatGPT case study. This paper contributes a 
theoretical framework for understanding and managing GenAI, proposing a comprehensive IS research 
agenda and urging the academic community to critically evaluate GenAI's social, technical, and ethical 
implications beyond initial enthusiasm. 

Recently, researchers have developed various techniques aimed at integrating reasoning capabilities 
into the operational processes of LLMs, hoping to bridge the gap between mere "statistical parrots" and 
genuine "knowledge agents." Techniques such as Chain-of-Thought (CoT), enabling models to generate 
intermediate reasoning steps, Tree-of-Thought (ToT), expanding reasoning across multiple branches, 
Retrieval-Augmented Generation (RAG), integrating real-time document retrieval before responding, 
and self-critique mechanisms like CriticGPT, acting as internal evaluators for the model’s output, have 
shown promising results. These methods enable LLMs to handle complex multi-step tasks better, 
reduce misinformation, and even provide source references for responses. 

This introduction systematically presents: (1) the background of LLMs from a statistical perspective 
and their inherent limitations in capturing truth; (2) philosophical analyses of truth in AI contexts, 
distinguishing types of truth; (3) advanced reasoning techniques (CoT, ToT, RAG, CriticGPT) altering 
LLMs' approaches to knowledge; (4) philosophical implications of viewing LLMs as cognitive agents; 
and (5) ethical issues, risks, and challenges associated with integrating reasoning into AI. The goal is to 
connect technological advancements with contemporary philosophical discussions, enhancing our 
understanding of the evolving trajectory toward more trustworthy and intelligent AI systems. 
 

2. Theoretical Background: Statistical Nature of Large Language Models 
Today's large language models fundamentally originate from statistical language models. The basic 

goal of a language model is to estimate the probability distribution over a sequence of words. 

Specifically, given a word sequence 1 2, ,..., nW W W , the model seeks to estimate the probability

1( ,..., )nP W W , typically decomposed using the chain rule into the product of conditional probabilities: 
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1 2 1 2 1 3 1 2 1 1( , ,..., ) ( ) ( ) ( , ) ( ,..., ).n n nP W W W P W P W W P W W W P W W W −=  ∣ ∣ ∣  

At the core of the model is the conditional distribution —the probability of the next word given the 
previous history of words. Traditional n-gram models limit the history to the immediate preceding 
words, whereas modern LLMs using neural networks (such as Transformer architectures) can consider 
much longer contexts (hundreds of words or more). Despite variations in technique, the underlying 
principle remains that LLMs predict subsequent words based solely on statistical relationships. 

 

 
Figure 1.  
Data Generation Process of a Large Language Model. 
Source: Raschka [7]. 

 
Figure 1 illustrates the data generation process of a large language model such as GPT from a 

statistical perspective. Initially, the input text is encoded into numerical token IDs (Step 1), serving as 
discrete observations fed into the model. The LLM then computes a series of vectors (Step 2), each 
representing unnormalized log probabilities (logits) across the entire vocabulary (in this example, 
50,257 possible tokens). The model's statistical prediction is based on extracting the last vector in the 
sequence (Step 3), representing the conditional distribution of the next token given the previous 
context. These logits are transformed into probability distributions through the softmax function (Step 
4), normalizing them into a valid probability simplex. The model selects the token with the highest 
probability by identifying the index of the highest probability value (Step 5), and the selected token is 
appended to the input sequence for iterative generation (Step 6). This process embodies the basic 
autoregressive assumption of LLMs, whereby the probability of a sequence 

1 2

1

( , ,..., ) ( )
n

n t t

t

P x x x P x x
=

= ∣  is decomposed into the product of conditional probabilities, 

emphasizing the model's probabilistic nature and complete dependence on the data. 



1075 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 7: 1072-1090, 2025 
DOI: 10.55214/25768484.v9i7.8810 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 2.  
Autoregressive Nature of Large Language Models. 
Source: Raschka [7]. 

 
The statistical foundation of large language models such as GPT lies in their autoregressive nature, 

where the joint probability of a sequence of tokens is decomposed into the product of conditional 
probabilities. Figure 2 illustrates this mechanism by showing how an input sequence such as "Hello, I 
am" is encoded into token IDs—[15496, 11, 314, 716]—and input into the model, resulting in a logits 
matrix representing scores across the entire vocabulary at each token position. The model selects the 
last row of this matrix, the conditional logits vector for the next token, and applies the softmax function 
to convert it into a probability distribution over the entire vocabulary. The token with the highest 
probability (e.g., 257, corresponding to "a") is chosen as the prediction. As shown in Figure 2, this 
predicted token is appended to the sequence, forming a new context for the subsequent iteration. 
Through repeated iterations, the model generates successive tokens, each token depending on the entire 
previously generated sequence. 

For example, after six iterations starting with the phrase 'Hello, I am,' the model generates the 
complete sequence: 'Hello, I am a model ready to help.' This autoregressive decoding loop exemplifies 
how an LLM performs probabilistic inference on natural language, where each prediction is fully 
governed by the distribution learned from vast training datasets and executed through logits 
normalized by the softmax function. The result is an elegant yet powerful statistical framework, 
enabling the generation of coherent, fluent, and contextually relevant language. 

Therefore, the training process of LLMs optimizes predicting the correct next word as seen in the 
training data, without ensuring real-world factual accuracy. The model is rewarded for correctly 
predicting the next word in context, regardless of whether the content of the sentence is factually 
correct. If the training dataset frequently contains an incorrect fact, such as 'Paris is the capital of 
Germany,' the model will learn a high probability for the combination 'Paris - capital - Germany.' 
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Consequently, LLMs have no external awareness of truth; their only sense is statistical probability. As 
one author aptly put it: 'ChatGPT doesn't "know" truths through logical reasoning; it merely guesses 
based on what it has been trained on.' In other words, LLMs 'predict words, not truths. 

A direct consequence of this nature is that LLMs lack an intrinsic mechanism to verify the accuracy 
of the information they produce. The model operates essentially as a "black box" text generator—it 
cannot "look outside" to cross-check its responses against objective reality [8]. For the model, the only 
accessible "reality" is the statistical patterns within the training data. Thus, if an input query demands 
knowledge beyond its learned dataset, the model tends to rely on the nearest linguistic patterns 
available, leading to "hallucinations" of incorrect information. For instance, when asked about a recent 
event occurring after its training period, the model might fabricate an answer that sounds plausible but 
is entirely baseless due to the absence of credible data to reference. 

To clarify further, one could metaphorically liken an LLM to a student memorizing answers from 
thousands of books. When encountering familiar questions, the student might correctly respond from 
memory. However, when faced with novel questions, the student tends to guess based on the nearest 
available knowledge, potentially resulting in incorrect answers. Crucially, this student has no capacity 
to independently consult new resources or conduct experiments during an exam. Similarly, an original 
LLM has no capability for autonomous research or reasoning beyond its trained data; it lacks an 
independent verification process [8]. 

Consequently, even though LLMs can generate fluent text and accurately answer numerous queries, 
they still unpredictably commit severe mistakes. Multiple studies have documented that large models 
such as GPT-3 and GPT-4 confidently assert implausible or factually incorrect statements. For 
instance, a model might confidently fabricate a detailed description of a nonexistent historical event or 
invent fake references. These errors are not intentional—simply because the model does not recognize 
them as wrong; it merely probabilistically replicates linguistic patterns. Bender et al. highlight two 
fundamental limitations: (1) LLMs are inherently restricted by their training data and merely replicate 
statistically whatever appears within that data; (2) Since they solely rely on linguistic data, the models 
have no means of discerning the factual correctness or incorrectness of their outputs. 

Thus, theoretically speaking, LLMs are powerful statistical language models but inherently lack 
genuine semantic understanding. They do not possess a concept of truth as humans understand it—they 
do not actually know whether "Paris is the capital of Germany," but merely recognize that the phrase 
"Paris is the capital of…" is statistically more often followed by "France" rather than "Germany." This 
disconnect between linguistic statistics and truth is precisely the origin of the problem we seek to 
address: how to guide LLMs closer to genuine truth rather than merely emulating language patterns. 
To achieve this goal, we must clarify different conceptions of truth and subsequently investigate 
methods for integrating logical reasoning—an intrinsic strength of human intelligence—into these 
models. 
 

3. Philosophical Discussion: "Truth" in the Context of AI 
The concept of truth has long been a central theme in philosophy, approached from various 

perspectives. In the context of generative AI language models, the notion of "truth" becomes 
particularly complex. We can distinguish at least three dimensions for assessing the "truthfulness" of 
AI-generated responses: (1) descriptive truth (objective accuracy), (2) pragmatic success (usefulness or 
effectiveness in practical contexts), and (3) verifiable knowledge (the ability to confirm statements 
through independent evidence). These three dimensions correspond partly to traditional philosophical 
theories of truth: correspondence theory, pragmatic theory, and verificationism (which can be 
considered a variant of coherence theory or scientific positivism). 

• Descriptive truth: This is the most traditional conception of truth—a statement is considered true 
if it accurately reflects objective reality. Philosophically, this aligns with the correspondence theory of 
truth: the statement "Paris is the capital of France" is true because it corresponds with the factual reality 
that Paris is indeed the capital of France. Conversely, "Paris is the capital of Germany" is false as it does 
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not match reality (Germany’s capital is Berlin). In AI contexts, this criterion evaluates outputs based on 
their alignment with factual knowledge of the world. An LLM achieves descriptive truth if its output 
matches objective reality accurately. 

• Pragmatic success: Pragmatism, initiated by philosophers like Charles Peirce and William James, 
views truth in terms of practical utility. Simply put, a proposition is "true" if believing and acting upon 
it yields useful outcomes or resolves problems effectively. Applied to AI, pragmatic truth means that an 
AI’s response is valued highly if it proves beneficial to the user, even if the information might not be 
literally or absolutely accurate. For example, if a user asks, "How can I relieve a headache?" and the AI 
answers, "Drink a glass of water and rest quietly," this advice, while not a descriptive fact but rather a 
practical instruction, can still be considered pragmatically "true" if it effectively alleviates the user’s 
headache. In the context of AI chatbots trained through human feedback methods (e.g., Reinforcement 
Learning from Human Feedback - RLHF), usefulness often takes priority. The goal is user satisfaction, 
making responses pragmatically true rather than strictly accurate. Practically, this pragmatic approach 
is explicitly integrated into ChatGPT’s training: the model is rewarded when users judge its responses 
as helpful, regardless of absolute factual accuracy. Consequently, this results in a pragmatic orientation 
toward truth: prioritizing responses that are "useful and minimally harmful" over those that might be 
"absolutely correct yet useless or potentially irritating" [8]. In other words, "the usefulness of the 
response is often placed above factual accuracy" [8]. However, this approach represents a double-edged 
sword: while making AI more user-friendly and helpful, it also risks compromising factual integrity. 

• Verifiable knowledge: The third perspective emphasizes the independent verifiability of 
information. A statement can be considered reliable knowledge if it can be checked and confirmed 
through evidence, experimentation, or reputable sources. Philosophy of science, notably positivism and 
Karl Popper’s falsificationism, highlights falsifiability—the requirement that scientific statements must 
be empirically testable. In the AI context, as models do not inherently verify external reality 
themselves, this aspect pertains significantly to the model’s ability to reference and substantiate 
information. An AI-generated response accompanied by citations from reputable sources or easily 
verifiable information meets the standard of "verifiable knowledge." Conversely, if the AI produces 
information not supported or confirmable by any external source, then even if it seems plausible, users 
should remain skeptical. For instance, if an AI states, "A 2023 study found that green tea cures COVID-
19" without providing any credible source, users would rightfully demand verification before accepting 
such claims. 

These three perspectives are not mutually exclusive but emphasize different aspects. Ideally, an AI-
generated response should satisfy all three criteria: descriptive accuracy, pragmatic utility, and verifiable 
knowledge. However, practical trade-offs often arise. A piece of information may be factually correct but 
presented in a confusing manner, thereby reducing its practical utility. Conversely, a pragmatically 
"safe" and useful answer (such as general advice) might not adequately address the specific factual 
details required by the user. Furthermore, even the notion of descriptive truth itself contains nuances—
certain questions inherently lack absolute answers, such as subjective judgments or opinion-based 
queries. In such contexts, pragmatic criteria (responses satisfying user expectations) often take 
precedence. This situation resonates with the "post-truth" context of modern society, where emotions 
and subjective beliefs sometimes override objective truth. If AI panders to user biases to achieve high 
ratings (pragmatic success), it risks reinforcing "echo chambers" and misinformation, thereby 
contributing further to a post-truth scenario. This issue highlights why the AI community is deeply 
concerned with developing models that balance practical utility and factual reliability. 

From a philosophical standpoint, AI serves as a test case for various theories of truth. In a 2024 
study, Luke Munn et al. analyzed how InstructGPT (the predecessor of ChatGPT) generates "truth 
claims" by interweaving multiple conceptions of truth: statistical correlations derived from data (akin to 
correspondence theory), adjustments influenced by social feedback (pragmatic theory), and producing 
smooth, confident outputs that appear as absolute truths [8]. Munn describes ChatGPT's outputs as an 
"operationalization of truth," in which fragmented conceptions of truth combine into seemingly 
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coherent and persuasive statements [8]. For instance, ChatGPT may simultaneously attempt to match 
reality accurately (correspondence), maintain coherence within conversational context (coherence 
theory), and satisfy users effectively (pragmatism). Consequently, the model confidently presents 
information as if it were the absolute truth, despite potentially patchy internal logic. This complexity 
explains why addressing truthfulness in AI is exceedingly challenging—not merely a matter of 
supplementing correct data but also intricately tied to how the model prioritizes and reconciles differing 
truth criteria. 

In this context, verifiable knowledge emerges as a crucial criterion for restoring trust. Unlike 
human interlocutors, who can naturally ask, "Are you sure? How do you know that? ", earlier language 
models could not inherently provide evidence. Therefore, the current developmental trajectory aims to 
equip AI models with external information sources and enable them to provide evidence that users can 
independently verify. This goal motivates the reasoning techniques discussed in subsequent sections 
(such as RAG or self-critique mechanisms). 

Before proceeding, however, it is important to acknowledge that insisting AI strictly adhere to 
positivist criteria (providing evidence for every statement) also has its limitations. Users do not always 
require explicit citations—sometimes a concise answer (e.g., "Which country is Paris in?") suffices. 
Balancing these criteria—accuracy, practicality, and verifiability—is an open problem encompassing 
technical, philosophical, and ethical dimensions. The following sections will demonstrate how recent 
technological advances are shifting this balance toward making LLMs more trustworthy yet practically 
beneficial. 
 

4. Techniques for Integrating Reasoning into LLMs and Their Impact on Verifiable 
Knowledge 

Between 2022 and 2025, researchers have developed a range of methods designed to integrate 
explicit reasoning capabilities into large language models. The overarching goal of these techniques is 
to move models beyond mere statistical mimicry, enabling them instead to perform logical reasoning 
steps or access necessary knowledge for more accurate responses. Below, we analyze four prominent 
approaches: Chain-of-Thought (CoT) [1], Tree-of-Thought (ToT) [9], Retrieval-Augmented 
Generation (RAG) [3, 10] and the self-critique methodology (illustrated by CriticGPT) [4]. Each 
technique contributes uniquely toward enhancing the correctness and verifiability of model-generated 
answers. 
 
4.1. Chain-of-Thought (CoT) 

Chain-of-Thought (CoT) [1] is a technique introduced in 2022 aimed at harnessing the latent 
multi-step reasoning abilities of large language models. The core idea behind CoT is straightforward: 
rather than prompting the model to jump directly to a conclusion, the model is encouraged to articulate 
intermediate reasoning steps before providing the final answer. This technique is commonly 
implemented through prompt engineering, wherein the prompts provided to the model include 
examples explicitly demonstrating step-by-step reasoning processes (e.g., “Explain your reasoning 
before answering”). 
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Figure 3.  
Illustrating the Combinatorial Reasoning and Arithmetic Capabilities of Large Language Models. 

 
Figure 3 presents a classic word problem that involves multiple steps and requires arithmetic 

operations, time unit conversions, and sequential reasoning—all of which are core requirements for 
evaluating the reasoning capabilities of large language models (LLMs). The problem prompts the model 
(or solver) to integrate various types of information: speed, time, unit conversion (minutes to hours), and 
the order of events. First, the model must semantically analyze the text and recognize that the trip 
consists of two driving segments and a break, then execute a chain of linked calculations. In the first 
segment, the distance is computed by multiplying 45 mph by 2 hours, yielding 90 miles. This is followed 
by a 15-minute break, accurately converted into 0.25 hours. The second driving segment involves 
traveling at 60 mph for 1 hour and 45 minutes, which is correctly interpreted as 1.75 hours, producing 
105 miles. Finally, the model must sum the total distance and total time (including the break), resulting 
in 195 miles over 4 hours. 
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To solve this problem accurately, an LLM must engage in symbolic reasoning (such as interpreting 
units like mph and converting time), perform arithmetic computations, and track logical state across 
each step. These capabilities go beyond simple pattern recognition and demonstrate that LLMs can 
simulate structured problem solving akin to human logical reasoning. When modeled effectively, the 
chain-of-thought structure enhances interpretability and aligns with the way humans rationalize their 
thought processes. Consequently, this type of problem serves as a critical benchmark for assessing an 
LLM’s combinatorial reasoning skills, numerical accuracy, and logical consistency. 

The study by Huang, et al. [11] shows that Chain-of-Thought (CoT) significantly improves multi-
step problem solving in models with ~100 billion parameters. In tasks such as riddles, word problems, 
and logical reasoning questions, generating intermediate steps increases the accuracy of responses. The 
effectiveness of CoT stems from its ability to force the model to “pause” at each step, reducing the risk of 
skipping important details. Instead of leaping ahead and potentially guessing incorrectly, the model 
proceeds sequentially through its reasoning—mirroring how humans often explain their thinking 
internally before answering. This partially addresses LLMs’ known limitations in maintaining long 
logical coherence: by articulating each step, the model can better manage consistency throughout the 
response. 

From the standpoint of truth alignment, CoT offers two key benefits. First, it improves descriptive 
accuracy in problems with objectively correct answers, as fewer steps are omitted and errors are 
minimized. Second, it enhances the transparency of responses: users can see the reasoning behind the 
answer, making it easier to assess trustworthiness. For instance, if the model makes a calculation error, 
users can immediately identify where it occurred. This has ethical implications: an AI that explains its 
reasoning is more trustworthy than one that merely presents a result, since users are not blindly relying 
on a “black box.” Some studies even suggest CoT facilitates error detection and correction: if the model 
revisits its own chain-of-thought, it may spot inconsistencies—constituting a basic form of self-
reflection. 

However, CoT is not a panacea. It is most effective in sufficiently large models (typically over 50B 
parameters), as smaller models often lack the capacity to generate coherent reasoning sequences. 
Moreover, if a model’s initial knowledge is flawed, the chain-of-thought may simply produce a “well-
argued” but entirely incorrect reasoning path. For example, if the model incorrectly recalls a person’s 
birth year, it may still generate a convincing step-by-step rationale that leads to a wrong conclusion. 
Therefore, CoT often needs to be paired with other techniques (such as RAG, discussed in the next 
section) to ensure that the reasoning steps are grounded in accurate information. 

Chain-of-Thought represents the first step in enabling LLMs to “think aloud” like humans, rather 
than respond reflexively. This approach not only facilitates more accurate problem solving but also lays 
the groundwork for incorporating more complex mechanisms, such as stepwise verification and solution 
aggregation (e.g., self-consistency). The success of CoT demonstrates that large language models are 
not merely parrots repeating data—they can perform impressive reasoning when properly prompted. 
 
4.2. Tree-of-Thought 

Expanding on the Chain-of-Thought paradigm, Tree-of-Thought (ToT) was proposed as a 
framework that allows language models to explore multiple parallel reasoning paths instead of 
following a single linear trajectory [9]. In CoT, the model adheres to a fixed line of reasoning dictated 
by the prompt; if the initial reasoning direction is flawed, the final output will also be incorrect. ToT 
addresses this limitation by allowing the model to branch its reasoning into a tree of possible thought 
paths and then evaluate these branches to select the most promising direction. 

Specifically, Yao, et al. [9] introduced the Tree-of-Thought algorithm as follows: at each step, the 
model generates not just a single continuation but several plausible “thoughts.” These thoughts form 
branches in a reasoning tree. The model—or a separate evaluation function—then assesses each branch, 
either through logical validation or by simulating the final outcome, to decide which branch to expand. 
The model can also backtrack if a given path proves unproductive. This process resembles guided search 
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through a solution space, rather than the standard linear generation typical of traditional LLM 
inference. 

The ToT framework is particularly useful for tasks involving trial-and-error search or multi-step 
planning, such as solving games, complex puzzles, or generating narratives under specific constraints. 
Experimental results show that ToT significantly enhances performance in tasks requiring strategic 
exploration. For example, in the game "24" (a mental math puzzle), GPT-4 solved only 4% of problems 
using linear Chain-of-Thought, but achieved a 74% success rate when allowed to explore multiple 
computational paths via Tree-of-Thought [2, 9]. This dramatic improvement illustrates the power of 
exploring the reasoning space, rather than being confined to a potentially flawed single trajectory. 
From a truthfulness perspective, ToT offers several key advantages: 

• First, like CoT, it encourages the model to decompose complex tasks into substeps (each 
“thought” representing a step or subcomponent of the solution). This reduces the risk of 
skipping essential reasoning steps or prematurely jumping to an incorrect conclusion. 

• Second, and more importantly, ToT allows for the simultaneous evaluation of multiple 
hypotheses. For ambiguous or difficult questions, the model can consider several alternatives 
before selecting the most plausible one. This mimics human reasoning when we deliberate, “If 
A, then... If B, then... Which scenario best fits the evidence?” 

• Third, the evaluation and backtracking mechanisms act as a built-in quality filter. If a reasoning 
path results in contradiction or an illogical conclusion, the model can prune that branch. For 
instance, in a logic puzzle, if a certain assumption leads to a result that conflicts with the 
problem constraints, the algorithm will halt further exploration of that branch—improving the 
logical consistency of the final answer. 

However, the primary trade-off is computational cost. ToT requires the model to generate and 
evaluate multiple reasoning paths, increasing inference time and computational resources. While 
research suggests that increasing reasoning-time compute can yield gains similar to increasing model 
size (e.g., more training yields gains on the left, more reasoning yields gains on the right), deploying 
ToT in real-time systems may be constrained by latency considerations. 

Tree-of-Thought represents a significant step toward aligning language models with human-like 
problem-solving strategies: trying multiple approaches and selecting the most effective one. In terms of 
truth access, ToT does not directly provide new factual knowledge, but it helps models avoid reasoning 
traps and converge on correct conclusions when sufficient contextual clues are present. When combined 
with knowledge-access techniques like Retrieval-Augmented Generation (RAG), ToT has the potential 
to substantially improve both the accuracy and reliability of model outputs. 
 
4.3. Retrieval-Augmented Generation (RAG) 

A core limitation of standard large language models is that their knowledge is “frozen” at the time 
of training and restricted solely to the content of the training data. Retrieval-Augmented Generation 
(RAG) [10] was introduced to overcome this constraint by connecting the model to an external 
knowledge repository. The concept is straightforward: before generating an answer, the model issues a 
query to a database or search engine to retrieve relevant information, which is then incorporated into 
the generation process. 

For instance, when asked, “Who was the U.S. president in 1920?”, a RAG-based system would first 
issue a search query like “U.S. president in 1920” to a knowledge source (e.g., Wikipedia) and receive a 
passage such as: “In 1920, the President of the United States was Woodrow Wilson...” The LLM would 
then use this passage—alongside the user query—to generate a response, possibly including a citation. 
RAG contributes significantly to both factual accuracy and verifiability of responses in several ways: 

• First, RAG enables real-time knowledge expansion. Rather than being limited by the “memory” 
of its training data, the model can access up-to-date, specialized, or detailed information from 
external sources. This addresses the issue of outdated or incomplete knowledge. A 2023 Ars 
Technica article noted that RAG effectively “blends language processing with document 
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search,” allowing the model to remain anchored to established facts. In effect, RAG mimics the 
behavior of a human consulting reference materials—resulting in a much higher probability of 
answering correctly compared to relying on memorization alone. 

• Second, RAG significantly reduces hallucination. Instead of fabricating responses from gaps in 
its knowledge, the model refers to retrieved documents, making its outputs more trustworthy. 
Studies show that RAG mitigates typical hallucination failures, such as inventing sources or 
fabricating events. In real-world scenarios, RAG has prevented serious errors: for example, 
legal chatbots have been observed fabricating nonexistent court precedents, and healthcare bots 
have made up policy guidelines. With RAG, the model can reference actual legal cases or public 
health documents, preventing the generation of dangerously misleading content. 

• Third, and most crucially for verifiability, RAG allows the model to provide sources. Once 
documents are retrieved, the model can include citations (e.g., a link to a Wikipedia article) in its 
response. This represents a significant step toward transparency in language model outputs: 
instead of expecting users to trust a black-box response, RAG offers evidence that users can 
independently verify. This capability is particularly valuable in domains that demand high 
reliability—such as medicine, law, and academia. A sourced answer carries far more credibility 
than a mere assertion. As such, RAG not only improves informational quality but also 
strengthens user trust in AI systems. 

RAG has been implemented in many modern question-answering systems. For example, Microsoft’s 
Bing Chat and various enterprise AI assistants employ RAG to generate responses based on updated 
knowledge bases. The RAG architecture introduced by Lewis, et al. [12] consists of two components: a 
retriever and a generator [13]. The retriever typically uses vector embeddings to locate relevant text 
passages from a knowledge corpus—ranging from web-scale search indexes to internal databases. The 
top-k passages are then embedded into the model’s prompt, allowing it to “read” the necessary 
information before answering. 
While RAG is highly effective, it also poses certain challenges: 

• Data and retrieval quality: The accuracy of RAG-generated responses is highly dependent on 
the quality of the knowledge base and the retrieval mechanism. If the database contains false or 
outdated information, or if the retriever selects irrelevant documents, the model may still 
generate incorrect responses—albeit with citations to faulty sources. Thus, RAG demands 
trustworthy data repositories and robust retrieval strategies. 

• System complexity: RAG increases architectural complexity. Instead of relying on a single 
model, it requires orchestration between retrieval and generation components. This may 
introduce latency, though recent advancements have drastically improved retrieval speed. 

• Contextual integration: Integrating retrieved content accurately into the generated response 
remains non-trivial. If the model misinterprets the retrieved information, it may produce out-of-
context or misleading answers. Proper alignment between source and output is critical. 

In summary, Retrieval-Augmented Generation represents one of the most important advances 
toward transforming LLMs into reliable knowledge-delivery systems. It enables models to function as 
dynamic, evidence-backed “living encyclopedias” rather than static reference tools. The combination of 
LLMs’ expressive power with grounded, verifiable knowledge significantly expands the scope of AI 
applications—especially in sensitive and high-stakes domains. 
 
4.4. Self-Critique and the CriticGPT Model 

Another approach to improving the accuracy and reliability of language models is to equip them 
with the ability to evaluate and critique their own outputs. This idea stems from the observation that 
models may initially generate suboptimal responses, but when prompted to review or revise them, 
performance often improves. Instead of relying solely on human post-hoc evaluation, why not allow the 
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AI itself to conduct this process? This is the foundation for mechanisms such as self-reflection, self-
correction, and models designed to act as critics. 

CriticGPT is a concrete example developed by OpenAI, in which a specially fine-tuned version of 
GPT-4 is trained to detect errors in the outputs generated by ChatGPT. Initially, the project focused on 
reviewing programming code generated by ChatGPT—a critical task since incorrect code fails to 
execute. CriticGPT was trained on datasets consisting of ChatGPT outputs annotated by human 
experts who identified mistakes and provided corrections. As a result, CriticGPT can read a model-
generated answer or code snippet and highlight inaccuracies or omissions. 

Notably, CriticGPT’s performance exceeded expectations. In one trial, human annotators supported 
by CriticGPT outperformed unaided annotators by over 60% in identifying errors in ChatGPT outputs. 
This demonstrates that an AI critic can sometimes be more effective than humans at auditing large 
volumes of content, especially when it is familiar with the common failure modes of the base model. 
In terms of impact on truthfulness, the self-critique mechanism offers several key contributions: 

• Error detection and correction: If a model generates an incorrect factual statement—such as a 
wrong date or name—a critic model (or a second-pass of the original model) can flag 
inconsistencies. For example, if ChatGPT incorrectly claims “The UK Prime Minister in 2022 
was Theresa May” (when in fact it was Boris Johnson and then Liz Truss), a critic with 
historical knowledge could recognize the discrepancy and suggest a correction. This process 
mirrors human self-checking prior to submitting work. 

• Learning from mistakes: When integrated into the training process—e.g., via reinforcement 
learning from AI-generated critiques—models can reduce the likelihood of repeating prior 
errors. OpenAI uses CriticGPT in RLHF pipelines to provide AI-generated feedback alongside 
human feedback, allowing newer models to improve through exposure to past critiques. This 
promotes models that “learn” from critique history. 

• Uncertainty and risk signaling: Even when unable to correct an error, some self-critique models 
can flag uncertainty. For instance, models like HonestGPT may append disclaimers such as “I’m 
not confident about this part” when their internal critic detects possible flaws. This serves as a 
caution to users, who may otherwise over-trust fluent but incorrect responses. 

A related class of techniques includes self-asking and debate-based prompting. OpenAI’s “Debate” 
framework [14] for example, features two models debating a question, with a third model evaluating 
the discussion to surface contradictions. This represents mutual critique between models to 
collaboratively reach a more accurate answer. 

However, self-critique also has limitations. If the base model lacks the necessary knowledge, its 
critic may also be uninformed—leading to false agreement on incorrect information. This makes it 
crucial for critic models to be trained with additional knowledge or to have access to external 
information (e.g., via integration with RAG). Moreover, critics can sometimes misjudge: for instance, 
flagging complex yet valid code as incorrect due to misunderstanding. Finally, adding a critique stage 
increases computational cost and latency. 

Despite these challenges, self-critique is a promising direction for improving the safety and 
trustworthiness of AI systems. It echoes Karl Popper’s philosophy of science: progress through 
conjecture and refutation. In this paradigm, the model produces a hypothesis (the answer), and the critic 
attempts to refute it or identify flaws. If errors are found, the model revises its output—repeating the 
cycle until no evident error remains. While this process doesn’t ensure perfection, it clearly drives 
responses closer to truth than single-pass generation. 

The emergence of tools like CriticGPT marks an important step in evolving LLMs from content 
generators to self-aware evaluators. When combined with techniques like Chain-of-Thought and RAG, 
we can envision a multi-component AI system: one model generates answers, another checks logical and 
semantic consistency, and yet another verifies external facts. Together, these components work to 
ensure that the final output is not only accurate and useful but also transparent. 
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5. Philosophical Implications: Can LLMs Be Considered “Fallible Epistemic Agents”? 
Advancements in integrating reasoning into LLMs raise a fundamental philosophical question: Are 

large language models evolving into a form of genuine epistemic agents, albeit in a primitive form? The 
phrase “fallible epistemic agent” implies a subject capable of acquiring and utilizing knowledge about the 
world—yet fallible, in the sense that it can make mistakes and learn from them, akin to human beings 
who are never omniscient and continuously refine their understanding through experience. 

Historically, the dominant view among linguists and AI researchers Bender, et al. [15] has been 
that LLMs are not epistemic agents at all—they are merely statistical parrots that mimic language 
without understanding. The argument is straightforward: these models lack perception, intentionality, 
and semantic reference to the external world, and thus cannot possess “understanding.” John Searle’s 
famous Chinese Room Argument is often invoked here to claim that any system merely manipulating 
symbols—like LLMs processing text—cannot be said to “understand” in any meaningful sense. From 
this perspective, even if LLMs can generate reasoning chains or retrieve information, they are still 
executing formal procedures without beliefs, intentions, or propositional knowledge in the human sense. 

However, Bottazzi Grifoni and Ferrario [16] explores the phenomenon of “enchantment” in human-
LLM interaction, drawing on Wittgenstein’s later philosophy of language. As LLMs increasingly 
master the stylistic and structural elements of human communication, the illusion of understanding 
becomes even more convincing. Rather than overcoming foundational limitations, such advancements 
deepen the illusion—raising serious concerns about our ability to meaningfully control and interpret 
these systems. 

In contrast, Havlík [17] argues that LLMs not only mimic but actively instantiate linguistic 
understanding, despite lacking conscious experience. He challenges the necessity of external reference 
for meaning, proposing instead that semantic significance within LLMs emerges from a complex web of 
internal relationships between linguistic expressions in the training data—aligned with theories of 
inferentialism and semantic holism. Through philosophical critique, Havlík rejects the traditional 
reliance on referential semantics and posits that the empirical success of LLMs across language tasks is 
itself evidence that meaning can be generated internally, without needing real-world referents. This 
view encourages a philosophical realignment, seeing LLMs as legitimate “language-game players,” 
whose study might yield deeper insights into both machine and human cognition—potentially 
reshaping long-held assumptions about meaning and understanding. 

These developments have led some scholars and engineers to entertain a provocative possibility: if a 
system can perform complex reasoning, self-critique, access external knowledge, and generate accurate 
responses, then functionally, it behaves much like an agent with understanding. Some argue that to 
dismiss LLMs as mere statistical engines may constitute a Category X Fallacy—an oversimplification of 
their emerging cognitive behaviors [18]. They contend that emergent cognitive properties may be 
arising within complex systems like GPT-4 that we do not yet fully comprehend. 

Pushing the boundaries further, a group of philosophers has proposed the “Whole Hog Thesis”, 
which asserts that ChatGPT should be recognized as a fully-fledged linguistic and cognitive agent, on 
par with humans [18]. According to this view, ChatGPT meaningfully engages in language: it can 
assert propositions, pose questions, provide answers, and even revise its positions—all markers of 
cognitive agency. Thus, while lacking consciousness, such models may exhibit functional intelligence 
that justifies rethinking what it means to "know" or "understand" in artificial systems. 

How should we understand this debate? Fundamentally, whether LLMs can be regarded as 
cognitive agents depends on how we define cognition and understanding. If one insists that understanding 
must involve consciousness and lived experience—as many philosophers do—then clearly LLMs lack 
these qualities. However, from a behavioral and functionalist standpoint, an LLM that performs logical 
reasoning, retrieves knowledge, and self-corrects might be said to fulfill the functional role of a thinking 
entity—at least within the domain of language. Cognitive behaviorism posits that intelligence can be 
evaluated based on observable behavior. In the classical Turing Test, a machine is considered 
“intelligent” if it can carry out a conversation indistinguishable from that of a human. With techniques 
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like Chain-of-Thought (CoT), RAG, and CriticGPT, modern models like ChatGPT-4 exhibit behavior 
that, in many domains, resembles that of a knowledgeable human: they can consult sources, reason 
logically, express uncertainty, and more. From a behavioral lens, one might tentatively describe them as 
exhibiting some degree of cognitive agency. 

Of course, behavioral resemblance does not imply internal equivalence. A true cognitive agent (e.g., 
a human) possesses beliefs, sensory experiences, goals, and motivations. LLMs possess none of these. 
They have no intrinsic goals—they merely optimize for task-specific responses. They lack 
intentionality—the philosophical notion of “aboutness” or directedness toward real-world entities (e.g., 
to think about Paris is to have a mental representation of Paris). LLMs operate with vectors and 
probabilities, not with world models grounded in perception. Therefore, many philosophers argue that 
even if LLMs mimic reasoning or self-correction, this remains a simulation of cognition, not genuine 
cognition. 

The key lies in the term fallible. Humans are cognitive agents, but not infallible—we make mistakes 
and refine our understanding through them, both individually and collectively (e.g., in scientific 
discourse). Do LLMs follow a similar process? With newer techniques, they partially do. GPT-4 
combined with CriticGPT can identify and revise errors—a rough analogue to learning from mistakes. 
When an LLM retrieves documents to answer questions, it behaves similarly to a person updating their 
knowledge. However, one crucial difference remains: current LLMs do not continuously learn post-
deployment. They do not accumulate long-term memory unless explicitly retrained. Absent specific 
programming, each interaction begins with no memory of the last. As such, it is premature to claim they 
“learn” over time like true agents—unless we consider more complex agent systems (e.g., AutoGPT 
architectures that log outputs and adapt iteratively). 

A more moderate view is to regard LLMs as capable of playing the role of cognitive agents within 
narrow domains and under human guidance. They can simulate reasoning, critique, and even engage in 
multi-role debates to converge on better answers. However, anthropomorphizing them too heavily can 
be misleading. Users may believe the AI “understands” them and project trust or emotion onto a system 
that, in reality, lacks any such awareness. Philosophically, this echoes themes of anti-realism and the 
post-truth era: if humans begin treating a statistical illusion as a genuine epistemic partner, the 
boundary between the real and the simulated becomes dangerously blurred. This could give rise to a 
pragmatist AI stance: it doesn't matter whether the AI truly understands, as long as its outputs are useful. 

Still, from an epistemological perspective, granting LLMs the status of epistemic agents remains 
controversial. An epistemic agent is typically understood as a bearer of beliefs and knowledge. We must 
ask: does an LLM “believe” what it says? Clearly not—it lacks the concept of belief and merely 
calculates responses. It also lacks accountability, a trait often associated with agency. Most scholars 
agree that LLMs do not yet qualify as knowers. Instead, they might be better described as cognitive 
tools—enhancements to human cognition. 

Another intriguing aspect is that as LLMs gain the capacity for self-evaluation and revision, they 
begin to resemble the concept of reflective thinking. Reflection—thinking about one's own thinking—is 
a hallmark of human cognition. If AI can simulate reflection, however mechanistically, does this hint at a 
primitive form of proto-self-awareness? Some AI researchers are exploring whether enhancing feedback 
loops and self-monitoring might induce a limited form of meta-cognition. While speculative, such 
possibilities challenge the boundary between “just a statistical model” and “a thinking system.” 

From a pragmatic standpoint, the question “Is an LLM a cognitive agent?” might best be answered 
contextually. If we use LLMs as tools, we should treat them as tools. But when deployed in autonomous 
agent frameworks (e.g., full-access personal assistants), we must endow them with some level of 
autonomy—functionally treating them as agents. In this case, describing them as cognitive agents may 
be metaphorical rather than literal—but it is a metaphor that proves operationally useful. For example, 
multi-agent systems using LLMs (e.g., solvers, summarizers, critics) have shown strong performance on 
complex tasks. Philosopher Daniel Dennett’s “intentional stance” suggests that attributing beliefs or 
intentions to complex systems can help us predict and interact with them more effectively. Perhaps 
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assuming LLMs are “thinking agents” is such a stance: not a metaphysical claim, but a strategic 
heuristic. 

The integration of reasoning into LLMs raises the possibility of systems that increasingly resemble 
thinking entities. Yet we must carefully distinguish between the simulation of cognition and cognition 
itself. For now, the safest characterization is that advanced LLMs are fallible knowledge machines—
they can err and be corrected, but are not “intelligent” in the full sense. They are indeed fallible, as 
evidenced by the hallucinations and factual inaccuracies that still require human oversight. But do they 
learn in the strong sense? Partially—via fine-tuning and memory retention—but not autonomously like 
biological learners. In the philosophy of science, a distinction exists between the context of discovery 
(generating new knowledge) and the context of justification (explaining or supporting existing 
knowledge). At present, LLMs operate mostly in the latter space. To become true epistemic agents, they 
would need to participate in the former—generating novel beliefs and revising their understanding over 
time. That likely lies beyond the reach of language models alone and may require integration with 
embodied agents or continually learning systems. 

In any case, this open question remains a subject of ongoing debate among philosophers and 
computer scientists. Every advancement in AI forces us to reconsider the boundary between machine 
and mind. The progress in integrated reasoning continues to blur that line—while simultaneously 
deepening our understanding of what it means to think, to know, and to be. 
 

6. Open Discussion on the Risks, Limitations, and Ethical Considerations of Reasoning-
Enhanced Models 

While reasoning-enhanced techniques offer substantial benefits, they also introduce new risks and 
challenges. Moreover, endowing language models with increasingly sophisticated reasoning capabilities 
raises pressing ethical and societal concerns. This section discusses prominent issues ranging from 
persistent hallucination and bias, to systemic complexity, misuse, and the broader philosophical 
implications. 
 
6.1. Residual Hallucination and Reasoning Failures 

Despite the introduction of Chain-of-Thought (CoT), Tree-of-Thought (ToT), Retrieval-
Augmented Generation (RAG), and self-critique mechanisms, LLMs are still not infallible. They can 
produce highly convincing but logically flawed outputs. In fact, improved reasoning can sometimes 
amplify the danger of errors—when faulty conclusions are presented under a veneer of coherent logic. For 
instance, a five-step reasoning chain may go unnoticed if step one is flawed but deeply embedded. Even 
with document retrieval, the model might misinterpret sources—e.g., citing a scientific study and 
drawing an incorrect conclusion from it. This underscores the necessity of continued vigilance from 
users and developers. Most responsible AI interfaces now display disclaimers such as: “This is an AI tool; 
please verify critical information independently.” This is not merely a technical note, but an ethical principle 
of verification. 
 
6.2. Exacerbated “Black Box” Complexity 

Paradoxically, adding reasoning layers can make LLM systems harder to interpret. A basic model 
returning a wrong answer could be debugged by examining training data or model architecture. But in 
a system combining CoT + RAG + Critic, responsibility may lie in retrieval, step 3 of reasoning, or 
critique oversight. This complicates accountability. In AI ethics, the question “Who is responsible when 
AI causes harm?” is already difficult. Complex pipelines make it harder. Therefore, developers must 
prioritize auditability, such as logging each reasoning step for post-hoc analysis. Explainability must 
remain a core design principle. 
6.3. Bias and Fairness in Reasoning 
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LLMs are trained on biased data, and reasoning modules may inadvertently reinforce or conceal 
those biases in subtle ways. A model might offer a seemingly rational argument that rests on prejudiced 
premises. For example, it may conclude that Group A is “less capable” than Group B based on skewed 
training data—delivered in an objective tone. This is dangerous because the logic appears valid, yet the 
underlying bias goes undetected. Moreover, critic models trained on human-labeled data may inherit 
majority-based societal biases. Ethical oversight must include testing models across sensitive scenarios 
(e.g., gender, race, culture) to ensure no discriminatory outcomes are produced under the guise of 
objectivity. 
 
6.4. Misuse for Malicious Purposes 

A model capable of multi-step planning and strategic reasoning can be abused for illicit purposes. 
An adversary might exploit ToT to instruct the model to plan a cyberattack or financial fraud. While 
LLMs usually reject harmful prompts, a sophisticated user could phrase it as a “security consultant 
scenario,” prompting the model to simulate a hacker’s plan. Thus, content moderation and guardrails 
remain essential—even in reasoning-enhanced systems. Developers must continuously evolve safety 
filters and train models to detect and reject adversarial prompts, especially those that use indirect 
reasoning (e.g., via CoT) to bypass filters. 
 
6.5. Large-Scale Misinformation 

In the post-truth era, the proliferation of fake news is a serious concern. Reasoning-capable LLMs 
elevate the threat: they can generate thousands of well-structured articles with citations—yet all 
serving a disinformation agenda. Such models could fabricate entire pseudo-scientific websites with 
fabricated or distorted references. This saturates the information space, making it increasingly difficult 
for the public to distinguish fact from fiction. Policy responses may include source verification systems, 
watermarking for AI-generated content, and public critical thinking education. Ironically, reasoning 
techniques like CriticGPT could also be leveraged against misinformation—e.g., AI critics reviewing 
internet texts for logical fallacies or manipulative rhetoric. The future may witness AI vs. AI battles: 
bad actors generating falsehoods, while ethical AIs attempt to refute them. 
 
6.6. Technical Limits and Over-Optimistic Expectations 

Enthusiasm around CoT, RAG, and similar techniques has sparked hopes that “AI is approaching 
human-level understanding.” But as discussed philosophically, these models still lack genuine 
comprehension. Reasoning mechanisms can fail in out-of-distribution or overly complex cases. A serious 
risk is over-reliance: users might trust AI assistants for medical or legal advice without verifying 
outputs—potentially leading to severe consequences. This is known as automation bias: the tendency to 
over-trust automated systems. Reasoning structures and citations may create an illusion of certainty, 
encouraging users to bypass verification. Ethically, developers must reinforce the principle of human-in-
the-loop—keeping humans as decision-makers for high-stakes applications, at least until AI safety 
reaches demonstrably high thresholds. 
 
6.7. Responsibility and Transparency 

As AI systems increasingly behave like agents, ethical questions about responsibility intensify. If AI 
advice leads to harm (e.g., a medical misdiagnosis), who is liable? The developer, service provider, or 
end-user? Current legal frameworks lag behind AI development. Many experts propose independent 
certification mechanisms for complex AI systems—akin to clinical trials for pharmaceuticals. 
Transparency in disclosing a model’s capabilities and limitations is critical. Ethically, over-promising is 
deceptive. If a model is safe in only 90% of cases, it must be communicated honestly—not marketed as 
flawless. 
 
 



1088 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 7: 1072-1090, 2025 
DOI: 10.55214/25768484.v9i7.8810 
© 2025 by the authors; licensee Learning Gate 

 

6.8. Humanistic and Philosophical Impact 
At a broader societal level, reasoning-capable AI raises questions about human value and identity. If 

AI can debate philosophy, write literature, or compose music—as is increasingly the case—what role is 
left for human creativity? Some fear intellectual passivity, with humans deferring thinking to machines. 
For example, students relying on AI for essays may lose the ability to form independent arguments. 
Society may become habituated to consulting AI before thinking. This goes beyond using calculators—
AI is now replacing parts of the creative and reflective process. Thus, a core ethical responsibility is to 
augment rather than replace human cognition. Education must adapt: teaching people how to 
collaborate with AI, not surrender to it. 

On a more optimistic note, if governed responsibly, AI reasoning tools could become 
transformational knowledge aids. One can envision a future where scientists have AI assistants to cross-
examine hypotheses, students have tireless AI tutors, and policymakers consult AI for large-scale data 
analysis. These outcomes are beneficial only if we develop and deploy AI ethically and accountably. 

Principles such as transparency, fairness, trustworthiness, privacy, and safety must be embedded 
into AI development. Encouragingly, major AI labs (e.g., OpenAI, DeepMind) now maintain dedicated 
AI alignment teams to align models with human values. Integrating reasoning is not just about making 
AI smarter—it’s about enabling AI to understand and respect human-imposed constraints, a 
rudimentary form of moral reasoning. Indeed, one frontier of AI research is training models to interpret 
ethical and legal norms, moving beyond hard-coded blocklists to context-aware self-censorship. This is 
enormously difficult (morality is more abstract than logic), but critically important. 

In summary, technical advancement must go hand-in-hand with ethical governance. Every new 
capability demands reflection on safe and fair use. The involvement of philosophers, legal scholars, and 
sociologists in the development pipeline is essential to ensure that AI’s “great leap forward” serves 
humanity—rather than bypasses it. 
 

7. Conclusion 
The integration of reasoning techniques into large language models (LLMs) marks a significant 

milestone in the pursuit of more trustworthy and epistemically capable AI. From sequential chains of 
thought that allow multi-step problem solving, to branching trees of thought that explore alternative 
solutions; from real-world knowledge retrieval that mitigates hallucination, to self-critique mechanisms 
that support error correction—these advances collectively bring LLMs closer to how humans approach 
truth. If earlier LLMs could be described as “stochastic parrots” mimicking human language, today’s 
systems have begun to “pause to reflect,” to “consult the literature” when needed, and even to “check 
their own work.” These improvements yield practical benefits: increased accuracy, more substantiated 
information, and responses that are both more useful and more transparent for users. 

At the same time, these advances open up profound philosophical questions. How should we redefine 
"understanding" in light of a machine capable of logical reasoning? Where does the boundary lie 
between objective truth and pragmatic persuasiveness in AI outputs? 

A key insight is that truth-seeking in AI is not a fixed endpoint, but an ongoing process of 
refinement and balance. Reasoning integration represents a long stride forward—but not the final 
destination. We may envision the future of LLMs as a convergence of many capabilities: listening to 
users (understanding context and intent), engaging in introspection (reflection), learning from the 
world (data updating), and adhering to ethical values in decision-making. Realizing this vision requires 
interdisciplinary collaboration: computer science provides algorithms and computational power, 
philosophy offers frameworks for truth and intelligence, cognitive science benchmarks AI against the 
human mind, and social science ensures that AI development serves collective human well-being. 

Reflecting on the title of this work—“Reasoning Integration: A Long Step Toward Truth in Large 
Language Models”—its implications have been explored from multiple perspectives. Indeed, embedding 
reasoning capabilities brings LLMs closer to generating accurate and meaningful answers. But a "long 
step" does not mean the journey is over. Today’s LLMs are more capable, yet more complex—requiring 
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deeper understanding and responsible stewardship. Rather than remaining confined to research labs, 
LLMs are becoming epistemic partners across domains—education, healthcare, governance, creative 
arts. This partnership must be founded on mutual trust and intelligibility (even if AI does not literally 
“understand” us, it must be designed to interact harmoniously with humans). 

The philosopher Aristotle once said: “All knowledge begins in wonder.” And we have good reason to be 
amazed by what language models can now do—from producing incoherent babble to engaging in 
structured philosophical debate. Yet this wonder must be tempered by humility and caution. AI, no 
matter how advanced, remains a human creation. Our task is to ensure it reflects the best of human 
thought—while constraining its capacity to mirror our worst (bias, error, harm). 

Reasoning integration is indeed a significant step forward—but the road to truth-seeking AI is even 
longer. Each new capability must be examined through technical, philosophical, and ethical lenses. This 
research has sought to bring these dimensions together in examining a pivotal advance. We hope that 
this interdisciplinary approach continues in future work—not only to build smarter AI, but also wiser 
AI—systems that seek and serve truth in ways that benefit the common good of humanity. 
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