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Abstract: Internet of Things (IoT) devices use the lightweight RESTful Constrained Application 
Protocol (CoAP). Resource-constrained IoT networks need efficient congestion control (CC) for reliable 
communication. Radio channel capacity and device hardware limitations can cause congestion. CoAP, 
which operates on top of UDP, must independently manage CC. Simple CoAP rules handle congestion 
but do not react to changing network conditions. IoT applications demonstrate considerable resource 
limitations that present new issues for the design of CC techniques. Current CC mechanisms, such as 
Default CoAP and CC with advanced mechanisms (CoCoA), exhibit restricted adaptation to fluctuating 
traffic conditions. This research presents a three-state Markov model for CC that utilizes probabilistic 
state transitions to adapt dynamically to network conditions and manage varying congestion levels 
effectively. The proposed Markov model is validated against Default CoAP and CoCoA using Contiki 
OS and the Cooja simulator. A comparative performance analysis of the Markov model has shown 
199.237 kbps throughput, 22.174% packet loss, and a delay of 126.603 ms compared to the Default 
CoAP and CoCoA mechanisms at higher transmission intervals. These findings suggest that Markov-
based adaptive techniques could improve CC in constrained networks, enabling more reliable IoT 
communications. 

Keywords: Congestion control, Internet of things, constrained application protocol, Markov model, Resource-constrained 
networks. 

 
1. Introduction  

THE Internet of Things (IoT), an advanced technology, promises to revolutionize the global world 
through the interconnection of embedded systems and smart devices. These devices are low-power in 
nature and communicate over the Internet [1]. IoT applications include smart and remote medical 
systems, smart cities, smart industries and factories, smart grids and meters, remote asset monitoring 
and control, smart agriculture, emergency reporting services, vehicle fleet management systems, and 
many more. These platforms depend on these smart devices and have limited hardware and computing 
power because they work in an environment with few resources [1-3]. 

Recent advancements in mobile communication have introduced cellular protocols like Long-Term 
Evolution (LTE), but they are not well suited for low-power and low-data-rate devices such as IoT 
sensors. Several new IoT standards have emerged to address this issue. The next generation of mobile 
networks and beyond is designed to solve the problems of 

older cellular standards and be a key part of future IoT developments [4]. The IoT includes many 
different technologies that work with Wireless Sensor Networks (WSNs) to send and receive data. 
These technologies work at different levels of communication, such as the physical, network, transport, 
and application layers. A thorough analysis reveals that a wireless sensor network consists of four 
fundamental components: A group of sensor and actuator nodes is linked to a group of gateways that 
connect to a server or broker that many clients can use to obtain send information [5]. 

The rapid expansion of IoT has generated considerable challenges in network connectivity, 
especially in resourceconstrained environments. These network devices differ due to their limited 
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memory and processing capabilities, reduced radio bandwidth, and elevated bit error rates. All of these 
factors significantly affect congestion in constrained networks [6]. Establishing protocols and standards 
is essential for devices with limited hardware and computational capabilities to fulfil IoT requirements. 
The Internet Engineering Task Force (IETF) has developed various communication protocols for the 
IoT that operate on low-power and lossy networks. The IETF Core Working Group (CWG) 
standardised the Constrained Application Protocol (CoAP) [7] making it easier for IoT networks to 
share information. In WSNs, sensors and actuators are often placed in tricky spots where multipath 
fading causes a lot of bursty packet loss on wireless channels [8]. Because these devices don’t have a lot 
of power, memory, or computing power, protocols like Message Queue Telemetry Transport (MQTT), 
Extensive Messaging and Presence Protocol (EMPP), Advanced Message Queuing Protocol (AMQP), 
and Constrained Application Protocol (CoAP) need to handle large amounts of data quickly and 
efficiently. 

The subscription/notification paradigm serves as the foundation for MQTT, a lightweight 
transport protocol. It is characterised by its compact size, low power consumption, and effective 
dissemination of information to multiple recipients. Because it relies on the Transport Control Protocol 
(TCP), its overall application latency cannot work in places where packets are lost a lot due to the need 
for retransmissions [9]. Through protocol extensions, the IoT has modified EMPP, a communication 
protocol for message exchange. Because MQTT needs TCP for transport and Extensible Markup 
Language (EML) for message encoding, it has some limitations that make it ineffective in some 
situations [9]. For IoT applications, AMQP is a message exchange protocol that offers both reliability 
and security. Because AMQP depends on TCP for transmission, packet loss has a great effect on it and 
causes a lot of latency when conditions are not ideal [10]. 
 

 
Figure 1. 
CoAP Sub-layers. 
Source: Akpakwu, et al. [11]. 

 
For restricted nodes and networks, COAP is a specialised web transfer protocol. Facilitates a 

request and response framework between endpoints and enables the inherent discovery of services and 
resources. CoAP is designed to work smoothly with Hypertext Transfer Protocol (HTTP) for web 
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integration. It also meets certain needs, such as the need for multicasting and low complexity and 
overhead in some situations [7, 12]. 

CoAP is expected to meet the needs of low-power and low-loss networks (LLN) and allow global 
Internet services to use light protocols [13, 14]. CoAP does not have a builtin end-to-end congestion 
control (CC) mechanism, so it uses a different CC method from the start. The resolution of a CC system 
is still inadequate, especially as the traffic load on the IoT network approaches its limits. The techniques 
employed by TCP in the majority of conventional Internet applications allow for end-to-end congestion 
control. However, due to the dynamic nature of LLNs, conventional Internet protocols are ineffective in 
resource-constrained environments [15, 16]. Moreover, CoAP operates independently of TCP; it uses 
the User Datagram Protocol (UDP) for lightweight applications and autonomous congestion control 
strategies. The conventional CoAP consists of two abstract layers. In the RESTful paradigm, the upper 
layer facilitates the transmission of requests and responses, while the bottom layer governs the 
transmission of CoAP messages via the UDP protocol [17] as shown in Fig. 1 [11]. 

The main cause of IoT congestion is burst traffic, which happens when a lot of devices are connected 
and networks do not have enough resources to handle large amounts of data being sent quickly. 
Therefore, it is crucial to manage congestion to maintain network stability and provide optimal quality 
of experience (QoE), which in turn ensures superior quality of service (QoS). The objective of the plan is 
to ensure that the essential management rules are relevant in the appropriate stages and levels of detail. 
In IoT networks, traffic moves differently than in traditional networks, and congestion is a key factor 
that lows data transfer. Consequently, it is imperative to implement CC methods within IoT to ensure 
real-time QoS [18]. 

The CoAP is a lightweight protocol that provides efficiency for IoT devices with restricted 
computational and energy resources. However, congestion in IoT networks continues to pose a 
substantial barrier, impacting performance measures such as packet delivery, throughput, and latency. 
Current methods for controlling traffic jams, such as as Default CoAP and Congestion Control with 
Advanced Mechanisms (CoCoA), are not very flexible when traffic conditions change. 

This study introduces and evaluates a Markov model-based congestion control strategy designed to 
predict and proactively respond to network congestion. By modelling network conditions through 
discrete states and using probabilistic transitions informed by observed metrics, the Markov model 
enables earlier and more precise adjustments to transmission behaviour. 

The remainder of the paper is organised, as follows: Section II includes a review of similar studies; 
Section III gives information about the benchmark protocols and the analytical model of the proposed 
three-state Markov model. Section IV discusses the simulation setup and the performance metrics used 
for the evaluation. Section V presents the simulation and discussion results. Section VI concludes and 
presents possible suggestions for future work on CoAP CC for constrained networks. 
 

2. Related Work 
Several works have been conducted in ad-hoc wireless and sensor networks for CC. However, in our 

work, we base this on the analytical model for CC mechanisms in CoAP. 
The authors in Chen and Kunz [19] looked at latency and loss in a WSN based on CoAP while 

taking into account multi-hop routing. The study assesses the efficacy of a stack comprising CoAP and 
6LoWPAN over an IEEE 802.15.4 radio connection utilising the Contiki OS and Cooja simulator in 
conjunction with the CoAP framework Californium (Cf) while evaluating the quality of service 
parameters, including throughput, endto-end delay, and packet loss. In Collina, et al. [20] the authors 
assess latency, loss and throughput in a severely damaged wireless network and compare the 
performance of CoAP and MQTT. This study shows that the protocols work well, with great speed and 
reliability, making them a strong choice for medical IoT applications and beyond. Betzler, et al. [21] 
looked at how well CoAP and MQTT handled congestion by measuring delay, loss, and throughput 
under a range of network conditions. This work looks at how well the chosen IoT protocols work under 
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different amounts of traffic, the likelihood of losing packets, and delays to find the best protocol for the 
application’s needs. 
In Akpakwu, et al. [22] the authors introduced CoAP Simple Congestion 

Control/Advanced (CoCoA), a sophisticated CC technique for CoAP that is being standardised by 
the IETF CoRE working group. In addition to a variable backoff factor (VBF) and aging processes, 
CoCoA offers new ways to estimate RTT. This lets you make dynamic and regulated retransmission 
timeout (RTO) changes, which is perfect for IoT communications. They did an analysis of the 
performance of CoCoA and a number of other algorithms, including the most advanced mechanisms 
made for TCP. Experiments conducted in real testbeds form the basis of the research. A testbed made up 
of nodes running the IETF’s IPv6-based IoT protocol stack over IEEE 802.15.4 is used for the first set 
of experiments. The second series of studies based on GPRS, a prevalent M2M solution for IoT. Their 
findings show that, compared to the other methods they looked at, CoCoA always outperforms the 
default CoAP CC in all of the situations they tested it in Bhalerao, et al. [23]. Likewise, Herrero [24] 
examines the constraints of CoCoA and suggests enhancements that are assessed through performance 
evaluation. This study looks at CoCoA and, based on what they found, the authors suggest and create 
CoCoA 4-state-Strong, which uses a 4-state estimator for variable backoffs to greatly improve 
throughput, even in very unreliable networks, while maintaining a higher goodput. In Hartke [25] the 
authors present a two-state analytical model that connects how well applications perform with loss of 
network packets and helps to estimate how lossy wireless channels affect CoAP situations. This study 
examines a mathematical model to analyse the effects of the transport mechanisms employed by CoAP 
for the transfer of sensor data. This model calculates the expected loss and delays of application packets, 
which are then compared to the actual values obtained through a set validation process. 

The aforementioned work emphasises performance and a two-state Markov model applicable to 
real-time estimation of latency and loss in applications. We propose a three-state Markov model for 
congestion control that includes an intermediate stage to more efficiently regulate varying congestion 
levels. 
 

3. Coap Congestion Control Mechanisms 
This section delineates the CC algorithms used in our evaluations. Alongside Base CoAP [7] we 

carry out evaluations using CoCoA [6]. 
 
3.1. CoAP Traffic and Base CC Specification 

CoAP is a Representational State Transfer (RESTful) protocol that facilitates resource manipulation 
on servers using the operations GET, PUT, POST, and DELETE. The objective of CoAP is to serve as 
a lightweight substitute for HTTP. Wireless networks with limited memory, processing capabilities, 
and radio infrastructure were the target audience for the creation of CoAP. 

CoAP functions in two main modes, employing UDP for reliable data transmission: (a) a 
confirmable (CON) transmission scheme (as illustrated in Fig. 2(a)), in which a packet is considered 
delivered upon receipt of an acknowledgment (ACK) from the remote endpoint within the 
retransmission timeout (RTO). If the server does not provide an ACK before the RTO expires, CoAP 
ensures reliability by retransmitting the message. When using the non-confirmable (NON) transmission 
scheme (as illustrated in Fig. 2(b)), packets with sensor data, such as temperature and humidity readings, 
are sent one way without waiting for an ACK, there is no guarantee of successful delivery. According to 
RFC 7641 [27], this scenario follows the CoAP extension for resource observation. In this case, a single 
subscription forces the server to continue to send NON-sensor data. 
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Figure 2. 
CoAP Traffic Modes. 
Source: Hartke [25]. 

 
Congestion frequently occurs in networks with limited devices due to the inadequate processing 

power of wireless nodes and the slow speeds of radio links. Congestion leads to two primary issues: 
packet collisions and saturated packet buffers, both of which result in packet loss and increased delays. 
Loss of confirmed CoAP messages necessitates retransmissions, leading to increased traffic and potential 
exacerbation of congestion. To address network congestion resulting from frequent packet 
retransmissions, CoAP employs a basic congestion control method, outlined as follows: 

When transmitting a CON message, CoAP randomly chooses an initial RTO value ranging from 2 
to 3 s for the initial message transmission. If the message transmission initiator who sent the message 
doesn’t get an ACK from the destination endpoint by the end of the timer set for this RTO value, a loss 
is assumed and the CoAP message has to be sent again. CoAP reduces network congestion by doubling 
the retransmission timeout (RTO) value of the resent packet. This is done with a binary exponential 
backoff (BEB) strategy. This CC technique applies to all CON CoAP communications, irrespective of the 
target endpoint. The NSTART parameter in the CoAP base specification controls the maximum number 
of exchanges that can happen at the same time with a certain destination endpoint. The specification 
advises configuring NSTART to 1, which is adequate for the majority of CoAP applications. 

The foundational specification of CoAP delineates three essential components that constitute the 
CoAP CC mechanism: 

• The initial transmission of a CON CoAP message uses the RTO computation. 

• Before retransmitting a CON CoAP message, the RTO applies the backoff mechanism. 

• The state information concerning the destinations of CON COAP messages is retained. 
 
3.2. CoCoA 

CoCoA is an adaptive technique for round-trip time (RTO) estimation, similar to the RTO 
estimation mechanism used in TCP [26]. CoCoA employs two RTO estimators that utilise TCP RTO 
estimations: a strong estimator that relies on ACKs from the original transmission and a weak estimator 
that relies on ACKs from retransmissions. 
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CoCoA computes the averages of the strong and weak RTT measurements, RTTstrong and RTTweak, 
respectively, which are determined as follows when a new RTT measurement (RTTXnew) is executed by 
using Equations13 and 2: 

RTTV ARX = (1 − β) × RTTV ARX+                           (1) 

β × |RTTX − RTTXnew 

RTTX = (1 − α) × RTTX + α × RTTXnew (2) 

X denotes strong or weak correspondingly, utilising α = 0.25 and β = 0.125. 
As a result, each update of RTTX will lead to a corresponding update of RTOX as given by Equation 3 

RTOX = RTTX + K × RTTV ARX (3) 
The default values for Kstrong and Kweak are 4 and 1, respectively. The overall RTO value for a 

destination is determined by updates from either the strong or weak RTO estimators, calculated as 
RTOoverall by Equation 4. 

RTOoverall = λ × RTTX + (1 − λ) × RTOoverall (4) 

where λ equals 0.5 for a strong estimator update and 0.25 
for a weak estimator update. 

The general RTOoverall is used to determine the initial RTO (RTOinit). CoCoA randomly selects RT0init 

from the range 
[RTOoverall, RTOoverall ×1.5]. At timeout, CoCoA uses the variable backoff factor (VBF) to modify the 

backoff value based on RT0init of a transmission, in contrast to the BEB employed in the base CoAP CC 
specification. When RT0init is less than 1 s, a 3 backoff factor is set for retransmission. This reduces the 
chance of unwanted retransmissions that could happen because the network is busy. In contrast, when 
RT0init exceeds 3 s, a backoff factor of 1.5 is established for retransmissions. If the value of RT0init is 
between 1 s and 3 s, a backoff factor of 2, corresponding to the BEB of the base CoAP CC specification, is 
used for retransmission. 

The integration of aging RTO aligns the RTO value with the default RTO value of 2 s over 
extended intervals without changes in the RTO. If the RTO exceeds 3 s and remains constant for a 
duration of 4×RTO, the new RTO is determined using the formula RTO = 1+0.5×RTO. The approach 
sets the new RTO to double the existing RTO if it is less than 1 s and is constant for a duration of 16 × 
RTO. 
 
3.3. Three-State Markov Model for Congestion Control 

This section provides a detailed description of formulating the proposed CC as a Markov process 
with three congestion states. The three-state Markov model consists of a number of separate parameters 
that define its network behaviour in CC. 

1) Congestion States of the Model: Figure 3 illustrates the proposed CC approach, which is based on a 
three-state Markov model. The network model represents the system behaviour through the Normal, 
Medium, and High congestion states, respectively. While the channel is in the Normal state, there is a 
successful transmission of packets with fewer delays than when the channel is in the High congestion 
state with a high probability of loss. 
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Figure 3. 
A three-state Markov model for congestion control in CoAP for IoT-based networks.  

 
Where S1, S2, and S3 represent the congestion states, respectively [23]. 

The three-state Markov model represents the network’s behaviour during congestion based on the 
following states, which are characterised below with the following parameters: 

• State 1 (S1): Low Congestion - This state represents a situation where the network is not 
congested and there is sufficient communication capacity. The system operates normally, with 
little to no need for congestion control measures. The network is operating normally, with 
minimal latency and successful packet delivery. 

• State 2 (S2): Moderate congestion - In this state, the network is experiencing moderate 
congestion, and some form of congestion control (e.g. packet drop, rate limiting) might be needed 
to maintain network performance. The network encounters moderate congestion, resulting in 
increased queueing delays and sporadic packet loss; however, it remains manageable. 

• State 3 (S3): High Congestion - In this state, the network is highly congested, leading to 
significant delays, packet losses, and potential timeouts. Aggressive congestion control measures 
are required to avoid further degradation. The network is experiencing extreme congestion, 
leading to considerable packet loss and prolonged queueing delays. 

2) State Transition Probabilities: The transitions between these states are regulated by a Markov 
process, in which the likelihood of transitioning from one state to another is based solely on the present 
state. We delineate the transition probabilities as follows: 
where Pij denotes the likelihood of transitioning from state Si to Sj, with the constraint (see Equation 5): 
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∑ 𝑃𝑖𝑗

3

𝑗=1

= 1,  ∀𝑖 ∈ [1,2,3]                                           (5) 

Where: 
P11 : Probability of remaining in S1 (Low State) 
P12 : Probability of transitioning from S1 to S2 
P13 : Probability of transitioning from S1 to S3 
P21 : Probability of transitioning from S2 to S1 
P22 : Probability of remaining in S2 (Moderate Congestion) 
P23 : Probability of transitioning from S2 to S3 
P31 : Probability of transitioning from S3 to S1 
P32 : Probability of transitioning from S3 to S2 
P33 : Probability of remaining in S3 (High Congestion). 
 The transition matrix P is given by Equation 6: 

𝑃 =  (
𝑃11  𝑃12  𝑃13

 𝑃21  𝑃22  𝑃23

 𝑃31  𝑃32  𝑃33

)                              (6) 

where each row sums to 1. 
3) Steady-State Probabilities: The steady-state probabilities π1, π2, and π3 represent the long-term 

probability that the network will be in states S1, S2 and S3, respectively. We calculate these probabilities 
by solving the system of linear equations. 

π1 = π1P11 + π2P21 + π3P31, 
π2 = π1P12 + π2P22 + π3P32,          (7) 

π3 = π1P13 + π2P23 + π3P33, 
π1 + π2 + π3 = 1. 

Equation 7 can be represented in matrix form as follows in Equation 8: 
 

[

𝑃11 −  1  𝑃21  𝑃31

 𝑃12  𝑃22 −  1  𝑃32

 𝑃13  𝑃23  𝑃33 −  1 
 1  1  1

] [

𝜋1

𝜋2

𝜋3

]

=  [

0 
 0 
 0 
 1

] 

(8) 

This system of linear equations can be solved using Gaussian elimination or numerical methods. 
 

4. Evaluation Setup 
This section provides details on the simulation setup that we used to analyze performance 

evaluations of the three CC mechanisms presented. This procedure includes the simulator settings, the 
network topologies considered for the traffic patterns, and the various performance indicators that were 
used to validate the performance evaluations. 
 
4.1. Simulation Setup 

Designed for traditional WSN and IoT, Cooja [27] is an open source simulation tool for Java-based 
Contiki OS [28] used to emulate devices with limited network resources and perform performance 
measurements. A fundamental characteristic of Cooja is its simulation of the hardware of commercially 
available wireless sensor nodes, which considers the hardware specifications and processing capabilities 
of the actual nodes. You can upload the compiled binary image file of a node into the simulated nodes, 
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then execute the compiled program code using the selected node type’s emulation model during the 
simulations, just like a real node would. 

This platform utilizes an integrated JavaScript simulator editor, gedit, to configure simulation time 
and compute performance metrics. This network simulator facilitates the simulation of sensor networks 
at three distinct levels: the machine code instruction set, the application level, and the operating system 
[29]. From left to right, Fig. 4 compares the IETF communication protocol stack and the Contiki 
implementation platform used for evaluation [11]. 
 

 
Figure 4. 
The default IETF communication protocol stack against its implementation in Contiki platform. 
Source: Akpakwu, et al. [11]. 

 
We carefully selected two IEEE 802.15.4 capable motes with the same radio transceiver (CC2420) 

[29] for this simulation: the Moteiv Tmote Sky [30], a hardware equivalent of the TelosB motes, and 
the Zolertia Z1 mote. The relevant features for the different motes used are defined in Table I, showing 
their unique capabilities [11]. 
 
Table 1. 
Hardware simulation parameters for the Wismote and Moteiv Tmote sky wireless sensor nodes [17]. 

Features Z1 Tmote Sky 

RAM 8 KB 10 KB 
ROM 92 KB 48 KB 

MCU MSP430F2617 MSP430F1611 
RADIO CC2420 CC2420 

 
The evaluations of the CC methods will be examined while considering the constant traffic scenario: 

• Constant bit rate (CBR) pattern: This describes a scenario in which nodes send messages at 
regular, predetermined intervals directly to a sink node. In the IoT, the packet generation rate 
remains constant over time, making it predictable and ideal for applications requiring consistent 
data flow, such as streaming or telemetry. The packet inter-arrival times are homogeneous and 
straightforward to analyze due to their steady load on the network. Generally, we need to forward 
these data to a database or service that can store and process them. 
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In the performance evaluation of the CC mechanisms, we consider the grid topology for simulations. 
In this deployment, the positioning and number of nodes vary, revealing specific differences, such as the 
number of direct neighbours, the distance between the source and destination of the CoAP request, and 
the number of nodes concurrently competing for the radio channel. 
 

 
Figure 5. 
A 36-grid network topology. 1 and 2 represent the RPL border router and sink node, respectively. 

 
The RPL border router’s job is to start the Destination Orientated Directed Acyclic Graph 

(DODAG), which is the network setup created and maintained by RPL, and to keep the routing 
information collected for all nodes in the DODAG [30]. In the simulations, the RPL border router is 
designated solely as a relay for CoAP communications; it neither generates CoAP messages nor serves 
as the ultimate endpoint for them. Contiki OS exclusively provides the storage mode for RPL [30]. RPL 
border routers require more RAM than other network nodes, leading to their designation as TMote Sky 
motes. Compared to the Z1 motes used in all other network nodes, a TMote Sky provides an additional 
2 kbytes of RAM for storing routing information. The Z1s, on the contrary, provide an increased ROM 
capacity, allowing greater allocation for application coding and CC control methods for CoAP. 
The simulation employs a Unit Disc Graph Medium 

(UDGM) radio model for radio transmissions, which features circular transmission and incorporates 
interference zones. The UDGM radio model employs a static link delivery ratio (LDR) configuration. 
When a node transmits a packet, other nodes within the transmission range can receive it. Nodes within 
the interference range cannot receive the packet; nevertheless, it may induce collisions with other 
packets delivered concurrently. The grids illustrated in Fig. 5 establish the transmission ranges of the 
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nodes at 10 m, which corresponds to a square unit edge. We employ the 802.15.4 MAC layer protocol 
and the UDGM propagation model in the MAC and physical layers, respectively. 

The simulations of the constant traffic scenario have a duration of 10 minutes. We repeated the 
simulations five times, each with a different transmission interval, for this evaluation. The simulation 
setup and network scenario of this section serve as the basis for evaluating the various CC approaches 
for CoAP using several performance metrics. 
 
4.2. Congestion Control Performance Metrics 

To evaluate and compare the performance analysis of CC mechanisms for CoAP, we decided to 
consider a set of performance metrics. We selected these metrics to determine the performance of the 
network topology under the CBR traffic pattern. Using steady-state probabilities, the expected values 
for key performance metrics can be derived. We use the following metrics to evaluate the performance of 
the Markov model: 

1) Throughput (Tp) : The successful delivery rate data packets over the network is known as 
throughput. It is defined by Equation 9: 

 
(𝑇𝑝) =

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
 

(9) 

Markov model computes the expected throughput as follows using Equation 10: 
 Tp = π1Tp1 + π2Tp2 + π3Tp3. (10) 
where Tp1,Tp2,Tp3 represent the throughputs in states S1,S2,S3, respectively. 

2) Packet Loss Rate (Pl) : The packet loss rate indicates the ratio of lost packets to the total packets 
transmitted on the network. It takes the following form, as indicated by Equation 11: 

 
(𝑃𝑙) =

𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝐿𝑜𝑠𝑡

𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡
 

                    (11) 

In the Markov model, the total packet loss rate is calculated as a weighted summation of the loss rates 
throughout each state, as indicated by Equation 12: 

Pl = π1Pl1 + π2Pl2 + π3Pl3,          (12) 
where Pl1,Pl2,Pl3 are the loss rates in states S1,S2,S3, respectively. 

3) Round-Trip Time (RTT): The round trip time (RTT) is the duration required for a packet to 
cross from the sender to the receiver and return. It encompasses the delays attributable to transmission, 
propagation, processing, and queueing. The RTT is calculated as follows in Equation 13: 
 

RTT = Transmission Delay + Propagation 
Delay  
             + Processing Delay + queueing Delay 

           
(13) 

 
The Markov model calculates the expected RTT as follows using Equation 14: 

RTT = π1RTT1 + π2RTT2 + π3RTT3. (14) 
where RTT1,RTT2,RTT3 represent the RTT in states S1,S2,S3, respectively. 
V. PERFORMANCE EVALUATION 

This section compares how well the Default CoAP, CoCoA, and the new Markov Model perform 
based on three important measures: throughput, packet loss, and latency. Transmission intervals 
ranging from 1 to 25 were used to simulate different network conditions, reflecting variations from low 
to high congestion. The results clearly show that the Markov model performs better in all areas, 
proving it can effectively adjust to changing network conditions using its probabilistic state-based 
system. 
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4.2.1. Throughput vs Transmission Interval 
 

 
Figure 6. 
Performance evaluation based on data transmission interval for throughput. 

 
Table 2. 
 Summary of generated results for Throughput (kbps) at different transmission intervals. 

Intervals MM (Tp) CoCoA (Tp) CoAP (Tp) 
1 247.254 217.925 176.054 

5 241.053 207.944 162.598 
10 230.741 187.230 138.435 

15 218.313 175.990 119.073 

20 210.815 158.610 101.825 
25 199.237 145.065 78.714 

 
Throughput, measured in kilobits per second (kbps), indicates the efficiency of the protocols in 

successfully transmitting packets across the network. Fig. 6 illustrates that the throughput of all 
protocols decreases as the transmission interval increases, corresponding to higher congestion levels. 

However, the Markov model maintains a consistently higher throughput across all intervals 
compared to both CoCoA and Default CoAP. The Markov model maintains throughput levels near 248 
kbps at low transmission intervals and gradually decreases to about 200 kbps during severe congestion. 
In contrast, CoCoA initiates at approximately 218 kbps and deteriorates more rapidly, and default CoAP 
demonstrates the most pronounced decline, dropping below 80 kbps at high intervals. This performance 
demonstrates that the Markov model may more effectively adapt its transmission strategy in advance to 
maintain network efficiency despite unfavourable conditions. 

The throughput advantage of the Markov model is due to its ability to predict network congestion 
trends through transition probabilities between states, thereby optimising packet generation rates 
without relying on packet loss to initiate reactive actions, as demonstrated in CoCoA and Default CoAP. 
Table 2 presents the throughputs at different intervals for the three protocols evaluated. 
4.2.2. Packet Loss vs Transmission Interval 
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Figure 7. 
Performance evaluation based on data transmission interval for packet loss. 

 
Table 3. 
Summary of generated results for Packet Loss (%) at different transmission intervals. 

Intervals MM (Pl) CoCoA (Pl) CoAP (Pl) 

1 2.906 4.302 5.312 

5 5.977 7.994 10.771 

10 9.825 13.195 16.778 

15 14.01 18.611 23.769 

20 18.104 23.169 29.928 

25 22.174 28.243 37.441 

 
Packet loss serves as a vital metric for assessing network reliability and the extent of congestion. 

Figure 7 shows that packet loss increases with the transmission interval across all three protocols. The 
Markov model consistently demonstrates the lowest packet loss rates throughout all intervals. When 
there is little traffic, the Markov model keeps packet loss rates around 3%, while CoCoA shows about 4% 
and Default CoAP goes over 5%. As traffic increases, the Markov model’s packet loss stays much lower, 
not going over 23%, while CoCoA gets close to 29% and Default CoAP goes over 37% at the highest 
transmission times. 

This performance reflects the predictive adjustment capacity of the Markov model, in which the 
protocol transitions early into moderate or high congestion states based on probabilistic modeling. By 
managing traffic levels early on to avoid major losses, the Markov model stops packet drops better than 
the reactive timeout and backoff methods used in CoCoA and Default CoAP. Table 3 presents the packet 
loss rate at different intervals for the three protocols evaluated. 
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4.2.3. Latency vs Transmission Interval 
 

 
Figure 8. 
Performance evaluation based on data transmission interval for latency. 

 
The latency, measured in milliseconds (ms), indicates how long it takes for packets to travel through 

the network. Fig. 8 shows that the delay increases steadily with longer transmission intervals for all 
protocols; however, the Markov model always achieves the lowest latency. The Markov model initially 
maintains latencies of approximately 52 ms, whereas CoCoA begins at 63 ms and Default CoAP at 
approximately 77 ms. As network congestion escalates, Markov’s latency rises considerably to around 
127 ms, whereas CoCoA and Default CoAP have more pronounced spikes, exceeding 157 ms and 198 
ms, respectively. 
 
Table 4. 
Summary of generated results for Latency at different transmission intervals. 

Intervals MM (L) CoCoA (L) CoAP (L) 

1 51.667 63.446 76.876 

5 65.538 76.465 95.691 

10 77.706 100.289 121.912 

15 95.871 120.016 141.986 

20 111.166 139.136 171.140 

25 126.603 157.875 198.993 

 
The Markov model’s superiority in latency stems from its prompt congestion detection and traffic 

adaptation techniques. The Markov Model reduces the time packets spend in the network by quickly 
changing states, which lowers packet queuing and retransmissions; in contrast, CoCoA and Default 
CoAP, which rely on reacting to changes, face longer queuing delays when there is a lot of congestion. 
Table 4 presents the latency at different intervals for the three protocols evaluated. Overall, the 
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proposed Markov model outperforms both CoCoA and Default CoAP across all evaluated metrics. Its 
proactive, probability-based adaptation to congestion yields the following results: 

• Enhanced sustained throughput with escalating transmission intervals. 

• Have reduced packet loss rates even under significant congestion. 

• Minimise end-to-end latency under all network situations. 
These findings highlight the effectiveness of integrating stochastic modelling techniques, such as 

Markov state transitions, into congestion control protocols for IoT and resourceconstrained 
environments. The Markov model enhances communication reliability, efficiency, and responsiveness by 
dynamically predicting and responding to network behaviours. 
CDF of Latency 
 

 
Figure 9. 
Performance evaluation based on cumulative distribution function (CDF) of latency. 

 
The cumulative distribution function (CDF) of latency for the three protocols, shown in Fig. 9, 

provides further insight into delay performance under different network conditions. The Markov Model 
curve consistently shifts to the left in comparison to CoCoA and Default CoAP, indicating a higher 
frequency of achieving lower latency values. 

At a cumulative probability of 0.8, the Markov Model shows much lower latency values compared to 
the other two protocols, demonstrating its ability to lower end-to-end delay even when congestion 
increases. This outcome further substantiates the efficacy of the Markov Model’s predictive, statedriven 
congestion adaptation method in diminishing queuing delays and retransmission overheads, in contrast 
to the reactive mechanisms used by CoCoA and Default CoAP. 
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4.2.4. Throughput vs Packet Loss 
 

 
Figure 10. 
Performance evaluation based on throughput vs packet loss analysis. 

 
Figure 10 illustrates an examination of throughput in relation to packet loss, emphasising the 

robustness of the Markov model in congested network environments. The Markov Model sustains 
higher throughput levels despite rising packet loss, whereas CoCoA demonstrates a modest reduction, 
and Default CoAP experiences the most significant throughput deterioration. 

This behaviour demonstrates that the proactive modifications facilitated by the Markov model’s 
probabilistic state transitions maintain efficient data transmissions despite increasing network 
impairments. By preemptively identifying congestion and adjusting transmission rates, the Markov 
Model prevents the severe throughput decline seen with Default CoAP and alleviates the performance 
degradation apparent in CoCoA. 
 

5. Conclusion and Future Work 
CoAP delineates a conservative and non-adaptive mechanism for congestion control. CoCoA, a 

sophisticated congestion control mechanism for CoAP, offers a flexible and adaptive solution by 
integrating an adaptive RTO computation, weak RTTs, a VBF, and an aging mechanism to enhance 
performance. 

This paper extends the congestion control framework to a three-state Markov model for CoAP-
based IoT networks. This study conducted a comparative evaluation of the default CoAP, CoCoA, and a 
new Markov model for congestion control in constrained network environments. Through extensive 
simulations across a variety of transmission intervals, the Markov model has demonstrated improved 
performance in throughput, packet loss, and latency measures. Its proactive statebased adaptation 
mechanism, based on probabilistic modeling of network behaviour, allowed it to anticipate and alleviate 
congestion more efficiently than the reactive strategies used by CoCoA and Default CoAP. 
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Although CoCoA may be better suited for active congestion management, Markov excels at 
providing predictable and stable behaviour over time. It can be considered a foundational model for 
congestion control, with the possibility of future enhancements and optimisation. As IoT networks 
continue to evolve, the Markov model offers an easy-to-implement, scalable, and adaptive framework 
that ensures long-term efficiency in network performance. Moreover, it serves as a complement to 
CoCoA, particularly in systems that require both immediate congestion control and sustainable network 
management. 

The results highlight how the use ofse of Markovian dynamics in protocol design can improve 
communication efficiency and reliability in Internet of Things (IoT) applications. Future work may aim 
to improve state transition methods and by integrating the arrival-service rate dependency in multi-hop 
networks with heterogeneous traffic patterns, reduce computational costs, and test the model in large 
real-world settings to further solidify its practical applicability. 
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