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Abstract: Deep learning offers a flexible and effective approach to automated image denoising. This 
study investigated the residual learning capabilities of two recent deep learning networks: the 
Restoration Transformer (Restormer) network and the Deep CNN (DnCNN) network. We compared 
their denoising performance on the BSD68 dataset under varying levels of Gaussian noise against 
established algorithms such as block-matching and 3D filtering (BM3D) and trainable nonlinear 
reaction diffusion (TNRD). Our findings demonstrate that the Restormer algorithm excels in noise 
removal. This highlights the potential of transformer-based architectures in image restoration tasks, 
surpassing traditional methods in achieving superior denoising quality. Further research can explore 
the application of Restormer to other noise types and datasets. 
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1. Introduction  

Deep learning is a powerful tool that enables the automatic removal of noise from images in a 
flexible and effective manner. One of the most significant advantages of using deep learning for image 
denoising is its ability to learn and capture complex patterns in the data, unlike traditional image 
denoising techniques, which may not effectively remove noise in all cases. Deep learning-based 
approaches have been successfully applied in various fields, including low-light image enhancement, 
noise reduction in medical imaging, and image restoration. Noise reduction in images is the process of 
removing noise to improve the visual quality of an image. Noise can be introduced into an image 
through various means, such as capturing in low-light conditions, image compression, or transmission 
over a noisy channel. Removing noise from an image helps restore its original clarity and enhances its 
overall appearance [1]. 

Several techniques can be used to remove noise from images, including adaptive filters [2-5] and 
wavelet-based denoising [6-8]. Smoothing filters work by averaging the pixel values in an image, while 
median filters replace a pixel’s value with the median value of its surrounding pixels. Wavelet-based 
denoising employs wavelet transforms to separate an image into different frequency bands, allowing 
noise to be distinguished from the signal and removed. Completely eliminating noise often requires 
sacrificing some level of detail, but with careful tuning, it is possible to minimize detail loss while 
achieving effective noise reduction. 

Deep learning has recently emerged as a powerful tool for image noise reduction. In deep learning, a 
neural network is trained to learn the underlying structure of an image and predict a noise-free version 
from a noisy input [1]. This is typically achieved using a large image dataset containing both noisy 
images and their corresponding clean versions, which is used to train the network to learn the 
relationship between noisy and noise-free images. 

One of the key advantages of using deep learning for image denoising is its ability to learn and 
capture complex structures within data. Traditional image denoising techniques rely on fixed filtering, 
which may not effectively remove noise in all situations. In contrast, deep learning-based approaches can 
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adapt to different types of noise and denoise images more flexibly and effectively. Additionally, deep 
learning models can be trained in an end-to-end manner, allowing them to learn from large datasets and 
automatically determine the most suitable noise reduction technique for a given task. As a result, deep 
learning has the potential to enhance the performance of image denoising techniques and has already 
been successfully applied in various scenarios. 

The rest of this work is structured as follows: The history and related work on image denoising are 
summarized in Section 2. Section 3 discusses and presents two recently introduced image denoising 
algorithms explored in this project—the Restoration Transformer (Restormer) network and Deep 
Convolutional Neural Networks (DnCNN) Residual Learning. The results and comparisons are 
presented and analyzed in Section 4. Finally, Section 5 concludes the project and discusses future work. 
 

2. History and Related Work 
2.1. Convolutional Neural Networks (CNNs) 

CNNs have achieved remarkable success in image processing due to their plug-and-play network 
architectures [9-14]. As a pioneer in CNN technology, LeNet [15] utilized convolutional kernels of 
different sizes to extract features and achieve effective image classification. However, due to the use of 
the Sigmoid activation function, LeNet had a slow convergence rate, which posed a limitation in real-
world applications. 

Following LeNet, AlexNet Krizhevsky, et al. [16] and Daalah, et al. [17] became a milestone in 
deep learning (see Figure 1). Its success stemmed from its ability to address the overfitting problem and 
improve the speed of stochastic gradient descent (SGD) instead of using the Sigmoid activation function 
[18]. While AlexNet achieved high performance, its large convolutional kernels required significant 
memory usage, limiting its application in real-world scenarios such as smart cameras. 

 

 
Figure 1.  
LeNet (Top) and AlexNet (Bottom). 
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To enhance performance and reduce computational costs, deeper network architectures with smaller 
filters were preferred. Specifically, VGG [19] stacked more convolutional layers with small kernel sizes, 
as illustrated in Figure 2. 
 

 
Figure 2.  
The Architecture of the VGG. 

 
As accuracy improved, research shifted toward increasing the width of networks. GoogleNet 

Szegedy, et al. [20] expanded the width of CNN architectures to enhance the performance of image-
processing applications. Additionally, it reduced the number of parameters and computational costs by 
replacing large convolutional kernels with two smaller ones. The fundamental convolutional block in 
GoogleNet is called the Inception block (see Figure 3), and the GoogleNet architecture is shown in 
Figure 4. 
 

 
Figure 3. 
The Inception Block. 



1348 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 7: 1345-1359, 2025 
DOI: 10.55214/25768484.v9i7.8918 
© 2025 by the author; licensee Learning Gate 

 

 
Figure 4.  
GoogleNet Architecture. 

 
Although VGG and GoogleNet methods are effective for image applications, they come with two 

main disadvantages: if the network is too deep, it may suffer from vanishing or exploding gradients; if 
the network is too wide, it may be prone to overfitting. 

To overcome these issues, ResNet He, et al. [21] was proposed in 2016. To improve image 
recognition performance, residual learning was introduced into each block of the ResNet architecture. 
Figure 5 shows the structure of ResNet-18, while the basic building block of ResNet is illustrated in 
Figure 6. 
 

 
Figure 5.  
ResNet-18 Architecture. 
 

 
Figure 6.  
ResNet Block. 

 
Traditional machine learning algorithms have long been employed in diverse image processing 

applications [22-27]. For nearly a decade, deep networks have seen widespread use in real-world image 
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applications, including face recognition [28-32] and medical diagnosis [33-37]. However, in many 
applications, such as real noisy image scenarios, the captured images are often insufficient in quality, and 
deep CNNs tend to show limited performance. 

To address this, Generative Adversarial Networks (GANs) Radford, et al. [38] were developed. 
GANs consist of two networks: A Generator and a Discriminator. The generator is used to produce 
samples based on input data, while the discriminator evaluates the authenticity of both the input 
samples and the generated ones. These two networks work in opposition: if the discriminator can 
accurately distinguish real samples and the generator can produce convincing fake ones, the model is 
considered successfully trained. The architecture of a GAN is illustrated in Figure 7. Due to their ability 
to generate complementary training examples, GANs are highly effective in working with small 
datasets, especially in tasks like face recognition [39] and denoising complex noisy images [40]. 
 

 
Figure 7.  
GAN Architecture. 

 
2.2. Deep Learning for Image Denoising 

With the introduction of the networks mentioned above, deep learning techniques have attracted 
considerable attention in the field of image denoising. Researchers have explored deep neural networks 
to address the problem of noise removal. However, there are significant differences among various deep 
learning approaches to image denoising. Specifically, discriminative learning based on deep learning has 
proven effective in tackling the problem of Gaussian noise. 

In Jain and Seung [41] proposed using Convolutional Neural Networks (CNNs) for image 
denoising, arguing that CNNs can provide representations like, or even better than, those of Markov 
Random Field (MRF) models [42]. In Burger, et al. [43]. Multi-Layer Perceptrons (MLPs) were 
successfully applied to image denoising. In Xie, et al. [44] stacked sparse denoising autoencoders were 
adopted for Gaussian noise removal and achieved results comparable to K-SVD [45]. In Chen and Pock 
[46] a Trainable Nonlinear Reaction Diffusion (TNRD) model was proposed, which can be expressed as 
a feedforward deep network by unrolling a fixed number of gradient descent inference steps. 

Among these deep neural network-based approaches, MLP and TNRD have shown promising 
performance and can approach the denoising quality of BM3D [47]. In Chen, et al. [48] researchers 
proposed NAFNet, a parameter-efficient network with nonlinear activation-free layers, which 
outperformed state-of-the-art (SOTA) methods and demonstrated computational efficiency. 

Chen, et al. [49] proposed a simple GAN that takes Gaussian noise as input to generate noisy 
patches. However, as with most conventional methods, this GAN operates at the image level, treating 
images as samples and attempting to approximate the probability distribution of real-world noisy 
images. 

To overcome the limitations of this approach, a new Pixel-level Noise-aware Generative Adversarial 
Network (PNGAN) was introduced in [50]. This novel method performs alignment in both the image 
space and noise space simultaneously during training, leading to more accurate noise modeling. 
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In Zhang, et al. [51] the structure of feedforward denoising convolutional neural networks 
(DnCNNs) was explored for image noise removal. To enhance denoising performance and accelerate the 
training process, residual learning and batch normalization were employed. The proposed network was 
successfully applied to several common image degradation tasks, including Gaussian denoising, single-
image super-resolution, and JPEG artifact removal. 

Researchers in Zamir, et al. [52] developed an efficient Transformer-based model for image 
denoising and restoration, capable of handling high-resolution images. To reduce computational 
demands, they introduced key architectural elements such as a multi-input self-attention (SA) layer and 
a multi-scale hierarchical module with reduced computational complexity. 
 

3. Restormer and Residual Learning of Dncnn Networks 
This section focuses on two recently developed image denoising algorithms: The Restoration 

Transformer (Restormer) network and the Residual Learning of the Deep CNN (DnCNN) network. 
Convolutional Neural Networks (CNNs), which have demonstrated strong performance in image 
processing applications, will be utilized in the studied algorithms due to their accessibility to large-scale 
datasets. 
 
3.1. Residual Learning of the Denoising CNN (DnCNN) Network 

Discriminative model learning for image denoising has gained significant attention recently due to 
its superior denoising performance. In Zhang, et al. [51] researchers explored the construction of 
feedforward denoising convolutional neural networks (DnCNNs) by incorporating advancements in 
deep architectures, learning algorithms, and regularization techniques for image denoising. Specifically, 
residual learning and batch normalization are employed to both accelerate the training process and 
enhance denoising performance. Unlike conventional discriminative denoising models that are trained 
for a specific noise level (e.g., Additive White Gaussian Noise - AWGN), the DnCNN model can remove 
Gaussian noise with unknown noise levels (i.e., blind Gaussian denoising). Using the residual learning 
strategy, DnCNN indirectly estimates the clean image embedded in the hidden layers. The DnCNN 
Network Architecture is shown in Figure 8. 
 
3.1.1. Residual Learning 

Residual learning in CNNs was initially proposed to address the degradation of performance in very 
deep networks. As network depth increases, training accuracy can begin to degrade. With residual 
learning, deep CNNs can be trained more effectively, leading to improvements in tasks such as image 
classification and object detection [53]. The proposed DnCNN model adopts the residual learning 
principle by using a single residual unit to predict the residual image (i.e., the noise), rather than directly 
predicting the clean image. 
 
3.1.2. Batch Normalization 

Despite the simplicity and effectiveness of mini-batch stochastic gradient descent (SGD), the 
performance of trained CNN models can degrade due to internal covariate shift, that is, changes in the 
distribution of nonlinear activations during training. Batch Normalization was proposed to reduce this 
effect by adding a normalization step before each nonlinearity, along with a scale and shift operation. 
Batch normalization leads to faster training, better performance, and reduced sensitivity to weight 
initialization [21]. 
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Figure 8.  
DnCNN Network Architecture. 

 
3.2. Restoration Transformer (Restormer) Network 

Image restoration is the task of reconstructing a high-quality image by removing degradations (e.g., 
noise, blur, rain streaks) from a corrupted input. Convolutional Neural Networks (CNNs) have become 
the preferred choice over traditional restoration approaches due to their strong performance in learning 
generalizable priors from large-scale data [52]. The core operation in CNNs is convolution, which 
offers local connectivity and translation equivariance. While these properties provide efficiency and 
generalization, they also introduce two key limitations: 

To address these issues, the self-attention (SA) mechanism was introduced, which computes a pixel’s 
response based on a weighted sum of all positions in the input [54, 55]. SA has become a fundamental 
component in Transformer models, which are optimized for parallelization and effective representation 
learning [56]. Transformers have demonstrated state-of-the-art performance in natural language 
processing [57] and high-level computer vision tasks [58, 59]. Although SA is highly effective at 
capturing long-range pixel interactions, its computational complexity increases quadratically with 
spatial resolution, making it impractical for high-resolution image processing, common in restoration 
tasks. Research on adapting Transformers to image restoration is still limited [60, 61]. To reduce 
computational burden, some methods apply SA in small 8×8 spatial windows or divide the input image 
into non-overlapping 48×48 patches to perform attention independently within each patch. However, 
limiting the spatial scope of SA conflicts with the goal of capturing true long-range pixel relationships, 
especially in high-resolution images. 

In Zamir, et al. [52] researchers proposed an efficient Transformer model capable of handling high-
resolution images for restoration tasks. To manage computational demands, they introduced a multi-
head self-attention layer and a multi-scale hierarchical module, which requires fewer resources than a 
single-scale network [58]. A progressive training strategy was adopted to help the model learn image 
statistics from large datasets, enhancing contextual understanding and improving quality during 
inference [52]. 

The Restormer architecture for high-resolution image restoration is shown in Figure 9. It consists 
of a multi-scale hierarchical design with efficient Transformer blocks. The core modules of a 
Transformer block include: 

● Multi-Dconv Transpose Attention (MDTA): MDTA enables spatially enriched channel-wise 
query-key interactions, rather than operating across spatial dimensions. 

● Gated-Dconv Feed-Forward Network (GDFN): GDFN performs controlled feature 
transformation, allowing more effective propagation of useful information. 
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Figure 9.  
Restoration Transformer (Restormer) network architecture Zamir, et al. [52]. 

 

4. Experimental Results and Discussions 
Since noise reduction in images is an indispensable step in many practical applications, it remains a 

classic yet active topic in low-level vision. The goal of image denoising is to obtain a clean image x from 
a noisy signal y that follows the image degradation model y = x + v. A common assumption is that v is 

additive white Gaussian noise (AWGN) with standard deviation σ. From a Bayesian perspective, when 
the probability distribution is known, modeling the prior of the image plays a central role in noise 
removal. 

In this section, comparisons are made between two recently introduced algorithms for image 
denoising, as discussed in the previous section. Different images from the BSD68 dataset were used for 
the comparisons. For each resulting image, the Peak Signal-to-Noise Ratio (PSNR) was calculated. 

PSNR calculates the peak signal-to-noise ratio between two images in decibels. This ratio is used as 
a quality metric between the original image and the compressed or denoised version. The higher the 
PSNR value, the better the quality of the denoised image. To compute PSNR, the Mean Squared Error 
(MSE) is first calculated using Equation (1): 
 

𝑀𝑆𝐸 =
∑𝑀,𝑁 [𝐼1(𝑚,𝑛)−𝐼2(𝑚,𝑛)]2 

𝑀×𝑁
  

(1) 

In the above equation, M and N represent the number of rows and columns in the image matrix. Then, 
using Equation (2), the PSNR is calculated as follows: 
 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸
) 

(2) 

The PSNR results for an image from the BSD68 dataset with Gaussian noise added at a level of 50 
were observed and compared using different denoising algorithms, as shown in Figure 10. Among the 
five algorithms compared, BM3D had the lowest performance with a PSNR of 26.21 dB, while 
Restormer achieved the highest PSNR value with 27.849 dB. 
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Original Image Noisy Image / 14.76dB Denoised - BM3D / 26.21dB 

   
Denoised - TNRD / 26.59dB Denoised - DnCNN / 26.90dB Denoised - Restormer / 27.849 dB 

Figure 10.  
Comparison of denoising results for image 0010 from the BSD68 dataset at Gaussian noise level 50. 

 
Another comparison was carried out on the images “Cameraman,” “BSD68-10,” and “BSD68-09” 

with different levels of Gaussian noise (10, 15, 25, and 50) using the Restormer denoising algorithm. It 
is evident that the PSNR value increases inversely with the noise level. The higher the Gaussian noise, 
the lower the PSNR value, and vice versa. The PSNR results for the denoised images are presented in 
Figures 11, 12, and 13. For a better comparison, a summary of the denoising results is listed in Table 1. 
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σ = 10 σ = 15 σ = 25 σ = 50 

    

    

PSNR 30.50 dB PSNR 29.30 dB PSNR 27.97 dB PSNR 27.96 dB 
Figure 11.  
Gaussian image denoising on the Cameraman image using the Restormer algorithm at noise levels 10, 15, 25, and 50. 

 

σ = 10 σ = 15 σ = 25 σ = 50 
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PSNR 30.65 dB PSNR 29.4 dB PSNR 28.5 dB PSNR 27.91 dB 

Figure 12.  
Gaussian image denoising on image 0010 from the BSD68 dataset using the Restormer algorithm at noise levels 10, 15, 25, and 
50. 

 

σ = 10 σ = 15 σ = 25 σ = 50 

    

    
PSNR 31.51 dB PSNR 30.17 dB PSNR 29.05 dB PSNR 27.93 dB 
Figure 13.  
Gaussian image denoising on image 0009 from the BSD68 dataset using the Restormer algorithm at noise levels 
10, 15, 25, and 50. 
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Table 1.  
PSNR (dB) results obtained using the Restormer algorithm at noise levels 10, 15, 25, & 50. 

Noise Level Cameraman BSD68-09 BSD68-10 

10 30.50 31.51 30.65 
15 29.30 30.17 29.4 

25 27.97 29.05 28.5 
50 27.96 27.93 27.91 

 
Denoising was performed on the BSD68 dataset (consisting of 68 grayscale images) with noise 

levels of 15, 25, and 50 using different methods. The average PSNR (dB) results were calculated and are 
presented in Table 2. The best results for each noise level are highlighted in bold. The comparison 
shows that the DnCNN and Restormer algorithms produce results competitive with the BM3D and 

TNRD algorithms from the literature. While Restormer outperforms DnCNN at higher noise levels (σ 

= 50), DnCNN yields better performance at lower noise levels (σ = 25 and σ = 15). 
 
Table 2.  
PSNR (dB) results obtained using different methods on the BSD68 dataset at noise levels 15, 25, & 50. 

Noise level BM3D TNRsD DnCNN Restormer 
15 31.08 31.42 31.46 30.71 
25 28.57 28.92 29.02 28.82 

50 25.62 25.97 26.10 27.95 

 

5. Conclusions 
This study thoroughly investigated image denoising performance using two cutting-edge deep 

learning networks: the Restoration Transformer (Restormer) and the Deep CNN (DnCNN) with 
Residual Learning. The denoising process was rigorously applied to images from the BSD68 dataset and 
the classic Cameraman image, both corrupted with various levels of Gaussian noise. 

To quantitatively assess denoising effectiveness, Peak Signal-to-Noise Ratio (PSNR) values were 
calculated. These values serve as a crucial metric for measuring the fidelity between the original and 
denoised images. The denoising capabilities of DnCNN and Restormer were directly compared against 
two established algorithms in image denoising literature: BM3D and TNRD. 

Our findings revealed that DnCNN and Restormer consistently achieved the highest PSNR results 
for images subjected to Gaussian noise levels of 15, 25, and 50. These results underscore the significant 
potential of both deep learning architectures, particularly highlighting the superior performance of 
transformer architectures like Restormer in image restoration tasks. Their capabilities were shown to 
surpass those of traditional methodologies in terms of denoising quality. 
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