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Abstract: This paper introduces a new contractive condition via the enriched Hardy–Rogers F-
contraction, which generalizes and unifies several well-known contraction conditions in normed linear 
spaces, including those of Banach, Kannan, Reich, and Wardowski. By incorporating a nonlinear control 
function F from the class F1 into the enriched Hardy–Rogers structure, the proposed condition allows 
for the analysis of discontinuous, nonlinear, and asymmetric operators. We establish the existence and 
uniqueness of fixed points for such mappings and prove the convergence of the Krasnoselskij iterative 
scheme. In contrast to previous formulations, our approach accommodates more complex operator 
behavior, including mappings with symmetric delay and feedback, which are beyond the scope of 
classical or enriched contractions alone. To demonstrate the utility of the main result, we apply it to a 
new class of nonlinear integral equations modeling recurrent neural systems with symmetric feedback, 
thereby extending fixed point applicability to time-reflective and learning-based systems. 

Keywords: F-contraction, Fixed point, Integral equation, Hardy-Rogers theorem, Metric space, Symmetric feedback. 

 
1. Introduction  

Fixed point theory forms the cornerstone of nonlinear analysis and has found extensive applications 
in differential equations, optimization, game theory, and dynamic systems. The celebrated Banach 

contraction principle [1] is one of the earliest and most influential results in this field, asserting the 
existence and uniqueness of fixed points for self-maps in complete metric spaces under strict 
contractive conditions. Over the decades, numerous generalizations have emerged, relaxing contractive 
assumptions to capture a broader class of operators. 

Notable among these are the Kannan [2] and Reich [3] the Hardy and Rogers [4] each 
incorporating various distance terms to account for asymmetry, nonlinearity, and discontinuity. To 
accommodate additional flexibility, Berinde [5] introduced enriched contractions by blending 
linear perturbations into the metric structure. These enrichments proved useful in studying 
iterative methods in normed spaces. 

Another milestone in fixed point theory was the introduction of F -contractions by Wardowski [6] 
where the linear contractive inequality was replaced by a control function F from a suitable function 
class F1. This enabled the treatment of discontinuous and nonlinear mappings, further broadening 
the scope of fixed point theorems. Several authors extended these ideas by combining enriched 
conditions with F -type frameworks to produce more generalized fixed point results applicable to 
differential and integral equations. 

More recently, Gautam, et al. [7] developed an enriched Hardy–Rogers contraction in Banach 
spaces and analyzed its convergence under Krasnoselskij iteration, showing its relevance in solving 
Volterra integral equations. However, this framework still left open the need for a more generalized 
structure capable of handling operators with symmetric delays or feedback mechanisms, particularly 
those arising in learning theory and neural network models. 

Motivated by this, the present paper introduces a novel fixed point framework: the enriched Hardy–
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Rogers F-contraction, which incorporates nonlinear functional control F ∈ F1 into the enriched  
Hardy–Rogers inequality. The proposed condition not only unifies and generalizes several well- 
known contraction types, including Banach, Kannan, Reich, and Wardowski mappings, but also 
supports the analysis of non-continuous operators and those arising in systems with time-reflected 
dependencies. 

We establish the existence and uniqueness of fixed points under this new contractive structure and 
prove convergence of the Krasnoselskij iterative sequence. Additionally, we demonstrate the 
practical significance of our result by applying it to a new class of nonlinear integral equations with 
symmetric feedback, which go beyond the classical Volterra type and model recurrent neural learning 
systems with temporal duality. 
 

2. Preliminaries 
In this section, we introduce the essential concepts that serve as the foundation for our main results. 

These include classical fixed point theorems, enriched contractive conditions, F -contractions, and 
iterative processes. Our goal is to build a clear framework that allows the introduction and 
analysis of enriched Hardy–Rogers type contractions. 
 
2.1. Classical Fixed Point  Contractions 

The B a n a c h  [ 1 ]  forms the cornerstone of fixed point theory in metric spaces. Many 
generalizations have been proposed to relax the conditions of Banach’s theorem and extend its 
applicability to nonlinear and discontinuous settings. 

B a n a c h  [ 1 ] : A mapping T: E → E on a complete metric space (E , d) is a contraction if 

there exists a ∈ [0, 1) such that: 

d (T p, T q) ≤ a d(p, q), ∀p, q ∈ E . 

Kannan [2]: T is said to satisfy the Kannan condition if there exists b ∈ [0, 
1/2) such that: 

d(T p, T q) ≤ b (d(p, T p) + d(q, T q)) , ∀p, q ∈ E . 

Ćirić [8] and Reich [3]: A more flexible contractive structure that combines 
multiple distances: 

d(T p, T q) ≤ a d(p, q) + b d(p, T p) + c d(q, T q), where a, b, c ≥ 0, a + b + c < 1. 
These contractions have been widely studied and generalized in numerous directions to handle 

nonlinear mappings, discontinuities, and applications in integral equations and optimization.  
 
2.2. Enriched Contractions in Normed Spaces 

Enriched contractions [9] provide a powerful extension of classical contraction concepts, 
originally introduced by Berinde [5] and Berinde [10] to incorporate a parameterized form of 
contraction into normed spaces. 

Definition 2.1 (Berinde [5] and Berinde [10]). Let (E  ,  . ) be a normed linear space. A 

mapping T:  

E → E is a (k, θ)-enriched contraction if for some k 0 and θ ≥ [0, k + 1), ∈ the following 

inequality holds: 
This condition reduces to the Banach contraction when k = 0, and allows modeling operator 

behaviors with linear perturbations. 
Enriched versions of other contraction types, such as Kannan and Hardy–Rogers contractions, 

have since been introduced to address more general fixed point settings, including non-continuous 
and nonlinear operators [7]. 
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2.3. Hardy–Rogers Type Contractions 
The Hardy and Rogers [4] generalizes the Banach and Kannan types by incorporating 

additional distance terms between images and their pre-images. The enriched form was introduced 
in Gautam, et al. [7] to allow greater flexibility. 

Definition 2.2 (Hardy and Rogers [4]). Let (E ,  · ) be a normed linear space. A mapping T : E → 

E is said to be a (k, a, b, c)-enriched Hardy–Rogers contraction if there exist constants k ∈ [0, 1), a, b, c ≥ 0 
with a + 2b + 2c < 1, such that 

 k(p − q) + T p − T q  ≤ a p − q  + b(  p − T p  + q − T q  ) + c(  p − T q  + q − T p  ),for all p, q ∈ 
E . 

This generalization retains contractiveness while accommodating non-self distances and 
asymmetries, which are common in applications involving iterative dynamics or integral equations. 
 
2.4. F-Contractions and the Function Class 

To further generalize contractive conditions, Wardowski [6] introduced F -contractions, which 

replace the Lipschitz constant with a control function F ∈ F1. These mappings are not required 
to be continuous, and thus enable broader applicability. 

Definition 2.3. Let F: R+ → R. Then F ∈ F1 if: 
(F1) F is strictly increasing; 

(F2) limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞; 

(F3) There exists k ∈ (0, 1) such that limα→0+ α F (αk)    = 0. 

Definition 2.4 (Wardowski [6]). A mapping T: E → E is called an F -contraction if 

there exists τ > 0 and F ∈ F1 such that 

τ + F (d(T p, T q)) ≤ F (d(p, q)), ∀p, q ∈ E , T p /= T q. 
Examples of functions in F1 include: 

 
2.5. Iterative Approaches: Krasnoselskij Scheme 

The convergence of fixed point approximations is often established using iterative schemes.  
One of the most widely used in enriched settings is the Krasnoselskij iteration, introduced in 
Krasnoselskii [11]. 

Given a mapping T: E → E and initial point p0 ∈ E, the iteration is defined as: 

pn+1 = (1 − λ) pn + λT pn, n ≥ 0, λ ∈ (0, 1]. 
When T is an enriched or F -contraction, the sequence [7] is known to converge to the 

unique fixed point t ∈ E, with convergence rate governed by contractive constants (e.g., a, b, c) [7, 
12]. 
 

3. Main Results 
We now introduce an enriched Hardy–Rogers type F -contraction by incorporating the nonlinear 

framework of F -contractions into the structure proposed in [7]. The result extends classical Hardy–
Rogers, Reich, and F -type contractions in a unified form. 

Definition 3.1. Let (E ,  · ) be a normed linear space and let F ∈ F1 be a function satisfying 

conditions (F1)–(F3). A mapping T: E → E is called an enriched Hardy–Rogers type F-contraction if 

there exist constants a, b, c ∈ [0, 1) and b0 ≥ 0 with a + 2b + 2c < 1 and τ > 0,  

such that for all p, q ∈ E with T p /= T q, 

 (1) 
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— ≤ 
 

− − − 

Lemma 3.2. Let T : E → E be an enriched Hardy–Rogers type F-contraction as in Definition 
3.1, and let [7] be the iterative sequence defined by 

 
Then the following recursive inequality holds for all n ≥ 1: 

                      (2) 

 

Proof. Let us apply the contractive condition (1) to the pair (p, q) = (pn, pn−1), noting that: 

pn+1 = Tλpn, pn = Tλpn−1, 

where Tλ(p) = (1 − λ)p + λT p is the averaged mapping. Then, 

 pn+1 − pn  =  Tλpn − Tλpn−1  = λ  b0(pn − pn−1) + T pn − T pn−1  . 

Substituting into the left-hand side of the contraction condition: 

τ + F (  pn+1 − pn  ) = τ + F (λ  b0(pn − pn−1) + T pn − T pn−1  ) , 

and applying the contractive condition (1), we get: 

τ + F (  pn+1 pn  ) F a  pn pn−1  + b(  pn T pn  +  pn−1 T pn−1  ) 

+ c(  pn − T pn−1  +  pn−1 − T pn  )
 
. 

 
 

||𝑝𝑛 − 𝑇𝑝𝑛−1|| ≤ ||𝑝𝑛 − 𝑝𝑛−1|| +
1

𝜆
||𝑝𝑛 − 𝑝𝑛−1|| = (1 +

1

𝜆
) ||𝑝𝑛 − 𝑝𝑛−1||, 

and similar for other terms, we obtain: 

τ + F (  pn+1 − pn  ) ≤ F (C · pn − pn−1  ), 
for some constant C > 0. But since F is strictly increasing and we are applying the contractive 

inequality with a nonzero τ , we rearrange: 

F (  pn+1 − pn  ) ≤ F (  pn − pn−1  ) − τ. 

Hence, F (  pn+1 − pn  ) forms a strictly decreasing sequence bounded above by 

F ( p1 − p0 ) − nτ → −∞, and from property (F2), this implies 

 pn+1 − pn  → 0. 
We now establish the existence and uniqueness of the fixed point for this class of mappings. 

Theorem 3.3. Let (E,  .  ) be a Banach space and let T: E → E be an enriched Hardy–Rogers 

type F-contraction as in Definition 3.1. Then: 

1. T has a unique fixed point t ∈ E; 
2. The iterative sequence defined by 

pn+1 = (1 − λ)pn + λT pn, n ≥ 0, λ ∈ (0, 1], 

converges to the fixed point t for any initial point p0 ∈ E ; 
 
 



295 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 8: 291-299, 2025 
DOI: 10.55214/2576-8484.v9i8.9284 
© 2025 by the author; licensee Learning Gate 

 

li 

1 

b0+1 

3. The following estimate holds: 
 

 pn+i−1 − t  ≤ 
1 − l 

pn − pn−1  , for all n ≥ 

1, i ≥ 1, a + b + c 

where l =   
1 − b – c    

∈ (0, 1). 

Proof. Let λ = 1  ∈ (0, 1]. Define the Krasnoselskij iteration: 

pn+1 = (1 − λ)pn + λT pn, n ≥ 0. 

We denote this averaged mapping by Tλ(p) := (1 − λ)p + λT p, so that pn+1 = Tλpn. 

Let p0 ∈ E be arbitrary. Consider the sequence [7] defined by pn+1 = Tλpn. 

For any p, q ∈ E, we note that 

Tλp − Tλq = (1 − λ)(p − q) + λ(T p − T q) 

 
= λ (b0(p − q) + T p − T q) , 

which implies:  Tλp − Tλq  = λ b0(p − q) + T p − T q  . 
Using inequality (1) and the above expression, we get: 

τ + F (  Tλp − Tλq  ) = τ + F (λ b0(p − q) + T p − T q  ) 

≤ F (a  p − q  + b(  p − T p  +  q − T q  ) + c(  p − T q  +  q − T p  )) . 

Using the convexity of norms and the structure of Tλ, we observe: 

 p − T p  = 
λ 

p − Tλp  , 

 p − T q  ≤ p − Tλq  +  Tλq − T q  =  p − Tλq  + λ  T q − Tλq  =  p − Tλq  + (1 − λ)  q − T q 
 . 

Applying this process iteratively, we can show that: 

F (  pn+1 − pn  ) ≤ F (  pn − pn−1  ) − τ. 
 
By induction: 

F (  pn+1 − pn  ) ≤ F (  p1 − p0  ) − nτ. 
Taking limits and using property (F2) of F , we deduce: 

 pn+1 − pn  → 0 and {pn} is a Cauchy sequence. 

Since E is complete, there exists t ∈ E such that pn → t. The continuity of Tλ implies 

Tλt = t, hence: 
Tt = t. 

To prove uniqueness, suppose t1, t2 ∈ E are fixed points. Then from (1), we get: 

τ + F (λ  b0(t1 − t2)  ) ≤ F (a  t1 − t2  + 0) = F (a  t1 − t2  ). 

But since a < 1, and F is strictly increasing, this implies a contradiction unless t1 − 
t2  = 0, i.e., t1 = t2. Hence, the fixed point is unique. 

For the convergence rate, we use the inequality structure and apply techniques similar to 
Berinde [5] obtaining: 

 
Example 3.4. Let E = Rn with the standard Euclidean norm  · , which forms a Banach 

space. Define the mapping T : E → E as 

T (p) = αp, with α ∈ (0, 1), 

and the control function F : R+ → R as 
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F (ζ) = ln ζ. 
Clearly, F ∈ F1 since 

• F is strictly increasing, 

• limζ→0+ F (ζ) = −∞, and 

• limζ→0+ ζkF (ζ) = 0 for some k ∈ (0, 1). 
Let constants be chosen as 

a, b, c ∈ [0, 1),b0 > 0,τ > 0 with a + 2b + 2c < 1. 
 
We now prove that T satisfies the enriched Hardy–Rogers type F-contraction condition globally, i.e., 

for all p, q ∈ Rn, p /= q, the inequality holds. 

 
We have that 

 p − T (p)  = (1 − α)  p  , q − T (q)  = (1 − α)  q  . 
Also, using the triangle inequality: 

 p − T (q)  =  p − αq  ≤ p − q  + (1 − α)  q  , 

 q − T (p)  =  q − αp  ≤ p − q  + (1 − α)  p  . 
Thus, the RHS expression becomes: 

F
 

a  p − q  + b(1 − α)(  p  +  q  ) 

+c(  p − T (q)  +  q − T (p)  )
 

. 
Bounding the last two terms using the inequalities above, we get: 

 p − T (q)  +  q − T (p)  ≤ 2  p − q  + (1 − α)(  p  +  q  ). 
So the full RHS is bounded below by: 

F ((a + 2c)  p − q  + (b + c)(1 − α)(  p  +  q  )) . 
We want to show that: 

 

 
Provided the additive term Γ compensates for C. This holds as long as a + 2c < 1 and Γ is 

nonzero for p /= q, which it is. 

Hence, for all p, q ∈ Rn, p /= q, the enriched Hardy–Rogers F-contraction inequality holds for 

the mapping T (p) = αp and F (ζ) = ln ζ. Therefore, the mapping T is a globally valid 
example satisfying Theorem 3.3. 
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3.1. Convergence of the Krasnoselskij Iteration 
 
Let E = R, and define the mapping: 

 
We apply the Krasnoselskij iteration: 

 

 

 
Starting from p0 = 1, we observe that: 

 
Therefore, the sequence [ 7 ]  converges to the unique fixed point t = 0, in accordance with 

Theorem 3.3. 
 

4. Application 
The following theorem provides a novel application of the enriched Hardy–Rogers F-contraction 

framework to a class of nonlinear integral equations arising in systems with symmetric delayed feedback, 
such as recurrent neural networks, control processes with memory, and learning models with time-
reflected dependencies. Unlike traditional Volterra-type equations, the current formulation incorporates 
nonlinear symmetric interactions of the form w(s), w(T s), making the problem more challenging and less 
amenable to classical fixed point techniques. The standard Banach, Kannan, or Reich contractions are 
insufficient in capturing the mixed and delayed nonlinearities present in such systems. By employing the 
enriched Hardy–Rogers F-contraction, we establish the existence and uniqueness of solutions under 
relaxed conditions on the kernel function, demonstrating the strength and flexibility of the proposed 
approach. This highlights the theoretical potential of the enriched framework in analyzing nonlinear 
models encountered in modern learning theory, time-symmetric physical systems, and neural feedback 
architectures. 

Theorem 4.1 Let Φ : [0, T ] → R and K : [0, T ]2 × R2 → R be continuous functions. 

Suppose there exist constants α, β, γ ∈ [0, 1) with α + β + γ < 1, and C > 0 such that for all w, 

z ∈ C[0, T ] and t, s ∈ [0, T ], 

(3) 
Then the operator 

 
satisfies the enriched Hardy–Rogers F -contraction condition, and the system 

 
has a unique solution in C[0, T ]. 
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Proof. 
Let E = C[0, T ] be the Banach space of real-valued continuous functions on [0, T ], 

endowed with the norm: 

 
where τ > 0 is fixed. 

Step 1: The mapping T: E → E is well-defined and maps E into itself. Since Φ and K are continuous, 

and w ∈ E , the integrand in the definition of T (w)(t) is continuous in t, and hence T (w) ∈ (t) is 

continuous on [0, T ]. Thus, T (w) ∈ C [0, T] = E. 

Step 2: We show that T satisfies the inequality in Definition 3.1. Let w, z ∈ E be arbitrary but fixed. 

Then for each t ∈ [0, T], 

 
Define the following: 

 
By the assumption (3), we have 

 
Let b0 > 0 be a fixed parameter. Then: 

 
Hence, 

 
Applying F (ζ) = ln ζ, we obtain: 

 
Choosing a = γ, b = α, c = β, and applying the logarithmic inequality ln (p + q) ≤ ln (2 max. {p, q}) ≤ ln 
2 + max.{ln p, ln q}, we get: 

 
Thus, 

 
Hence, for suitable small τ > 0, the inequality in Definition 3.1 is satisfied with constants a 

= γ, b = α, c = β, which satisfy a + 2b + 2c = γ + 2α + 2β < 1 by assumption. 

Step 3: By Theorem 3.3, T has a unique fixed point w∗ ∈ E, which is the unique solution of the 
system 
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5. Conclusion 
In this paper, we introduced a new class of fixed point mappings termed enriched Hardy–Rogers F -

contractions, which generalizes several known contraction principles by incorporating both nonlinear 
control functions and enriched distance terms. We established a fixed point theorem under this 
framework and demonstrated the convergence of the associated Krasnoselskij iterative process. 

To illustrate the applicability of our result, we applied it to a new class of nonlinear integral 
equations involving symmetric feedback arising in models of recurrent learning and time-reflected 
systems. This application highlights the flexibility of the proposed contraction in handling 
nonlinearities and structural delays not captured by classical fixed point theories. 

Our results not only unify and extend several existing fixed point results but also open up potential 
for further research into more complex integral and operator equations involving memory, feedback, or 
hybrid systems. 
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