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Abstract: This paper investigates the informational efficiency and cross-correlations among the five 
largest African stock markets—Johannesburg, Casablanca, Botswana, Nigerian, and Egyptian—using 
Multifractal Detrended Cross-Correlation Analysis (MF-DCCA). Spanning the period from January 30, 
2012, to August 8, 2024, with nearly 3,050 observations, the study explores the multifractal 
characteristics and complex interdependencies among these markets. Initial results from the Cross-
Correlation Significance Test indicate statistically significant relationships across most index pairs. 
Further analysis using MF-DCCA components—Generalized Hurst exponents, Rényi exponents, and 
the Hölder Singularity Spectrum—reveals persistent long-range cross-correlations and strong 
multifractal behavior. The application of surrogate and shuffling procedures confirms that both long-
memory effects and heavy-tailed distributions contribute to the observed multifractality. These findings 
suggest the presence of informational inefficiencies within and between African stock markets, as 
evidenced by deviations from random-walk behavior. The study provides new insights into market 
dynamics in emerging economies, with practical implications for investors, portfolio managers, and 
policymakers. 

Keywords: Cross-correlation, Efficiency, Generalized hurst exponents, Hölder singularity spectrum, Multifractality, Rényi 
exponents. 

 
1. Introduction  

In today’s increasingly interconnected and volatile global financial system, understanding the 
intricate relationships between financial markets is not just a theoretical exercise, it is a practical 
necessity. Market shocks in one region can quickly transmit across borders, magnifying systemic risks 
and affecting investment outcomes worldwide. For investors, risk managers, and policymakers, this 
growing complexity demands analytical tools that can capture the full range of market behaviors, 
including non-linear dependencies, structural breaks, and time-varying dynamics. Traditional linear 
correlation models, while useful in simple settings, often fail to reflect the true interconnectedness of 
modern financial systems. In contrast, multifractal methods, particularly Multifractal Detrended Cross-
Correlation Analysis (MF-DCCA), offer a more robust framework to uncover subtle and dynamic 
patterns of co-movement between markets. 

The MF-DCCA approach is an advanced analytical tool that extends beyond traditional methods by 
incorporating multifractality, which captures diverse scaling behaviors within financial time series. This 
method, introduced by Zhou [1] enables a detailed analysis of cross-correlation patterns across different 
time scales, effectively addressing both short-term fluctuations and long-term dependencies between 
markets. These features are particularly relevant in the context of informational efficiency, as defined by 
the Efficient Market Hypothesis (EMH). According to the EMH, asset prices fully reflect all available 
information, and price changes should follow a random walk with no predictable structure. Persistent 
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long-range dependencies and multifractal patterns, however, suggest deviations from this ideal, 
indicating that past price information may still contain predictive power, a hallmark of informational 
inefficiency. 

Multifractality in financial markets arises from the heterogeneous scaling behavior of asset returns, 
phenomena often linked to volatility clustering, extreme events, and long memory effects. Unlike 
classical monofractal models, which assume uniform behavior across scales, multifractal models detect a 
wide spectrum of scaling exponents that characterize both regular and erratic patterns in market 
dynamics. When applied in a cross-correlation setting, these techniques can identify complex and 
persistent relationships between financial markets that evolve over time and vary across frequencies. 
Such findings are significant in testing the degree of informational efficiency both within and across 
markets, especially when the persistence of multifractal cross-correlations challenges the assumption of 
market independence and instantaneous information diffusion. This is especially critical during periods 
of financial turbulence, when traditional correlation measures tend to break down. Thus, multifractal 
cross-correlation analysis provides unique value by offering a multi-scale, non-linear lens through which 
market integration, contagion, and informational inefficiencies can be understood and managed. 

While multifractal methods have gained increasing attention in studies of advanced and some 
emerging markets, they remain largely absent from research on African stock markets. Most empirical 
studies on African exchanges rely on linear or semi-linear models, such as ARIMA, GARCH, or 
cointegration tests; which are ill-suited for capturing the intricate, long-range, and non-stationary 
dependencies typical of these markets. This has also limited our understanding of the informational 
efficiency of African stock markets, where market frictions, low liquidity, and structural imbalances may 
prevent the rapid incorporation of new information into asset prices. This is a critical oversight, as 
African markets operate under distinct economic and structural conditions: they often experience lower 
liquidity, are heavily influenced by commodity prices, face regulatory fragmentation, and are more 
vulnerable to global shocks. At the same time, African economies are experiencing rapid transformation, 
increasing financial openness, and growing foreign investment inflows. As a result, there is a pressing 
need to revisit and reassess inter-market relationships using more advanced tools that can reflect the 
real nature of these evolving financial systems. 
 

2. Literature Review 
Multifractal Detrended Cross-Correlation Analysis (MF-DCCA) has become a key tool in analyzing 

long-range, nonlinear dependencies between time series. Unlike traditional linear models, MF-DCCA 
detects complex, scale-dependent relationships that are critical in systems characterized by volatility, 
irregularity, and structural change. This section compares findings across various applications to 
contextualize this study’s focus on African financial markets. 

MF-DCCA has found broad use in environmental and geophysical sciences, where complex 
interdependencies are common. For example, Shadkhoo and Jafari [2] applied it to earthquake data and 
found scale-dependent multifractal structures, showing the method’s sensitivity to natural randomness. 
Similarly, Wan, et al. [3] examined geochemical element concentrations and observed that both 
individual and paired series exhibited multifractality—consistent with Yao, et al. [4] who found 
streamflow and sediment data to display strong long-range correlations, with sediment showing greater 
multifractality. These findings align in showing the utility of MF-DCCA for uncovering hidden, 
persistent relationships in natural systems. However, the strength of multifractality varied across 
studies and datasets. For instance, Yao et al. [4] reported stronger multifractality in sediment, whereas 
Shadkhoo and Jafari [2] emphasized differing behavior across small and large scales—highlighting that 
even within natural systems, multifractal properties are context-dependent. In atmospheric sciences, 
Marin, et al. [5] revealed consistent multifractal patterns in pollutant data across urban and regional 
sites, whereas in agriculture, Adarsh, et al. [6] showed agro-meteorological variables like wind speed 
and air pressure had lower multifractal exponents compared to evapotranspiration. This variability 
suggests MF-DCCA can distinguish between high and low complexity variables, making it useful in 
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heterogeneous systems. In structural health monitoring, Ayisha and Adarsh [7] emphasized MF-
DCCA’s untapped potential, particularly in crack detection and pore structure analysis. However, their 
review remained mostly conceptual, lacking empirical validation, unlike other environmental studies 
that provided detailed statistical outputs. Taken together, these applications demonstrate MF-DCCA’s 
effectiveness in diverse scientific settings but also underscore the importance of data selection, variable 
properties, and temporal scale when interpreting multifractal behavior. 

In financial markets, MF-DCCA has gained traction for analyzing asset interdependencies, 
especially during periods of market stress. Ling-Yun and Shu-Peng [8] found strong multifractal cross-
correlations between US and Chinese agricultural futures, despite their geographic separation—echoing 
the findings of Ferreira, et al. [9] who noted region-specific correlation patterns between exchange 
rates and stock markets, with India showing more sensitivity than Europe. These results highlight how 
global integration influences multifractality, though the magnitude of dependence appears to be market 
specific. Burugupalli [10] examined gold and oil markets and found strong multifractality in the short 
term, which weakened over longer horizons, suggesting that correlation regimes shift with time scale. 
This behavior contrasts with Wang, et al. [11] who found long-memory correlations in both price and 
load data from electricity markets, where the structure appeared more stable. These findings indicate 
that asset class characteristics (e.g., energy vs. commodities) can shape the persistence of cross-
correlations. Qiu and Ye [12] further refined this time-dependence, showing that multifractality 
between the S&P 500 and the Shanghai Composite intensified during the 2008 financial crisis. This is 
consistent with Zou and Zhang [13] who noted increased volatility and negative correlations between 
carbon and electricity markets, particularly during stress events. These studies underscore MF-DCCA’s 
strength in capturing crisis-driven changes in inter-market relationships. Building on this, Chen, et al. 
[14] compared the multifractal features, correlation, complexity, and uncertainty of the CSI 300 
(Shanghai and Shenzhen) and the S&P 500 using the MF-DCCA model. They found both indices to 
exhibit multifractal characteristics but with different degrees of long-term memory, complexity, and 
irregularity—demonstrating how market maturity and structure influence multifractal behavior. 
Comparatively, Wang, et al. [15] and Junjun, et al. [16] applied MF-DCCA to digital and alternative 
financial systems—China’s P2P lending and Bitcoin, respectively. Both found strong multifractal cross-
correlations with traditional financial indicators, though Junjun, et al. [16] emphasized greater 
sensitivity to external uncertainty (USEPU index), while Wang, et al. [15] focused on the potential 
stabilizing role of regulation. These results reveal the importance of institutional context in interpreting 
multifractal behavior. Recently, examined the multifractal properties and interconnections of six Islamic 
stock markets in the Pacific Asia region from 2011 to 2024, using the MF-DCCA model. Key metrics 
like the Generalized Hurst Exponent, Rényi Exponent, and Hölder Singularity Spectrum confirmed the 
presence of long-range dependence and multifractality. Surrogate and shuffled data tests indicated that 
this multifractality is driven by both heavy-tailed return distributions and long-term cross-market 
correlations. 

In commodity and innovation-linked studies, Jia, et al. [17] confirmed persistent cross-correlations 
between soybean spot and futures prices, while Jinchuan, et al. [18] observed time-varying 
multifractality in the relationship between technological innovation and macroeconomic performance. 
The latter study adds a dynamic dimension often missing from earlier analyses, suggesting the 
importance of monitoring how interdependencies evolve. 

In sustainability finance, Zeyi, et al. [19] revealed strong multifractality and low efficiency in 
China’s new energy index—consistent with Acikgoz, et al. [20] who found long-range power-law 
correlations between green bonds and commodity prices. However, both studies assume relatively 
developed market mechanisms, which may not be present in frontier economies. Paulo Roberto, et al. 
[21] took a more visual approach by introducing MF-DCCA Heatmaps, linking political cycles to 
Brazilian economic indicators. While innovative, this approach needs broader application and 
comparison to standard metrics to assess robustness. 
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Despite the growing body of literature on Multifractal Detrended Cross-Correlation Analysis 
Although the MF-DCCA method has been widely applied to various financial and non-financial systems, 
there remains a notable gap in research exploring dynamic cross-correlations within African stock 
markets. One of the few exceptions is the study by Marwane and Benbachir [22] which applied this 
method in the MENA region and uncovered multifractal correlations among markets in Morocco, 
Tunisia, Egypt, and Jordan. This gap underscores the need for further investigation into the 
multifractal cross-correlations and interdependencies among the largest African stock markets. Such 
analysis would enhance our understanding of their interconnected behavior and provide valuable 
insights for portfolio diversification and risk management across the region. 

Building on previous studies that applied MF-DCCA to financial markets, particularly the work of 
this paper investigates the informational efficiency and multifractal cross-correlations among the five 
largest African stock markets: Johannesburg, Casablanca, Botswana, Nigeria, and Egypt, using MF-
DCCA) method. 
 

3. Data and Methodology 
3.1. Data 

The dataset comprises daily closing prices from the five largest African stock markets: the 
Johannesburg Stock Exchange (JSE), Casablanca Stock Exchange (MASI), Botswana Stock Exchange 
(BSE), Nigerian Exchange (NGX), and Egyptian Exchange (EGX). Together, these markets account for 
over 90% of the total market capitalization of African stock exchanges. The JSE, supported by South 
Africa’s diversified economy and robust institutional framework, plays a central role in African financial 
markets and often serves as a regional benchmark. The MASI, one of North Africa’s most active 
exchanges, reflects Morocco’s growing economic diversification and increasing domestic and foreign 
investment. Though smaller in scale, the BSE is noted for its transparency and strong regulatory 
environment, supporting Botswana’s capital formation. The NGX is a key component of West African 
capital markets, with performance often linked to macroeconomic factors such as oil prices, exchange 
rate fluctuations, and political developments. The EGX, one of the continent’s oldest exchanges, 
functions as a strategic financial hub bridging the Middle East and Africa, underscoring Egypt’s 
economic and geopolitical importance. 

The data span from 30/01/2012 to 08/08/2024, comprising nearly 3050 observations. All data 
were downloaded from the website www.investing.com. The index prices were then converted into 

logarithmic returns 𝑟𝑡 = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
) = 𝑙𝑛(𝑃𝑡) − 𝑙𝑛(𝑃𝑡−1), where 𝑃𝑡 denotes the index daily price and 𝑙𝑛 

corresponds to the natural logarithm. 
 
3.2. Methodology 
3.2.1. Multifractal Detrended Cross-Correlation Analysis  

In this section, we introduce the Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), 
originally developed by Zhou [1]. This method integrates key aspects of two earlier techniques: 
Detrended Cross-Correlation Analysis (DCCA), proposed by Podobnik and Stanley [23] and 
Multifractal Detrended Fluctuation Analysis (MF-DFA), formulated by Kantelhardt, et al. [24]. MF-
DCCA is specifically designed to analyze multifractal characteristics in the cross-correlations between 
two time series. The procedure involves six main steps, which are outlined below. 

Let us consider two time series, 𝑥(𝑘) and 𝑦(𝑘),  , defined over the interval 1 ≤ 𝑘 ≤ 𝑁, where 𝑁 
represents the total number of observations. It is assumed that both series are of compact support, 

implying that the instances where 𝑥(𝑘) = 0 and 𝑦(𝑘) = 0 occur only for an insignificant portion of the 
domain. 

Step 1: The first step involves constructing the profiles = (𝑋(𝑖))
1≤𝑖≤𝑁

 and 𝑌 = (𝑌(𝑖))
1≤𝑖≤𝑁

, which 

are derived from the original time series 𝑥 = (𝑥(𝑘))
1≤𝑘≤𝑁

  and  𝑦 = (𝑦(𝑘))
1≤𝑘≤𝑁

, respectively: 

http://www.investing.com/
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𝑋(𝑖) = ∑ (𝑥(𝑘) − �̅�)𝑁
𝑘=1               𝑌(𝑖) = ∑ (𝑦(𝑘) − �̅�)𝑁

𝑘=1  (1) 

Here, �̅� and �̅� represent the average values of the time series (𝑥(𝑘))
1≤𝑘≤𝑁

  and (𝑦(𝑘))
1≤𝑘≤𝑁

, 

respectively. 

Step 2: For a selected time scale 𝑠 satisfying 10 ≤ 𝑠 ≤ N/3, the profiles 𝑋  and 𝑌 are divided into 

𝑁𝑠 = 𝐼𝑛𝑡(𝑁 𝑠⁄ ) non-overlapping segments, each of length s, where 𝐼𝑛𝑡(. ) denotes the integer part of a 

number. Because 𝑁 is not always an exact multiple of sss, a small portion at the end of each profile may 
be excluded. To ensure that no data is lost, the segmentation process is repeated from the opposite end 

of the series. This approach yields a total of 2𝑁𝑠  segments. The segmentation is performed in two ways: 

for 1 ≤ 𝑣 ≤ 𝑁𝑠, we extract the segments 𝑋((𝑣 − 1)𝑠 + 1)⋯𝑋((𝑣 − 1)𝑠 + 𝑠) and 𝑌((𝑣 − 1)𝑠 +

1)⋯𝑌((𝑣 − 1)𝑠 + 𝑠); for 𝑁𝑠 + 1 ≤ 𝑣 ≤ 2𝑁𝑠, we use the sequences ((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 1)⋯𝑋((𝑁 −

𝑣 − 𝑁𝑠)𝑠 + 𝑠) and similarly for 𝑌. 

Step 3: For each segment, we apply the Ordinary Least Squares (OLS) technique to model the data 

locally using a polynomial trend. Specifically, we represent the fitted polynomial of degree 𝑚 for the 

profile 𝑋 in the 𝑣-th segment as: 

𝑝𝑋,𝑣
𝑚 (𝑖) = 𝛼0

𝑣 + 𝛼1
𝑣 . 𝑖 + ⋯+ 𝛼𝑚

𝑣 . 𝑖𝑚, and similarly for the profile 𝑌 as: 

𝑝𝑌,𝑣
𝑚 (𝑖) = 𝛽0

𝑣 + 𝛽1
𝑣 . 𝑖 + ⋯+ 𝛽𝑚

𝑣 . 𝑖𝑚. Selecting an appropriate m is essential to balance model accuracy 

and prevent overfitting. 

Step 4: Once the fitting polynomials 𝑝𝑋,𝑣
𝑚 (𝑖) and 𝑝𝑌,𝑣

𝑚 (𝑖) have been obtained, the next step is to compute 

the detrended covariance 𝑓𝑋,𝑌
2 (𝑣, 𝑠) for each segment 𝑣 (where 11 ≤ 𝑣 ≤ 2𝑁𝑠) and for all time scales 𝑠. 

{
 
 

 
  𝑓𝑋𝑌

2 (𝑣, 𝑠) =
1

𝑠
∑|𝑋((𝑣 − 1)𝑠 + 𝑖) − 𝑝𝑋,𝑣

𝑚 (𝑖) |.

𝑠

𝑖=1

|𝑌((𝑣 − 1)𝑠 + 𝑖) − 𝑝𝑌,𝑣
𝑚 (𝑖)|  If 1 ≤ 𝑣 ≤ 𝑁𝑠                             

𝑓𝑋𝑌
2 (𝑣, 𝑠) =

1

𝑠
∑|𝑋((𝑁 − 𝑣 −𝑁𝑠)𝑠 + 𝑖) − 𝑝𝑋,𝑣

𝑚 (𝑖) |.

𝑠

𝑖=1

|𝑌((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑖) − 𝑝𝑌,𝑣
𝑚 (𝑖)| If 𝑁𝑠 ≤ 𝑣 ≤ 2𝑁𝑠

 (2) 

Step 5: The fluctuation function 𝐹𝑞
𝑋𝑌(𝑠) of order 𝑞 is then derived by taking the average of the detrended 

covariances across all segments for a given scale 𝑠: 

{
 
 

 
 
𝐹𝑞
𝑋𝑌(𝑠) = [

1

2𝑁𝑠
∑ (𝑓𝑋𝑌

2 (𝑣, 𝑠))

𝑞

22𝑁𝑠
𝑣=1 ]

1

𝑞

                For 𝑞 ≠ 0        

𝐹0
𝑋𝑌(𝑠) = 𝑒𝑥𝑝 [

1

4𝑁𝑠
∑ 𝑙𝑛 (𝑓𝑋𝑌

2 (𝑣, 𝑠))
2𝑁𝑠
v=1 ]       For 𝑞 = 0        

        (3) 

The main objective of the MF-DCCA method is to analyze how the fluctuation functions 𝐹𝑞
𝑋𝑌(𝑠) 

vary with the time scale 𝑠 for different values of 𝑞. To achieve this, Steps 2 through 4 are repeated 

across a range of time scales 𝑠. 
Step 6 : To investigate the multi-scale characteristics of the fluctuation functions 𝐹𝑞

𝑋𝑌(𝑠), we 

examine the slope of the log-log plots of 𝐹𝑞
𝑋𝑌(𝑠) versus the time scale 𝑠 for various values of 𝑞. If the 

time series 𝑋 and 𝑌 exhibit long-range cross-correlations following a power-law, indicative of fractal 

behavior, then for sufficiently large 𝑠, the function 𝐹𝑞
𝑋𝑌(𝑠) is expected to follow a power-law 

relationship: 

𝐹𝑞
𝑋𝑌(𝑠)~𝑠𝐻𝑋𝑌(𝑞) (4) 

Here, 𝐻𝑋𝑌(𝑞) refers to the generalized Hurst exponent, which characterizes the power-law cross-

correlation between the two time series 𝑋 and 𝑌. 
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An estimate of 𝐻𝑋𝑌(𝑞) can be obtained by performing a linear regression of 𝐿𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)) against 

𝐿𝑜𝑔(𝑠): 

𝐿𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)) ≈ 𝐻𝑋𝑌(𝑞). 𝐿𝑜𝑔(𝑠) (5) 

If 𝐻𝑋𝑌(𝑞) varies with 𝑞, it indicates that the cross-correlation between the two-time series exhibits 
multifractal behavior; if it remains constant, the relationship is monofractal. To determine the values of 

𝐻𝑋𝑌(𝑞) across different 𝑞 levels, a semi-log regression is conducted between the fluctuation function 

𝐹𝑞
𝑋𝑌(𝑠) and the scale 𝑠. Specifically, when 𝑞 = 2, 𝐻𝑋𝑌(2) corresponds to the classical Hurst exponent. A 

value of 𝐻𝑋𝑌(2) = 0.5 suggests no cross-correlation between the series. If 𝐻𝑋𝑌(2) > 0.5, the series are 

positively correlated over long ranges (persistent behavior), whereas 𝐻𝑋𝑌(2) < 0.5 implies long-range 

anti-persistent cross-correlations. Furthermore, positive values of 𝑞 highlight the scaling behavior of 

segments with large fluctuations, while negative 𝑞 values emphasize regions with smaller, wavelet-like 
variations. 

It is widely recognized that the generalized Hurst exponent 𝐻𝑋𝑌(𝑞), as derived from the MF-DCCA 

approach, is closely linked to the multifractal scaling exponent 𝜏𝑋𝑌(𝑞), also referred to as the Rényi 
exponent: 

𝜏𝑋𝑌(𝑞) = 𝑞.𝐻𝑋𝑌(𝑞) − 1 (6) 

When the Rényi exponent 𝜏𝑋𝑌(𝑞) exhibits a nonlinear dependence on 𝑞, it indicates that the cross-
correlation between the two-time series has multifractal characteristics. In contrast, a linear relationship 

between 𝜏𝑋𝑌(𝑞) and 𝑞 suggests monofractal behavior.  
Another effective approach to describe the multifractality of cross-correlations is by analyzing the 

Hölder spectrum, also known as the singularity spectrum 𝑓𝑋𝑌(𝛼𝑋𝑌), which is defined in terms of the 

Hölder exponent 𝛼𝑋𝑌. This spectrum is mathematically connected to the Rényi exponent 𝜏𝑋𝑌(𝑞) via the 
Legendre transform: 

{
𝛼𝑋𝑌 = 𝜏𝑋𝑌

′ (𝑞)                          

𝑓𝑋𝑌(𝛼𝑋𝑌) = 𝑞. 𝛼𝑋𝑌 − 𝜏𝑋𝑌(𝑞)
 (7) 

where 𝜏𝑋𝑌
′ (𝑞) represents the first derivative of the function 𝜏𝑋𝑌(𝑞). 

The exponent 𝛼𝑋𝑌 describes the strength of the singularities. When the cross-correlation between 

the two series exhibits multifractal behavior, the singularity spectrum 𝑓𝑋𝑌(𝛼𝑋𝑌) typically forms a 
concave, bell-shaped curve.  

The extent of multifractality between the series can be quantified by the range Δ𝐻𝑋𝑌, which is the 
difference between the minimum and maximum values, or equivalently, by the width of the spectrum 

∆𝛼𝑋𝑌 defined as follows: 

{
Δ𝐻𝑋𝑌 = 𝐻𝑋𝑌−𝑀𝑎𝑥 −𝐻𝑋𝑌−𝑀𝑖𝑛 = 𝐻𝑋𝑌(𝑞𝑚𝑖𝑛) − 𝐻𝑋𝑌(𝑞𝑚𝑎𝑥)
∆𝛼𝑋𝑌 = 𝛼𝑋𝑌−𝑚𝑎𝑥 − 𝛼𝑋𝑌−𝑚𝑖𝑛                                                     

 (8) 

Greater values of Δ𝐻𝑋𝑌 and ∆𝛼𝑋𝑌 signify a higher level of multifractality. 
 
3.2.2. Cross-Correlation Significance Test 

As an initial step, it is helpful to qualitatively assess whether cross-correlations exist between the 

series. For this purpose, Podobnik, et al. [25] introduced the 𝑄𝐶𝐶 statistical test. Consider two time 

series (𝑋𝑡)1≤𝑡≤𝑁 and (𝑌𝑡)1≤𝑡≤𝑁, each of length 𝑁. The authors defined the cross-correlation function 𝐶𝑖, 
for 1 ≤ 𝑖 ≤ 𝑁 − 1, as follows: 

𝐶𝑖 =
∑ 𝑋𝑘.𝑌𝑘−1
𝑁
𝑘=𝑖+1

√∑ 𝑋𝑘
2𝑁

𝑘=1 . ∑ 𝑌𝑘
2𝑁

𝑘=1

 
(9) 

The cross-correlation statistic 𝑄𝐶𝐶 is defined for 1 ≤ 𝑠 ≤ 𝑁 − 1 as follows: 
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𝑄𝐶𝐶(𝑠) = 𝑁
2.∑

𝐶𝑖
2

𝑁 − 𝑠

𝑠

𝑖=1

  (10) 

Podobnik, et al. [25] showed that the statistic 𝑄𝐶𝐶(𝑠) approximately follows a chi-square 

distribution with 𝑠 degrees of freedom. This test can be applied to evaluate the null hypothesis that none 
of the first sss cross-correlation coefficients differ significantly from zero. The authors suggested 

plotting 𝑄𝐶𝐶(𝑠)  against the corresponding chi-square critical values 𝜒2(𝑠)  over a wide range of 

degrees of freedom 𝑠. If 𝑄𝐶𝐶(𝑠) consistently exceeds the critical values at a 95% confidence level across 

many 𝑠, it indicates the presence of significant and potentially long-range cross-correlations. 
Nevertheless, since this test statistic is based on correlation coefficients, it primarily measures linear 
cross-correlations. As noted by Podobnik, et al. [25] this test should be employed only as a qualitative 
tool to detect the existence of cross-correlations. 
 
3.2.3. Origins of Multifractal Cross-Correlations 

It is widely recognized that multifractality in the cross-correlations of bivariate time series mainly 
arises from two sources: long-term temporal cross-correlations and heavy-tailed probability 
distributions. To assess the relative impact of these factors on the overall multifractal behavior, two data 
transformations are commonly employed on the original return series: random permutation (shuffling) 
and phase randomization (surrogate data generation). 

Random permutation rearranges the order of the return series, preserving the distribution of values 
and moments while effectively removing any long-range temporal dependencies. Consequently, the 
shuffled data retain the original distribution but lose all temporal correlations or memory effects. 

Phase randomization, on the other hand, disrupts long-term correlations by randomly altering the 
phases of the time series in the frequency domain, while maintaining the original amplitude spectrum 
and overall fluctuation structure. This process isolates the effect of long-range correlations on 
multifractality. 

Several methods exist for phase randomization, all relying on Fourier transform techniques, 
including: 

• The Inverse Fast Fourier Transform (IFFT) method (Proakis and Manolakis [26]). 

• The Iterative Amplitude Adjusted Fourier Transform (iAAFT) algorithm (Schreiber and Schmitz 
[27]). 

• The Statically Transformed Autoregressive Process (STAP) approach (Kugiumtzis [28]). 
In this study, we implemented two shuffling methods using MATLAB functions “randperm” and 

“randi.” For phase randomization, the Inverse Fast Fourier Transform (IFFT) technique was applied. 
 

4. Results and Discussion 
4.1. Cross-Correlation Significance Test Results 

In this section, we qualitatively assess the existence of cross-correlations among the five African 

indices using the 𝑄𝐶𝐶  statistic. For each pair of indices, we plotted the base-10 logarithm of the test 

statistic 𝑄𝐶𝐶  against the base-10 logarithm of the critical chi-square values 𝜒0,95
2 (𝑠) at the 95% 

confidence level, covering a wide range of degrees of freedom 𝑠 from 1 to 3000. The corresponding 
results are illustrated in the figure below. 
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Figure 1. 

𝐿𝑜𝑔(𝑄𝐶𝐶(𝑠)) and 𝐿𝑜𝑔(𝜒0,95
2 (𝑠)) vs. 𝐿𝑜𝑔(𝑠) for all pairs of indices. 

 

It can be observed that, for nearly all index pairs, the 𝑄𝐶𝐶(𝑠) statistic consistently exceeds the 

corresponding critical values 𝜒0,95
2 (𝑠), suggesting the presence of statistically significant cross-

correlations. However, since this test primarily captures linear dependencies and provides only a 
qualitative assessment, the findings should be further validated using the MF-DCCA method. 
 
4.2. MF-DCCA Analysis 

In this part of the study, the MF-DCCA method is employed to investigate the multifractal cross-
correlation properties of the bivariate series of logarithmic returns. 

 
4.2.1. Multi-Scale Analysis of Cross-Correlation Fluctuation Functions 

We examined how the cross-correlation fluctuation functions 𝐹𝑞
𝑋𝑌(𝑠) behave across multiple time 

scales sss, specifically within the range [20:10:100, 200:100:1000], for various values of 𝑞 taken from 
the intervals [-45:5:-5,-3.1:0.1:-0.1,0.1:0.1:3.1,5:5:45]. The figure below presents log-log plots of 

𝐿𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)) versus 𝐿𝑜𝑔(𝑠) for nine selected 𝑞 values: −15,−5,−3,−0.7, 0, 0.7, 3, 5, 15, across 9 

different index pairs : 
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Figure 2. 

𝐿𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)) vs. 𝐿𝑜𝑔(𝑠) for 𝑞 ∈ {−15,−5,−3,−0.7, 0, 0.7, 3, 5, 15}. 

 

As illustrated in Figure 2, the functions 𝐹𝑞
𝑋𝑌(𝑠) exhibit a nonlinear increase with respect to both the 

time scale s and the moment 𝑞, demonstrating a consistent power-law behavior across all index pairs. 
This pattern indicates the existence of long-range cross-correlations, highlighting the persistent 
interconnectedness of African stock markets. It suggests that market disturbances may propagate and 
have prolonged effects across the region. These results carry important implications: foreign investors 
should account for regional interdependencies when making investment decisions; portfolio managers 
may benefit from integrating multifractal techniques into their risk assessment and hedging 
frameworks; and policymakers should remain attentive to cross-market dynamics, promoting 
coordinated actions to enhance market stability and reduce the likelihood of systemic contagion. 
 
4.2.2. Multifractal Properties and Persistence in Cross-Correlations 

The following figure presents the generalized Hurst exponent 𝐻𝑋𝑌(𝑞), the Rényi scaling exponent 

𝜏𝑋𝑌(𝑞), and the singularity spectrum 𝑓𝑋𝑌(𝛼) for each of the ten index pairs. 
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Figure 3. 

Plots of 𝐻𝑋𝑌(𝑞), 𝜏𝑋𝑌(𝑞)  and 𝑓𝑋𝑌(𝛼) for all pairs of indices. 
 

The figure illustrates that across all index pairs, the generalized Hurst exponent 𝐻𝑋𝑌(𝑞) decreases 

in a nonlinear manner as 𝑞 increases from -45 to 45, while the Rényi exponent 𝜏𝑋𝑌(𝑞) exhibits a 

nonlinear upward trend over the same range. Additionally, the singularity spectra 𝑓𝑋𝑌(𝛼) display 
inverted, concave bell-shaped curves. These observations collectively confirm the presence of 
multifractal cross-correlation structures among the ten index pairs. This multifractality indicates 
inefficiencies in the interactions between the markets, meaning that the cross-market relationships are 
complex and exhibit persistent, non-random dependencies over multiple time scales. Such inefficiencies 
suggest that shocks or information in one market can have lasting and nonlinear effects on others, 
leading to prolonged interdependence and challenging the assumption of fully efficient and independent 
markets. 

The level of persistence in the cross-correlations can be evaluated by examining the values of 

𝐻𝑋𝑌(2). The table below presents the corresponding 𝐻𝑋𝑌(2) values for each index pair. 
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Table 1.  

Values of 𝐻𝑋𝑌(2) for the 10 pairs of indices. 

Pairs of indices 𝑯𝑿𝒀(𝟐) 
JSE vs MASI 0.511 

JSE vs BSE 0.504 

JSE vs NSE 0.514 
JSE vs EGX 0.509 

MASI vs BSE 0.497 
MASI vs NSE 0.513 

MASI vs EGX 0.510 
BSE vs NSE 0.508 

BSE vs EGX 0.506 
NSE vs EGX 0.514 

 

It is observed that the generalized Hurst exponents 𝐻𝑋𝑌(2) are approximately 0.51 for the majority 

of index pairs, with the exception of the MASI-BSE pair, which has a value of 𝐻𝑋𝑌(2) = 0.497. This 

means that for 9 out of the 10 index pairs, 𝐻𝑋𝑌(2) > 0.5, indicating the presence of long-range 
persistent cross-correlations among those pairs. 

The observation that the generalized Hurst exponents 𝐻𝑋𝑌(2) are around 0.51 for most index pairs, 
with the exception of the MASI-BSE pair at 0.497, indicates that nine out of ten pairs exhibit long-
range persistent cross-correlations. This persistence reflects a significant degree of market inefficiency, 
as it implies that past interactions between these markets influence their future behavior over extended 
periods. Such inefficiencies suggest that information or shocks are not fully or instantaneously absorbed, 
allowing predictable patterns or dependencies to persist. Consequently, these persistent cross-
correlations reveal opportunities for market participants to potentially exploit these predictable 
dynamics, while also highlighting the need for careful risk management given the prolonged 
interdependencies between the African stock markets. 
 
4.2.3. Measuring the Strength of Multifractality 

The intensity of multifractality in the cross-correlations can be quantified using Δ𝐻𝑋𝑌 and ∆𝛼𝑋𝑌, as 
outlined in Equation (8). The table below displays the multifractality levels for the ten index pairs based 
on these two indicators. 
 
Table 2. 

Degrees of multifractality of the ten pairs cross-correlations based on Δ𝐻𝑋𝑌 and ∆𝛼𝑋𝑌. 

 
All measured multifractality levels exceed 0.3, confirming the presence of multifractal 

characteristics in the cross-correlations among the ten pairs of indices. The JSE-MASI pair shows the 
strongest multifractality, followed in descending order by BSE-NSE, JSE-BSE, MASI-NSE, NSE-EGX, 
JSE-EGX, MASI-EGX, MASI-BSE, BSE-EGX, and JSE-NSE pairs. The notably high multifractality in 
the JSE-MASI pair carries important implications: investors should be aware of the persistent and 
potentially volatile patterns between these markets, adjusting their strategies accordingly. Portfolio 

Pairs of indices 𝚫𝑯𝑿𝒀 ∆𝜶𝑿𝒀 
JSE vs MASI 0.502 0.559 

JSE vs BSE 0.421 0.470 
JSE vs NSE 0.347 0.395 

JSE vs EGX 0.365 0.422 

MASI vs BSE 0.363 0.410 
MASI vs NSE 0.405 0.457 

MASI vs EGX 0.364 0.418 
BSE vs NSE 0.494 0.545 

BSE vs EGX 0.362 0.409 
NSE vs EGX 0.397 0.445 
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managers need to consider differences in multifractality when managing diversification and risk, 
especially given the close interdependence of the JSE-MASI pair. Policymakers should understand that 
market shocks or regulatory actions in one market may have prolonged impacts on others, highlighting 
the need for coordinated policies addressing both immediate and long-term effects. From a risk 
management perspective, the complex, nonlinear dependencies observed in the JSE-MASI pair 
underline the importance of employing sophisticated models capable of capturing these dynamics to 
enhance risk prediction and hedging approaches. 
 
4.2.4. Origins of Multifractal Cross-Correlations 

As mentioned earlier, multifractality in cross-correlations arises mainly from two factors: long-term 
temporal cross-correlations and heavy-tailed distributions. To assess the individual impact of each factor 
on the overall multifractality, we applied two transformations to the original logarithmic return series: 
shuffling and phase randomization (surrogate). In this analysis, two shuffling methods, “randperm” and 
“randi”, were utilized, while phase randomization was performed using the Inverse Fast Fourier 
Transform (IFFT) technique. Figures 4 and 5 below present a comparison of the generalized Hurst 

exponent 𝐻𝑋𝑌(𝑞) and the singularity spectra 𝑓𝑋𝑌(𝛼) curves for the original index return pairs alongside 
those of the shuffled and surrogate series. 
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Figure 4. 

Generalized Hurst exponent 𝐻𝑋𝑌(𝑞) vs. 𝑞  for all the indices’ pairs series of original, surrogate and shuffled. 
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Figure 5. 

Singularity spectra 𝑓𝑋𝑌(𝛼) vs. 𝛼 for all the indices’ pairs series of original, surrogate and shuffled. 

 
Figures 4 and 5 demonstrate that both shuffling and surrogate transformations lead to a noticeable 

decrease in the multifractality levels of the original series. To quantify this reduction, we computed the 

values of ∆𝐻𝑋𝑌 and ∆𝛼𝑋𝑌 for all ten pairs of indices. The MF-DCCA analysis was repeated 100 times in 
MATLAB for each pair. While the original series yielded consistent results, the surrogate and shuffled 
series produced varying outcomes across runs due to the random nature of the permutation algorithms 

used. Despite this variability, the original series consistently showed higher values of ∆𝐻𝑋𝑌 and ∆𝛼𝑋𝑌 
compared to both the surrogate and shuffled series in every simulation. The table below displays the 
results from a representative simulation out of the 100 runs. 
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Table 3. 

Degrees of multifractality of original, surrogate and shuffled series based ∆𝐻𝑋𝑌 and ∆𝛼𝑋𝑌. 

 Original Surrogate Shuffled-randperm Shuffled-randi 

Pairs  ∆𝑯𝑿𝒀 ∆𝜶𝑿𝒀 ∆𝑯𝑿𝒀 ∆𝜶𝑿𝒀 ∆𝑯𝑿𝒀 ∆𝜶𝑿𝒀 ∆𝑯𝑿𝒀 ∆𝜶𝑿𝒀 
JSE vs MASI 0.502 0,559 0.215 0,314 0.180 0,237 0.153 0,204 
JSE vs BSE 0.421 0,470 0.369 0,427 0.321 0,375 0.277 0,325 

JSE vs NSE 0.347 0,395 0.168 0,318 0.160 0,216 0.216 0,270 
JSE vs EGX 0.365 0,422 0.158 0,206 0.167 0,218 0.215 0,273 

MASI vs BSE 0.363 0,410 0.333 0,382 0.349 0,400 0.261 0,316 
MASI vs NSE 0.405 0,457 0.188 0,238 0.228 0,286 0.161 0,207 

MASI vs EGX 0.363 0,418 0.219 0,268 0.217 0,269 0.171 0,218 
BSE vs NSE 0.394 0,545 0.371 0,418 0.308 0,359 0.310 0,359 

BSE vs EGX 0.362 0,409 0.338 0,392 0.341 0,389 0.337 0,389 

NSE vs EGX 0.397 0,445 0.174 0,221 0.209 0,260 0.180 0,237 

 
The outcomes from the 100 simulations reveal that for all ten index return pairs, the original series 

consistently exhibit higher values of ∆𝐻𝑋𝑌 and ∆𝛼𝑋𝑌 compared to both the surrogate and shuffled series, 
as shown in the previous table. This demonstrates that the multifractality in cross-correlations 
diminishes following either surrogate or shuffled transformations. Therefore, it can be concluded that 
both long-term temporal cross-correlations and heavy-tailed distributions play significant roles in 
shaping the multifractal nature of the cross-correlations among the ten index return pairs. 

In conclusion, the analysis of generalized Hurst exponents and singularity spectra reveals that both 
long-term cross-correlations and heavy-tailed distributions play key roles in the multifractal 
characteristics of returns across the ten index pairs, highlighting persistent inefficiencies between the 
markets where price movements in one market continue to influence others over long periods, 
indicating delayed information transmission and imperfect market integration. This insight carries 
important consequences for different market participants. The observed inefficiencies between the 
markets imply that price adjustments are not instantaneous, leading to opportunities for arbitrage but 
also increasing vulnerability to prolonged shocks and delayed responses. Investors should be aware that 
market trends often exhibit persistence, but the probability of extreme events such as sharp crashes or 
rallies is elevated, necessitating stronger risk management approaches. Portfolio managers need to 
incorporate nonlinear dependencies among assets and prepare for potential extreme co-movements, 
adjusting their risk models to perform effectively during both normal and turbulent market conditions. 
Policymakers must acknowledge that their actions can have lasting and unpredictable impacts, 
potentially increasing systemic vulnerabilities due to the imperfect integration of these markets, and 
thus should develop regulations that consider extreme scenarios and market interconnections. From a 
risk management perspective, conventional models fall short in capturing these nonlinear dynamics, tail 
risks, and inefficiencies, underscoring the importance of adopting advanced techniques, such as 
multifractal analysis and tail-risk-focused measures, to more accurately evaluate and mitigate extreme 
market risks. 

 
4.3. Comparison with Previous Research 

Research examining cross-correlations or co-movements among African stock markets—
particularly from a multifractal perspective—remains limited. This study’s results reveal notable co-
movements and strong interdependencies between African stock markets. These findings are in line 

with those of Owusu‑Junior, et al. [29] who investigated correlations and information flow during the 
COVID-19 pandemic, though their analysis emphasized short-term dynamics. In contrast, our 
application of the MF-DCCA method captures long-term, persistent cross-correlations. Similarly, our 
conclusions partly coincide with Ferrouhi [30] who employed Granger causality and Johansen 
cointegration to detect both short- and long-term co-movements; however, our study advances this by 
identifying the multifractal and multi-scale characteristics inherent in these relationships. Tweneboah, 
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et al. [31] also reported long-term dependencies using wavelet analysis, yet our approach offers a more 
detailed exploration of the underlying complexity beyond what wavelet methods typically reveal. 
Furthermore, Yaya, et al. [32] used QVAR dynamic connectedness to highlight the shifting roles of 
individual markets during different phases, pinpointing key markets driving shock transmission. While 
their work focuses on dynamic market leadership, our research centers on the persistent multifractal 
structure of cross-market linkages over time. 

In summary, although previous studies provide valuable insights, this study contributes a more 
nuanced and comprehensive understanding of the multifractal cross-correlations, intricate 
interdependencies, and notable inefficiencies characterizing African stock markets across extended time 
horizons. 
 

5. Conclusion  
This study provides a detailed investigation of cross-correlations among the five largest African 

stock markets - Johannesburg Stock Exchange, Casablanca Stock Exchange, Botswana Stock Exchange, 
Nigerian Exchange, and Egyptian Exchange - employing the Multifractal Detrended Cross-Correlation 
Analysis (MF-DCCA) method. The analysis of nearly 3050 daily observations, spanning from January 
30, 2012, to August 8, 2024, has produced significant findings. 

The preliminary application of Cross-Correlation Significance Test revealed that cross-correlations 
among almost all pairs of indices are statistically significant. Utilizing the core components of the MF-
DCCA method, such as Generalized Hurst exponents, Rényi exponents, and Hölder Singularity 
Spectrum, further confirmed that the pairs of indices display long-range persistent cross-correlations 
and multifractal behavior. These results indicate that the markets are deeply interconnected, with 
multifractal dynamics influencing their interactions. However, the presence of long-range persistent 
cross-correlations alongside multifractal features also suggests inefficiencies between the markets, 
implying that price movements are not fully random or efficient. This inefficiency can create 
opportunities for arbitrage but also signals potential risks due to prolonged dependencies and delayed 
information transmission across markets.Moreover, the investigation into the sources of multifractality 
through surrogate and shuffling transformations revealed that both long-term cross-correlations and 
heavy-tailed distributions play significant roles in the multifractal nature of the cross-correlations 
observed.  

The findings of this study provide practical implications for various market players. Investors 
should incorporate multifractal and cross-correlation analyses into their decision-making processes to 
enhance risk management and capitalize on dynamic market relationships. For policymakers, the 
findings highlight the need to consider the broader impact of regulatory changes. Policies affecting one 
market can have substantial ripple effects on others due to their strong interconnections. Therefore, 
regulators should develop coordinated strategies that address these interdependencies to promote 
overall market stability and prevent systemic risks. Financial institutions are advised to integrate 
multifractal analysis into their risk management frameworks. By understanding the long-term stability 
and multifractal behavior of cross-correlations, they can better anticipate and mitigate risks associated 
with market fluctuations. 
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