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Abstract: Knowledge Graphs are structured representations of knowledge that capture concepts and 
their relationships, facilitating informed decision-making, enhancing efficiency, and enriching learning 
experiences across various educational contexts. Although interest in Knowledge Graphs (KGs) for 
teaching and learning (T&L) is increasing, systematic reviews of the latest models, baseline 
comparisons, and evaluation methods remain limited. This systematic literature review (SLR) aims to 
address this gap by analyzing the underlying models, baseline algorithms, and evaluation techniques 
used in the field. Following PRISMA guidelines, a comprehensive search was conducted across five 
major databases—Scopus, Web of Science, ScienceDirect, ACM Digital Library, and IEEE Xplore—
resulting in the identification of 34 relevant articles published between 2018 and 2024. These articles 
focus on domain-specific KGs applied explicitly to T&L activities. The applications of KGs are 
categorized into three main areas: Recommendation and Personalized Learning, Concept Mapping and 
Knowledge Organization, and Information Retrieval and Question Answering. The synthesis of results 
indicates that deep learning models—particularly BERT and its variants, BiLSTM, and Conditional 
Random Fields (CRF)—are predominant in knowledge extraction processes. Additionally, Knowledge 
Graph Embedding (KGE) techniques and Graph Neural Networks (GNNs), such as Graph 
Convolutional Networks (GCNs) and Graph Attention Networks (GATs), are extensively utilized. The 
review also highlights several limitations, including data scarcity, issues with generalizability, and a lack 
of standardization. To advance the development of educational KGs, future research should focus on 
automated data extraction from heterogeneous sources, standardized approaches for entity extraction, 
consistent evaluation and benchmarking methods, improved interoperability and scalability, as well as 
enhanced explainability and privacy-preserving techniques. 

Keywords: Deep learning, Education, Graph neural network, Knowledge graph, Ontology. 

 
1. Introduction  

The last decade has witnessed an increased interest in Knowledge Graph (KG) research and its 
applications across various fields. A Knowledge Graph is a structured representation of knowledge that 
delineates and maps concepts or terms and their interrelations within a specific subject domain through 
graphs [1] It represents real-world data, aiming to capture the relationships between the entities of the 
data via a graph. In a knowledge graph, the entities are represented as nodes while the relationship 
between them is represented as edges linking one node with another. As such, KG can be viewed as a 
graph-structured data model used to store and manage linked data while outlining the semantics of the 
relationships between data entities. [2]. Figure 1a depicts a generic structure of a KG, and an instance 
of a KG is illustrated in Figure 1b, depicting the structure of nodes and the relationship between the 
terms. A Knowledge Graph can be represented mathematically as: 
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Figure 1a. 
Node and Edges. 
Note: Where: G: Knowledge Graph. 
V: Set of vertices (entities, concepts). 
E: Set of edges (relationships). 
R: Set of relationship types (labels). 

 

 
Figure 1b. 
KG depicting concepts and relationships between RNA molecules [3]. 

 
Knowledge Graphs are practical tools for structuring and representing knowledge in a machine-

readable format, establishing it as a significant technology within the Semantic Web[4]. Knowledge 
Graphs (KGs) have emerged as a transformative technology, revolutionizing several sectors and 
disciplines by facilitating informed decision-making, fostering innovation, and improving efficiency in 
synthesizing and contextualizing diverse data. For example, knowledge graphs have been used in the 
healthcare sector for disease diagnosis, health risk prediction, treatment recommendations, and 
personalized medicine [5-7]. In finance, KGs facilitate intelligent audit risk management, compliance 
monitoring, investment analysis, and credit scoring [8, 9]. KGs also enable data-informed policy 
formulation and crisis management in the governmental and public sectors [10], as well as providing 
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public service information, and open data governance [10-12] . In Cybersecurity, KG has proven helpful 
for improving threat detection, vulnerability assessment, and access management [13, 14]. Knowledge 
Graphs are also utilized in media and entertainment for content recommendations [15] ; retail and e-
commerce for customer profiling and product recommendation [16]; transportation for route 
prediction, route optimization, and traffic management, amongst others [17, 18].  

Within the field of education, KG has been utilized for diverse tasks such as teaching and learning, 
administration, analytics, and other aspects of education. Notable KGs for teaching and learning include 
KG for precision teaching based on personalized or adaptive learning [19]  Intelligent tutoring systems 
[20, 21] question-answering [22-24] information retrie [25]  curriculum design and management, and 
recommendation systems in which KGs suggest learning paths [26]  reskilling and upskilling options 
[27]  but primarily for recommending relevant resources such as videos, articles, and podcasts for 
teachers and students [28]. Likewise, in the areas of assessment and learners’ evaluation, KGs have 
been used to generate self-tutorials [29] and practice questions from the course resources [30]. In 
addition, KG has been utilized for data mining and learning analytics, offering insights into student 
performance, predicting grades, and identifying improvement areas. However, these applications are not 
explicitly tied to teaching and learning. Other non-explicit applications of KG vary, including 
educational administration, such as resource and course allocation [31] research-related activities such 
as cross-language plagiarism detection [32] literature review automation [33] related literature 
visualization, amongst others.   

Some reviews and survey studies have been done on different aspects of KG for education, such as 
systematic reviews  [34-37] and surveys by Abu-Salih [38] and Qu, et al. [39]. While these studies 
have provided valuable insights into the applications and limitations of KGs in education, they have 
largely overlooked the underlying models and baselines used in different phases of KG development. 
Notably, [37] highlighted the variability in models used by researchers in KG development and 
proposed an overall process for KG development, a comprehensive examination of the diverse models 
remains largely unexplored. This gap hinders the advancement of KG research, as developers may 
waste time exploring inefficient models and approaches. This Systematic Literature Review (SLR) 
addresses this issue by concisely analyzing state-of-the-art construction models, baseline approaches for 
comparison, and evaluation methods used in KG development.  

The rest of this article is structured as follows: Section 2 covers the methodology behind this SLR, 
including the databases searched, keywords utilized, and the inclusivity and exclusivity criteria applied. 
In section 3, an overview of the architecture of a Knowledge Graph is presented, establishing a 
foundational understanding of the subject. The results of the SLR are presented in Section 4, a synthesis 
of the various applications of KGs in teaching and learning contexts with particular emphasis placed on 
the domains represented, the construction and baseline methods employed, and the limitations 
identified. A tabular summary of the reviewed literature within the respective use cases accompanies 
each of the identified teaching and learning application categories. Section 5 presents a summary and 
classification of different methods and construction models considered to be state-of-the-art in KG 
development. Section 6 critically examines the limitations inherent in each study, highlighting the 
corresponding research gaps and open issues in KG development.  Finally, section 7 proposes directions 
and recommendations for future KG research development, which may address the identified gaps 
and limitations. 
 

2. Methods 
The applications of KG in education go beyond teaching and learning; it also includes its use for 

education administration, data analytics, research development, process or event scheduling, and other 
areas that require decision-making. This study exclusively considered KGs utilized primarily or 
explicitly for teaching and learning activities. We examined the architecture of these KGs in terms of 
the knowledge domain, data models, construction and baseline models, evaluation methods, and 
respective specific purposes. With an increasing body of scholarly work on Knowledge Graphs, it was 
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observed that a significant number of KG articles are devoid of adequate documentation regarding 
specific methods and elements of the KG’s architecture, such as the models, frameworks, and tools 
utilized in the design and deployment of Knowledge Graphs. Thus, the motivation behind this SLR 
effort is to comprehensively synthesize the different methods used to design KGs, from the initial stage 
of knowledge acquisition to the evaluation of the KG-specific purposes.  Overall, this SLR aims to 
present the state-of-the-art models utilized in KG construction methods and the corresponding baseline 
approaches used to compare results in teaching and Learning. By identifying the most effective models 
employed in diverse research, this study aims to guide future researchers in selecting the optimal models 
for their KG development while avoiding wasting time and resources. 

This SLR focuses on articles published within the past seven years (2018–2024) to ensure relevance 
and currency. The review adheres to the PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) framework for guidance. To assemble the initial set of articles, on 7th September, 
2024, an extensive search was conducted across five (5) databases: Scopus, Web of Science, Science 
Direct, ACM Digital Library, and IEEE Xplore Digital Library. Scholar. The search was limited to 
English-language articles and employed this set of keywords in the database query: Knowledge Graph 
AND "Domain-Specific" OR Subject OR Course AND “Teaching OR Learning OR Training”. Amidst 
several applications of KG within the educational setting, we focused on KGs with specific domains or 
subject domains utilized for explicit teaching and learning (T&L). As such, KGs designed for academic 
data analysis, results predictions, and other administrative tasks were exempted.  

The review articles were categorized based on their specific applications for explicit T&L, and each 
of the selected articles was examined through the lens of four key areas: Coverage and Source, 
Construction Methods, Evaluation Methods, and Limitations. Each of these Research Focus (RF) was 
examined by unique research questions that a prospective article must answer to be considered eligible; 
they serve as a reference point in result dissemination and discussion. The RFs and their respective 
questions that guided this systematic review are presented below. 
 
RF1: Coverage and Sources 
i. What specific knowledge domains, especially the subjects or courses, were primarily targeted in 

knowledge graph construction, and at which level of education?  
ii. What datasets were utilized in the KGC, and the sources of the datasets 
RF2: Construction Methods 
i. What design approaches were employed, and was the design of the KG automatic, semi-automatic, 

or manual? 
ii. Which models or frameworks were used in the Entity Recognition (ER), Entity Extraction (EE), 

and Knowledge embedding (KE) phases of the knowledge graph construction, and how practical 
are these approaches in capturing complex relationships? 

RF3: Evaluation Methods 
i. Which evaluation methods and metrics have been used to assess the performance of knowledge 

graphs at each phase of the KGC? 
RF4: Limitations 
i. What were the limitations encountered when the authors tested the effectiveness of the KG 

applications in real-world scenarios? 
Figure 2 illustrates the article selection procedure using the PRISMA framework. Initially, through 

the keyword-based search, 232 articles were identified from the Web of Science database, 182 from 
Scopus, 157 from ACM, 136 from IEEE, and 51 from Science Direct, aggregating 762 articles from 
databases. A screening phase was executed to eliminate superfluous or irrelevant articles. The title and 
abstract of each paper were scrutinized to verify adherence to the inclusion criteria. Consequently, 321 
records were omitted at this phase. Several papers predominantly discussed KG embeddings about 
established KGs rather than concentrating on developing and utilizing educational KGs. Several 
authors examined the development of knowledge graphs in domains beyond education while referencing 
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education as a pertinent instance of knowledge graphs used in industrial settings. Following the 
screening process, an eligibility evaluation was performed by an exhaustive examination of the entire 
text of the surviving articles. This action led to the elimination of 124 records that did not satisfy the 
specified criteria. In the final stage of the systematic literature assessment, 91 papers were determined as 
eligible for inclusion in this comprehensive analysis of knowledge graph construction in the educational 
domain 
 

3. Architecture of a Knowledge Graph 
The architecture of a Knowledge Graph (KG) denotes the conceptual, logical, and physical 

framework that underlies the design, construction, and deployment of a KG. It encompasses the 
structural organization, schema, and ontologies governing the representation, integration, and 
management of heterogeneous knowledge sources and the interfaces, protocols, and APIs facilitating 
access, querying, and reasoning over the KG's knowledge assets. The architecture of a KG, depicted in 
Figure 3, is complex and multi-layered. Still, overall, it provides a blueprint for how the KG’s 
knowledge is represented, integrated, stored, managed, and queried, enabling various applications of the 
KG.[40-42].  

The foundation of a KG is the data layer. This layer aggregates diverse raw data formats from 
various sources, including structured databases, semi-structured formats like XML or JSON, and 
unstructured sources like text documents. On top of the data layer lies the knowledge representation 
layer, also known as the ontology layer, which defines the structural framework of the KG. This layer 
establishes the schema, specifying entities, attributes, and the relationships between them, thus 
providing the blueprint for integrating disparate datasets. This layer also guides the unification process, 
ensuring that the KG presents a coherent and consistent view of the data.  The next layer is the 
integration layer, which is responsible for harmonizing data from various sources. This layer resolves 
inconsistencies, duplicates, and conflicts that could have arisen during the integration process.  
Techniques such as Knowledge fusion and knowledge embedding are employed to ensure the 
consistency and accuracy of the KG. The integration layer creates a unified data view, enabling the KG 
to represent the targeted knowledge domain comprehensively and accurately.  

The storage layer is responsible for storing or hosting the KG; Graph databases are typically used 
for this purpose. Graph databases are designed to efficiently query and traverse the graph's intricate 
connections, making them well-suited for the storage and management of KG. A query layer is required 
to interact with the knowledge graph, which provides mechanisms to retrieve knowledge by analyzing 
data from the KG. This layer supports query languages like SPARQL, GREMLIN, CYPHER, amongst 
others, enabling users to pose complex questions and extract meaningful insights from the graph's 
interconnected data. The query layer bridges the stored knowledge and its practical application. Finally, 
the application layer leverages the knowledge graph's capabilities for various use cases. From powering 
semantic search engines and recommendation systems to aiding in natural language understanding and 
decision support, this layer translates the graph's potential into tangible benefits for users.  
 
3.1. KG Construction Processes and Phases 

Knowledge Graphs can be developed using either top-down or bottom-up approaches [35, 43]. The 
top-down approach involves conceptualizing the domain and refining it into a detailed representation of 
entities and their relationships, aligning with W3C standards and meeting specific research needs. This 
process includes defining the subject domain, developing a conceptual model, creating logical and 
physical models, selecting appropriate programming languages, and deploying the knowledge graph as 
an application or service [43]. The ontology (or data schema) is defined first, and knowledge is 
extracted based on the ontology. The Bottom-Up approach leverages existing data sources like 
literature and crowd-sourced information to create the KG. This method effectively analyzes large 
volumes of unstructured or semi-structured data, revealing patterns and relationships that may not be 
immediately apparent through traditional methods. As such, the KG reflects the complexities of the 
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domain being represented [35, 43]. Some research works, such as those reported byHu, et al. [44] and 
Zhang, et al. [45] combined both top-down and bottom-up strategies for ontology mapping, leveraging 
the strengths of both approaches.  

 

 
Figure 2. 
SLR paper screening and selection using the PRISMA model Page, et al. [46]. 
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Figure 3. 
Multilayer Architecture of KG. 
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Aside from a KG top-down, bottom-up, or hybrid development approach, the architecture of a KG 
also encompasses the models or algorithms behind each step of the construction methods and 
corresponding models. The choice of the model is dependent on the methodology behind the design and 
development. Details on the state-of-the-art construction models are summarized in Section 5. However, 
regardless of the method behind the construction of a Knowledge Graph (KG), the phases or stages, 
summarized in Table 1, include the Planning and Design phase, followed by Data or Knowledge 
Acquisition, then Entity Recognition and Extraction, Relation and Attributes Extraction, Knowledge 
Embedding and Fusion. The KG is then validated, and the quality is checked for refinement. Finally, the 
KG is deployed, maintained, and updated regularly. Each phase of KG development has multiple steps 
or tasks, and the specific activities will vary depending on the KG construction project's scope, goals, 
and methodology. 
 

4. Results 
This section summarizes the identified Knowledge Graphs used for teaching and learning, the 

classification of their specific purposes, the architecture, evaluation methods, and limitations.  In the 
context of KG use in Teaching and Learning, seven primary pedagogical tasks were identified for which 
KGs are utilized: Recommendations, Question Answering, Semantic Search, Information Extraction, 
Adaptive Learning, Precision Teaching, and Concept Mapping. The specific meaning or purpose of each 
teaching and learning task is summarized in Table 2, while the mind map and distributions are 
illustrated in Figure 4 and Figure 5, respectively. 
 
Table 1.  
Phases of KG Construction with the respective actions and deliverables. 

S/N Phases Actions and Deliverables 
 
 
1. 
 

 
 
Planning and Design 

Define the scope and goals of the KG 
Identify the target audience and use cases 
Determine the relevant domains and entities to be included 
Establish a data model and governance framework for the KG 

 
2. 

 
Data Acquisition and 
Integration 
 

Identify and collect relevant data sources (e.g., databases, files, web pages) 
Integrate data from multiple sources into a unified format 
Handle data quality issues (e.g., duplicates, missing values) 
Transform and normalize data into a suitable format for the KG 

 
 
3. 

 
Entity Recognition and 
Disambiguation 
 

Identify and extract the required entities from the collected data  
Disambiguate entities with similar names or identifiers 
Assign unique identifiers to each entity 
Create entity profiles with relevant attributes and relationships 

 
 
4. 

 
Relation, Attributes 
Extraction and Modeling 

Extract relationships between entities from the collected data 
Model relationships using ontologies, taxonomies, or other frameworks 
Define relationship types and properties (e.g., symmetric, transitive, hierarchical) 
Create relationship instances between entities 

 
5. 

 
Knowledge Embedding and 
Fusion 

Create a graph data structure to represent the entities and relationships as numerical 
vectors in a high-dimensional space. 
Use graph algorithms to optimize the graph structure and reduce complexity 
Perform graph-based reasoning and inference to derive new knowledge 

 
6. 

 
Validation and Quality  
Assurance 

Perform data quality checks and handle errors or inconsistencies 
Evaluate the KG against relevant metrics and benchmarks 
Refine and update the KG based on feedback and evaluation results 

 
7. 

 
Deployment and  
Maintenance 
 

Deploy the KG in a suitable environment (e.g., database, file system, cloud) 
Develop real-world applications and interfaces to interact with the KG 
Monitor and maintain the KG to ensure data freshness and accuracy 
Update the KG with new data and knowledge sources as needed 

8. Evaluation and Refining Continuously evaluate the KG against relevant metrics and benchmark 
Define and update the KG based on feedback and evaluation results 
Identify areas for improvement and optimize the KG accordingly 
Explore new use cases and applications for the KG 
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Table 2.  
Teaching and Learning Tasks and their respective meaning 

T&L Tasks Meaning or Specific Usage 

Recommendations To provide individualized recommendations, such as resources, curriculum, or paths of 
instruction to learners based on their unique profiles 

Question Answering Allows learners to ask questions and access the precise and relevant answers to the inquiries.  
Semantic Search It is a search through provided instructions utilizing search queries' understanding, meaning, and 

context rather than just matching keywords. 

Information Extraction To automatically extract relevant information from unstructured or semi-structured learning 
materials. 

 
Upon meticulous examination of the identified T&L tasks, employing human cognizance and AI 

tools such as meta-AI, considerable parallels and overlaps were identified, and this served as a basis for 
the reclassification of identified teaching and learning tasks. Both Precision Teaching and 
Recommendation entail customizing educational experiences to meet the specific needs of individual 
students, rendering them compatible for integration. Adaptive systems represent a personalized 
learning methodology, warranting their classification within the same category. Similarly, Information 
Retrieval, Semantic Search, and Question Answering entail extracting and providing pertinent 
information to facilitate learning, rendering them appropriate for integration in these tasks. As such, the 
identified KGs were reclassified into three categories: 

i. KG for Recommendation and Personalized Learning: This category integrates precision 
teaching and learning, recommendation systems, and adaptive technologies. Knowledge graphs 
in this category help tailor learning experiences to individual students' needs. 

ii. KG for Concept Mapping and Knowledge Organization: This category focuses on concept 
mapping and knowledge organization, which includes the use of KG to generate  

iii. taxonomies and ontologies and for concept clustering, all of which can be used to support 
learning, teaching, and knowledge management. 

iv. KG for Question Answering and Information Retrieval: This category merges information 
extraction, question answering, and semantic search or information retrieval. Knowledge graphs 
in this category facilitate the retrieval and provision of relevant information to support learning 

 

 
Figure 4. 
A mind map of KG for T&L pedagogical tasks 
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Figure 5. 
Distributions of T&L pedagogical tasks of Selected Papers. 
 

4.1. KG for Recommendation and Personalised Learning 
A recommendation system is designed to facilitate the mining of user preferences by leveraging the 

semantic relationships and available contextual information to generate tailored, personalized, and 
relevant recommendations that meet the needs and interests of users [47]. A KG-based 
recommendation system uses a graph-based data model to capture entities and their relationships, 
algorithms such as Graph Neural Networks (GNN) or other Machine Learning techniques are used for 
the system to dynamically adapt to the evolving learning profiles of students to optimize and select 
educational resources that will suit users (learners or teachers) individual needs and preferences[13, 15, 
48, 49]. The rich semantic information embedded within the KG allows the recommendation system to 
better understand the underlying factors influencing user decisions, thereby addressing issues of data 
sparsity, cold start problems, and incompleteness commonly encountered in traditional recommendation 
approaches while also capturing a more holistic view of a user’s multifaceted preferences[50]. KGs can 
be used to represent various educational concepts, including learners, learning resources, knowledge 
components, learning pathways, and pedagogical strategies [19, 26, 29, 50, 51] This structured 
representation allows for the development of intelligent systems that can reason about learning 
processes, tailor content recommendations, and provide personalized feedback [53]. Likewise, the paths 
within a recommender KG that connect users to items can serve as explanatory mechanisms, elucidating 
the rationale behind specific recommendations and enhancing the interpretability of the 
recommendation process [26, 52] .  

The SLR synthesis identifies several key applications of KGs relating to recommendation systems 
and personalized learning. Notable specific purposes of these KGs include Precision Teaching [19, 53-
55] diverse forms of recommendations such as learning path recommendations [19], [26], course 
recommendations[30, 48, 51, 56, 57] exercise or assessment recommendations [53, 58], learning 
resources, and multimedia learning object recommendations [28, 59] amongst others, and Systems for 
Adaptive teaching and learning [60]. For instance, [19] designed CourseKG to enhance precision 
teaching by creating personalized learning paths. The study proposes a new framework that targets the 
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shortcomings of current general-purpose knowledge graphs by combining a pre-trained BERT model 
[53] 

Other notable KGs used in precision teaching are the works of [53-55]  which are summarized in 
Table 3. Huang, et al. [55] propose WERECE, an unsupervised method that extracts educational 
entities based on word embedding refinement. WERECE incorporates a manifold learning algorithm to 
modify a pre-trained model for extracting educational concepts while considering the geometric 
information in the semantic computation. Using the EDU-DT and EDUTECH-DT datasets, the model 
performance was compared to 5 baseline alternative approaches - Text Rank, TF–IDF, Isolation Forest, 
K-means clustering, and one-class Support Vector Machine (SVM). WERECE outperformed these 
baselines with 85.9% precision, 87.0% recall, and 86.4% F1 score. Huang, et al. [55] credited 
WERECE's enhanced performance to the optimization of pre-trained word embeddings and the 
application of a discriminant function in their knowledge graph construction. However, the authors also 
acknowledged the limits of the KG design concerning the generalisability of the utilized corpora and the 
possibility of a mismatch between the extracted concepts and the specific domain semantics. Yuan et.al 
[53], developed a knowledge graph for higher mathematics knowledge extraction. This study employs 
a Graph Convolutional Network (GCN) and an Attention Mechanism (AM) to construct an entity 
recognition model. Attention-Guided Graph Convolutional Network (AGGCN) was utilized for relation 
extraction, and a Graph Convolutional Network (GCN) based model for text classification [54]. The 
authors contrasted the GCN model with different techniques used in prior similar research, such as 
BiLSTM-CRF. While the results indicated that GCN attained superior accuracy, recall, F1 score, and p-
values relative to other models, the authors also recognized the constraints of the study, including the 
necessity for extensive labeled datasets for training and the difficulty of accurately encoding advanced 
mathematical knowledge as a precise graph structure [54].  

In addition to the precision teaching from knowledge concept extracts, it is also possible to auto-
generate assessments, such as quizzes, from a KG. This approach precisely conforms assessments to a 
specific resource made available to learners. The authors of Ma and Ma [53] introduced a framework 
for automatically generating questions from subtitles of video-based instructional content in Massive 
Open Online Courses (MOOCs). The framework extracts information from subtitles utilizing a 
knowledge graph and then uses a template-driven approach to formulate questions. The authors utilized 
the SimpleQuestions dataset, which comprises question-answer pairs derived from Freebase. The 
authors correlated Freebase with WIKIDATA and employed BLEU as the parameter for assessing 
question quality. Their proposed method attained a BLEU score of 0.48, surpassing baseline methods 
(0.40) and MP Triples TransE++ (0.46).  
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Table 3. 
Selected KG for Precision Teaching and Learning. 

Ref. KG Specific Purpose Knowledge 
Domain/Subject 

Dataset(s) Nature of 
Data 

KG Data 
Model 

Construction 
model(s)  

Baseline 
model(s) 

Evaluation 
Metrics 

Limitations 

Weichselbraun, 
et al. [27] 

To structure and 
integrate course data, 
establish a 
comprehensive 
curriculum knowledge 
system, and 
individualize learning 
paths. 

Computer Science 
Domain 
 
C Programming 

Digital Teaching 
Materials 
CourseGrading 
and Educoder 

Unstructured  
 
Semi-
structured and  
 
Structured 

Ontology 

N-LTP and Co-word 
Analysis 
 
BERT-BiGRU-
MHSA-CRF 
 
Cosine Similarity 

BERT-
BiLSTM-CRF  
 
BERT-GRU-CR 

Accuracy 
Precision,  
Recall,  
F1-Score 

The study overly relies 
on textual data and 
neglects multi-modal 
data like videos and 
audio; the study used 
only the C programming 
courses dataset, which 
limits generalizability. 

Aliyu, et al. 
[31] 

To enhance the 
understanding of 
mathematical concepts, 
provide teachers with 
effective teaching 
strategies, and offer 
personalized feedback 
to their students. 

Higher Mathematics 

Mathematics 
textbooks & 
Network 
resources 
 
Baidu 
Encyclopedia 

Unstructured Ontology 
GCN 
 
BiLSTM-CRF 

AGGCN, AM, 
Word2vec 
HMM, CRF, 
BiLSTM, 
BERT-CRF and  
BERT softmax 

Accuracy 
Precision,  
Recall,  
F1-Score  
P-Value 

• Imbalanced and 
limited dataset size;  

• Existing word 
embeddings are not 
designed for the targeted 
use case 

• Lack of clear 
standards for 
relationships and 
knowledge points. 

Sahlab, et al. 
[33] 

For educational concept 
extraction & enhancing 
targeted instructions 

Education 
 
MOOC 

EDU-DT and 
EDUTECH DT 
 
Source - 
MOOCCube 

Unstructured NA 

K-means Clustering,  
Manifold Learning  
Distance-based 
Discriminant 
Function 

TF-IDF; 
TextRank 
K-Means 
Clustering 
Isolation Forest 
and  
One Class SVM 

 
Precision,  
Recall,  
F1-Score  

• Lack of gold-
standard datasets 

• Imbalanced 
distribution of samples 

• Sensitivity to 
sample distribution and 
generalizability issues. 

Abu-Salih and 
Alotaibi [34] 

Extracts pertinent facts 
from video subtitles for 
the automatic 
generation of quiz 
questions  

MOOC 

SimpleQuestions 
and an unnamed 
MOOC video from 
xuetangX 
 
Wikidata 

Unstructured NA 
MediaWiki API 
 
TF-IDF 

MP Tripples 
TransE++ 
RNN 

BLEU 

• The BLEU score 
may not accurately 
reflect task performance 

• A limited 
number of questions are 
generated due to the 
training set's inadequate 
relationships 
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Course Recommendation: Research has shown that students sometimes struggle to choose a course, 
especially in online MOOC platforms, where there are too many courses to pick from; students may find 
it overwhelming to select the most appropriate to their learning styles, goals, and interests [61]. A 
course recommendation system helps to mitigate this problem by recommending courses to learners 
based on their demographics, preferences, and goals.  The study by Ma, et al. [30]  proposed the 
SRACR method, which considers the semantics of courses and their relationships. In the study, authors 
use Latent Dirichlet Allocation (LDA) to extract fine-grained semantics of each course as a topic vector, 
mapped course relationships into a course knowledge vector using the TransE knowledge embedding 
method and with Linear Upper Confidence Bound (LinUCB), combined both course topic and 
knowledge vectors into a feature vector. The KG design contextually estimated student preference and 
balanced exploration and exploitation during recommendation. 

Another KG on course recommendation is the KG-based data repository for career goal-based 
course recommendations developed by Nguyen, et al. [56]. This study focused on IT careers and 
employed a Labelled Property Graph (LPG), with three major concept layers. There is a layer for the 
course, a layer for the career, and another for competency. The models employed are Deep Learning 
models (Bi-LSTM + CRF, BERT, XLNET) to extract entities and handle data duplication. The KG was 
implemented using Neo4j to store it. Sometimes, a course recommendation needs improvement. Authors 
of [52] used Reinforcement Learning with an MOOC KG to generate explainable course 
recommendation paths. The study approach to the KG design is to formalize the course 
recommendation problem as a Markov Decision Process (MDP). Using Reinforcement learning, user 
interaction with the KG was simulated to generate an interpretable course recommendation path. The 
authors compared the results of this approach to other baseline methods such as User-based 
Collaborative Filtering (U-CF) and Deep Q-Network (DQN) to estimate the performances of each 
approach based on the Normalized Discounted Cumulative Gain (NDCG) that evaluates the ranking of 
recommended courses and Hit Rate (HR) to measure the percentage of recommendations that match 
user's interests.  

Ma, et al. [62] proposed Contrastive Learning and Graph Convolution Network-based Attentive 
Decay Network (CLGADN) to help improve course recommendation fairness by considering the 
learner’s knowledge background and mitigating popularity bias. Their research used a Graph 
Convolution Network to capture learners' knowledge backgrounds, while the Monotonic Attention 
Decay Mechanism accounts for the knowledge forgetting curve. The performance evaluation metrics - 
Precision, Recall, and F1 score of CLGADN are higher in comparison to models that used MLP, 
NeuMF, Wide & Deep, DIN, BST, KGAT, HG-GNN, HRL, and GADN.Nguyen, et al. [56].  In 
another study method, the KSCR - Knowledge-aware Sequence modelling for Course Recommendation 
was introduced Deng, et al. [48] the technique incorporates heterogeneous course information and 
employs BiLSTM and CNN to capture point-wise and collective sequential dependency in sequence 
modelling. Knowledge Embedding method TransD was used to obtain course representation vectors, 
and an MLP to predict the probability of a user learning a candidate course. More studies on KG for 
course recommendations employ varied approaches for incorporating KGs into course recommendation 
systems. While some prioritize recommendation accuracy, others focus on fairness and explainability. 
Each study leverages different KG construction methods, modelling techniques, and evaluation 
strategies, which are summarized in Table 4. 

Exercise Recommendation: Another form of recommendation is exercises or assessment 
recommendations. For instance, KG4Ex is an exercise recommendation KG employed to match students 
with suitable exercises and provides clear explanations for the recommendations [58]. KG4Ex 
knowledge graph comprises three key entities - students, knowledge concepts, and exercise nodes, and 
their interrelationships, enabling personalized exercise recommendations and detailed explanations of 
the reasoning behind those recommendations. The study experimented with KG embedding models, 
TransE, TransE-adv, and RotatE, to acquire entity and relationship embeddings, alongside traditional 
Collaborative Filtering recommendation approaches - EB-CF, SB-CF, KGEB-CF; Content-Based 
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Filtering (CBF) and Hybrid Recommendation Model (HB-DeepCF). Three authentic datasets 
(ASSISTments 2009, Algebra 2005, and Statics 2011) were used to train and test the proposed method, 
and the results indicated KG4Ex's efficacy and interpretability, attaining performance on par while 
offering an explicit rationale for recommendations [58].  

With KGs, recommendations of exercises could be customized and linked to a specific area of 
educational content. The study conducted by Li, et al. [63]  examined the efficacy of KGs for linking 
exercises to educational content using Cosine Similarity. The research sought to autonomously 
associate digital textbooks in Swedish across three distinct subjects and two categories of exercises 
(quizzes and study questions) with pertinent information utilizing embeddings derived from pre-trained 
language models. The research employed ConceptNet Numberbatch KG embeddings with contextual 
embeddings from SBERT and ADA-002 (a substantial language model) in various ensembles. The 
findings demonstrated that employing contextual embeddings from ADA-002 yielded enhanced 
performance in Recall@3 and MRR, surpassing other models and ensembles [63]. 

Multimedia Learning Objects Recommendations: Teaching and Learning Resources, including 
Multimedia Learning Objects (MLO), Documents, or any other forms of resources, could be 
recommended with KGs. In an extended abstract by Zhu, et al. [59] the authors proposed using an 
Attentive Composition-based Graph Convolutional Network (ACGCN) model to enhance the 
recommendation process for learning objects. In the study, the ACGCN model has three layers, the first 
being the heterogeneous educational graph that categorizes entities into three types: learners, learning 
objects (LO), and other supplemental entities (such as schools, teachers, and concepts). The second layer 
is responsible for updating and maintaining the KG, while the third is the recommendation layer. 
Inspired by existing models like CompGCN, ACGCN employs an attention mechanism-optimized 
Composition-Based Graph Convolutional Networks, to encode representations of entities and relations. 
The authors experimented with the model with MOOCCube datasets and achieved an accuracy of 
84.42% and an F1 score of 84.55%, which was higher by 1.4% and 1.3%, respectively, when compared to 
the existing baseline models (CompGCN, HAKE, ROtatE, TukER, DeepFM, Wide&Deep, DCN, and 
TENTF). Another resource recommender KG is the works of Liang, et al. [50] which utilized Deep 
Learning methods, specifically Graph Convolution Networks (GCN) and Reinforcement Learning 
techniques. In addition to GCN and RL, the model that the authors termed the Multi-path Enhanced 
User-centric Recommendation (MEUR) model incorporated Multipath fusion, reasoning path 
templates, and user ser-centric search strategy to improve reasoning accuracy [50]. Sometimes, 
recommendations might be linked to content and specific areas within the content [63]. Beyond the 
afore-mentioned subcategories of KG-based recommender systems, other forms of recommendations are 
reported in Table 4.  
 
4.2. KG for Concept Mapping and Knowledge Organization: Knowledge Graph  

A Concept Map (CM) is a diagram that illustrates the relationships between interconnected ideas, 
predominantly consisting of shapes representing ideas and interconnected lines that denote the 
relationships between the ideas. Concept Maps, Mind Maps (MM), and Knowledge Graphs are often 
confused; however, there are essential differences in their structure, information hierarchy, and practical 
uses. With several overlaps in the structures, Knowledge Graphs can be used to generate concept maps 
autonomously [64], mind maps [65] Concept clusters and ontologies of specific knowledge domains.  
Concept maps function as effective instruments for learning, teaching, and assessment, facilitating the 
integration of complex concepts [66]. Concept Clusters (CC) are closely related to concept maps, in 
which groups of related concepts, ideas, or keywords that share common characteristics, themes, or 
meanings form clusters. While concept maps emphasize the relationships between concepts, 
highlighting the context and meaning of each idea, concept clusters identify patterns, themes, and 
relationships within a set of concepts, grouping the concepts into clusters. The KG presented by Chen, 
et al. [67] and Huang, et al. [68] proposed to extract instructional concepts and relationships from 
different data sources automatically.  For the instructional concept extraction, [68] applied Neural 
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network-based sequence labeling models, specifically GRU and LSTM, to well-curated pedagogical 
resources such as curriculum standards, textbooks, and course tutorials. 

  The authors chose these models as they capture dependencies in sequential data well. The results 
were compared with CRF, and the authors reported that neural networks outperform the traditional 
CRF method. On the other hand,[69] employed a rule-based NER to extract the course concepts from 
course outlines, and POS tagging was performed using the Language Technology Platform (LTP) 
designed for Chinese texts. In the study, authors also utilized course video captions as part of the data 
sources; however, the extraction of video captions, the NNGP approach, which integrates neural 
networks and graph propagation, was used. The approach's efficacy was compared with the confidence 
propagation algorithm, resulting in a 10% enhancement in accuracy.  

KG is also used for knowledge organizations, especially when several hierarchical entities are 
involved. Zhang et al.'s work is a typical example [28] which focuses on course clustering and uses KG 
to represent the relationships between faculties, majors, courses, and knowledge points. The study seeks 
to effectively group courses based on their knowledge points, thereby addressing issues such as the 
repetition of knowledge points and the illogical sequencing of courses. For the construction of the KG, 
the authors employed TF-IDF to create the courses’ feature vectors, which were derived from the 
knowledge points, and then a K-means clustering algorithm was used to group the courses. The authors 
evaluated the clustering quality using the Silhouette Coefficient, which measures the tightness within 
the course clusters and the separation between them to determine the optimal clusters [28].  

Sometimes, concept mapping is not the only feature incorporated in such KG-based applications; it 
could also be designed such that concept-level representations are linked to instructional resources [70]  
or with visualization capability for visualizing knowledge while managing learning resources, which 
facilitates efficient learning [60]. Thaker, et al. [70] connected educational materials to concept-level 
representations obtained from domain-specific content and external knowledge bases like Wikipedia. In 
the study, two models were proposed: C2V-Tb and C2V-Kb. The C2V-Tb model acquires concept 
embeddings from domain-specific educational resources by employing a neural network approach, 
effectively capturing the semantic representations of concepts. The C2V-Kb model enhances the C2V-
Tb by utilizing external knowledge graphs, notably Wikipedia, to establish a concept-to-Wikipedia 
mapping. They utilize Concept Skip-Gram (CSK) to get concept embeddings derived from the 
interconnections between concepts and Wikipedia articles. The proposed models were compared to 
baseline methods such as LDA, Word2vec, and Doc2vec for linking tasks, while the performance was 
measured using NDCG and MAP metrics. The authors conclude that concept-level representations, 
especially C2V-Kb, surpass conventional methods in linking tasks, highlighting the advantages of 
integrating external knowledge.[70]. Another form of KG used for concept mapping is the work of 
Gupta, et al. [71] which automatically extracts meaningful information from NLP research papers and 
structures it into a Scientific Knowledge Graph (SKG). Table 5 summarizes several KGs used for 
Concept and Knowledge Mapping.  
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Table 4. 
Selected KG for Diverse forms of Recommendations. 

Refs. 
KG Specific 
Purpose 

Knowledge 
Domain/ Dataset(s) 

Nature of 
Data 

KG Data 
Model 

Construction 
model(s) or 
Algorithm(s) 

Baseline 
Model(s) 

Evaluation 
Metrics 

Limitations 
Subject 

Liu, et 
al. [26] 

To recommend 
structured learning 
paths and enhance 
communication 
between learners 
and teachers. 

Information 
Technology 
(High 
School) 
  
  
  
  

Book Chapter 
(“Information 
Processing”) 
  
  
  
  

Unstructured RDF 

NCT 
PageRank 
MI-SA-PSO 
BiLSTM+CRF 
model 
  
  

LSTM 
BiLSTM 
LSTM+CRF 
  

NA 

Limited adaptability across 
different disciplines; Efficiency of 
feedback needs further evaluation 
and refinement; The System 
suffers from insufficient 
compatibility with mobile devices 

Li, et al. 
[63] 

To recommend 
educational content 
by 
linking exercises to 
relevant textbook 
sections 

Biology, 
Social 
Science & 
Physics 
  

Swedish 
digital 
textbooks and 
associated 
exercises 

Semi-
Structured 

NA 

Cosine similarity 
using various 
Embedding 
models, including 
ensembles and 
domain filtering. 

ConceptNet 
Numberbatch 
(CN-NB), 
SBERT, 
ADA-002 

Recall@3, 
MRR 

Limited to textbook section-level 
recommendations; 
recommendations on other 
granularities not explored. 

Liang, et 
al. [50] 

To provide a diverse 
array of educational 
materials for users 
and to clarify the 
rationale behind 
these 
recommendations. 

online 
courses on 
MOOCs 

MOOCCube 
bsed on 
Xuetang X 

Structured 
Property 
Graph 

GCN with multi-
path fusion, 
RL with user-
centric search. 
  
  

BPR, FM, 
MLP, FISM, 
NAIS, 
NASR, 
MEUR-
NoUCR and 
MEUR-
NoMP 

HR@K, 
(k=5,10,20) 
NDCG@K, 
MRR 

Integration of user feedback into 
the agent's learning process for 
more tailored recommendations to 
be explored. 

Ma, et 
al. [30] 

To enhance the 
course 
recommendations 
  
  
  

online 
courses on 
MOOCs 

MOOCCube 
Semi-
Structured 

Property 
Graph 

  
CE = LDA 
KE =TransE 
 LinUCB 
  

Random 
E-Greedy 
UCB 
SACR 
RACR 

NA 

The study used only coarse-
grained student feedback and did 
not consider social relationships 
between students. 

Zhang, 
et al. 
[51] 

To improve the 
relevance and 
interpretability of the 
course 
recommendations 
provided to learners 

online 
courses on 
MOOCs 

MOOCCube 
Semi-
Structured 

Property 
Graph 

RL 
Node2Vec 
Markov Decision 
Process (MDP) 
Policy Network 
and Value 
Network. 

DQN 
U-CF 
  
  

  
NDCG 
HR  
  

Limited Evaluation Metrics; 
limited path length to 3 for 
explainability; future work to 
integrate multiple data sources 
(e.g., student comments) to 
improve generalizability 
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Zhang 
and 
Mariano 
[57] 

To enhance the 
prediction of student 
grades and facilitate 
practical course 
recommendations  

Software 
Engineering 
Courses 

Students' 
grades across 
52 courses 

Semi-
Structured 

NA 

K-means 
Clustering 
LTSM 
KE =TransH 
Cosine Similarity 

  
User-Based 
Collaborative 
Filtering 
  
  

RMSE 
MAE 
  
  

Limited Data from a single major 
course at only one university was 
used; the scope of evaluation is 
also limited, and a single baseline 
method was used for comparison; 
potential for bias or overfitting in 
course clustering.  

[29] 

Generates 
personalized tutorials 
by organizing users’ 
multimodal 
information and 
establishing 
relationships among 
resources 

Hospital 
Network 
Architecture 
Planning 
and Design 

MOOC-
Course 
MOOCCube 
  
  
  
  

Unstructured 
  
Multimodal 
(text, image, 
video, audio) 
  
  
  

Ontology Cyclic RL 

  
  
MLP 
NeuMF 
HRL 
GMF  

Precision@10 
Recall@10 
  
F1@10 
  
NDCG@10 

Limited scope and 
generalizability; scalability issues 
as users and content increase; 
over-dependence on explicit user 
preferences and limited 
consideration of learner diversity 
and complexity  

Nguyen, 
et al. 
[56] 

To recommend 
online courses to 
users based on their 
desired IT career 
goals 

Information 
Technology 

MOOC 
Semi-
Structured 

Labeled 
Property 
Graph 
(LPG) 

  
BERT 
  

Bi-LSTM + 
CRF 
XLNet 
  

Precision, 
Recall, and 
F1 score 

The model only focused on IT 
careers and may not apply to 
other careers; the study relied on 
manual validation, which is time-
consuming and may not be 
scalable. 

Zhu, et 
al. [59] 

Recommendation of 
learning objects 
(LOs) to learners 

MOOC 
(Positive 
psychology) 

  
MOOCCube 
  
  
  

Semi-
Structured 

NA 
ACGCN 
DFOAN 

CompGCN 
HAKE 
ROtatE 
TukER 
DeepFM 
Wide&Deep 
DCN 
TENTF 

Precision 
Recall 
F1 Score 
Accuracy 
AUC 
LogLoss 
  
  

Only one type of LO was used, 
which might not work well with 
other kinds; the study lacks 
insights into the reasoning behind 
recommendations; the study was 
conducted in a controlled 
environment with a small dataset 
and may not be generalizable to 
real-world settings with a large 
dataset. 

Zhang, 
et al. 
[28] 

To create a 
personalized learning 
resource 
recommendation 
system for online 
platforms, based on 
students' needs and 
preferences. 

Education 

  
SCHOLAR, 
IMOOC 
datasets 
  

Structured NA 

Preference 
Propagation 
KGCN 
  
  

PLRec-
KGGE, 
KPRN, 
RippleNet, 
and 
KGNNLS 

Accuracy 
AUC 
  
  

Limited to exploring relationships 
within single subjects; The study 
did not address temporal aspects 
of learning; Reliance on 
interaction data, which may be 
sparse or unavailable. 
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Alatrash, 
et al. 
[52] 

For personalized and 
explainable 
recommendations of 
knowledge concepts 
to learners in a 
MOOC environment. 

MOOC 

Inspec dataset 
  
SemEval2017 
dataset 
  
  
  

Unstructured: 
Text content 
of slides and 
learning 
materials, 
Wikipedia 
abstracts of 
concepts 

  
Property 
Graph 
  
  
  
  

SingleRank 
SBERT 
GCN 
  
  
  

An adapted 
version of 
LightGCN  

ResQue 
framework 
  
  
Time 
performance 
comparison 
  
Precision@5 

Small Dataset: user study data 
(N=31) and reliance on a single 
MOOC platform; Limited 
Exploration of GCN 
Architectures; The study focuses 
on cognitive aspects; motivational 
factors are not considered; 
Limited Evaluation of 
Explainability 

Ma, et 
al. [62] 

to represent the 
knowledge 
background of 
learners 
to enhance the 
fairness and accuracy 
of course 
recommendations in 
MOOC 

MOOC XuetangX Structured 

Property  
Graph 
(Implicitly 
Inferred) 
  

CLGADN 
Monotonic 
Attention Decay 
Mechanism 
  
  
  

MLP, 
NeuMF 
HRL, DIN, 
BST CKE, 
LightGCN, 
KGAT, HG-
GNN 
GADN  

HR@K 
NDCG@K 
MRR @K 
TotalScore@K 
Recall 

Limited Dataset Scope; Lack of 
User-Centric Evaluation of 
Fairness; The study lacks direct 
feedback from learners on their 
perception of recommendation 
fairness. 

Deng, et 
al. [48] 

Integrate 
heterogeneous 
Course information 
to 
improve the accuracy 
of 
online course 
recommendation by 
modelling learning 
sequences. 

Online 
Courses 

NA NA NA 

TransD 
BiLSTM 
CNN 
MLP 
  
  

CB, LG, NB, 
DNN, 
ATT 
KPCR 
MKCR 
FKGCF 
FKG 

HR@K 
NDCG@K 
MRR @K 
  
(K = 1,2,5 
&10) 
  

The study KG points focused on 
user interests, and not on learning 
outcomes; Learning sequences 
may have irrelevant courses; 
Limited use of course data, and 
applicability limited to online 
course recommendation 

Guan, et 
al. [58] 

To identify suitable 
exercises for students 
based on their 
learning states and 
historical 
interactions, and 
provides 
explanations for 
these 
recommendations. 

Mathematics 
and related 
subjects 

ASSISTments 
2009, Algebra 
2005, and 
Statics 2011 

Structured 
Property 
Graph 
(implied) 

LSTM 
TransE-adv 
KCP-ER 
  
  
  

RotatE, 
TransE 
EB-CF 
SB-CF 
KGEB-CF 
CBF 
HB-DeepCF 

Accuracy 
(Mean and 
Std) 
  
Novelty 
(Mean and 
Std) 
  
  
  

Unable to handle intricate 
interactions, the effectiveness of 
KG4Ex recommendations relies 
heavily on the quality and 
quantity of historical learning 
interaction data. 
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Xue 
[72] 

To power a 
personalized course 
recommendation 
system for lifelong 
learners 

Lifelong 
Education 

sourced from 
a learner 
activity 
tracker tool 
known as the 
Experience 
API (xAPI). 

Unstructured 
(Implied as 
learners 
provide the 
data) 
  
  
  
  

NA 

EE& RE = TF-
IDF, Doc2Vec 
  
Improved K-
means Clustering 
  
CNN 
  

Word2Vec 
Traditional 
K-means 
SVM 
Naive Bayes 
KNN 
Fuzzy Logic 

Accuracy 
Precision 
Recall 
F1-Score 
RMSE 
MAP 

With a limited dataset scope, the 
study used student-provided data, 
which might not fully capture 
individual characteristics; the 
study doesn't detail specific 
ontology attributes or Neo4j 
implementation choices. 

Yang, et 
al. [49] 

To deliver precise 
and tailored legal 
document 
recommendations for 
expert users, tackling 
issues inherent to 
legal information 
retrieval and 
recommendation. 

Legal 
Domain 

Real-World 
Legal 
Information 
System Data, 
such as user 
interaction, 
search 
history, clicks, 
queries, and a 
large-scale 
KG manually 
annotated 
data 

Semi-
Structured 

Property 
Graph 
(implied) 

BERT 
  
TransR 
  
Multi-relational 
GNN 
  
SDAE 

BPR, 
LightGCN, 
KGAT, 
CFKG, 
GATNE-T, 
GATNE-I. 
  
ACCM, 
NFM, 
NRMS, 
NRHUB 
  

HR 

The study used a proprietary 
legal dataset that is not accessible 
to the public, constraining the 
reproducibility of the findings and 
the comparisons with alternative 
methodologies. The model fails to 
incorporate temporal variations in 
user interests explicitly.  

  
NDCG 
  
  
  
  

 

 
Table 5. 
Selected KG for Concept Mapping and Organization. 

Refs KG Specific Purpose 
Knowledge 
Domain/Subject 

Dataset(s) Nature of Data 
KG Data 
Model 

Construction 
model(s) or 
Algorithm(s) 

Baseline 
Model(s) 

Evaluation 
Metrics 

Limitations 

Gupta, 
et al. 
[71] 

To automate the extraction 
and organization of 
contributions from scientific 
publications 

NLP Research 

NCG dataset; 
SciERC dataset; 
SciClaim dataset; 
AASC dataset 

Semi-structured  NA 

BERT-CRF 
BERT  
Rule-based 
extraction 

BioNLP 
ECNUICA 
ITNLP 

NA 
Limited Exploration of 
Additional Scaffold Tasks; 
NCG Dataset Anomalies 

Chen, et 
al. [67] 

For representing the 
relationships between 
instructional concepts in 
subjects or courses 

Education 
Mathematics 

Pedagogical and 
educational sources 
such as curriculum 
standards, 
textbooks, and 
course manuals 

Semi-structured  NA 
RNN specifically 
GRU 
CRF 

 
LSTM 

 
Precision,  
Recall,  
F1-Score  

The study is limited to a 
single subject, and may 
not apply to other 
subjects; the score rate as 
a proxy for knowledge 
mastery may not be 
completely accurate. 
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Thaker, 
et al. 
[70] 

To link educational resources 
through concept-level 
representation 

Education 
textbooks and 
publications  
Wikipedia 

Semi-structured  NA 

TFIDF-NP. 
CSK 
C2V-Tb & C2V-
Kb 
Cosine similarity 

TF-IDF 
LDA 
Word2vec 
Doc2vec 

NDCG 
MAP 

The study does not 
explicitly address the 
differentiation between the 
prerequisite and explained 
concepts. 

Zhang, 
et al. 
[28] 

To merge online and offline 
resources to address 
unreasonable course settings, 
such as repetition of KPs 

Software 
Engineering 

Course catalogs 
(online and offline)  

Unstructured, 
Semi-structured 

Property 
Graph 

TF-IDF 
K-means 
clustering  

NA 
Silhouette 
Coefficient 

Limited dataset size, as 
only course catalogs were 
used; Clustering results 
may be too granular, and 
some courses must be 
combined into broader 
categories.  

Su and 
Zhang 
[73] 

To represent the 
interconnected structure of 
subject knowledge to support 
various educational 
applications, such as learning 
assessment, and personalized 
learning resources 

Computer Science 
& Physics 

teaching resources, 
Open and online 
encyclopedia 

Semi-Structured NA 

Regular 
Expressions, 
Semantic 
Similarity 
(context-based),  
PMI and NGD. 
BERT-BiLSTM-
CRF 

CRF 
 
BiLSTM-CRF 

Precision 
(P)  
Recall (R) 
F1 Score 

The method's threshold 
sensitivity can impact 
results, potentially 
excluding relevant 
Knowledge points (KP), 
and its incremental 
expansion may limit KG 
growth, potentially 
leading to stagnation. 

Li, et al. 
[63] 

To provide and visualize a 
structured representation of 
the knowledge related to 
database courses. 

Database 
Management 
Systems 

Wikipedia 
 
Database course 
textbook 

Semi-Structured 

Property 
Graph  
(Implied) 
Ontology-
based model 
(Top-Down) 

EE- Manual 
Curation & TF-
IDF 
RE - K-means 
Clustering 

NA NA 

Relationships extracted 
using K-means clustering 
are not always precise; the 
recommendation function 
is limited due to sequential 
relationship reliance; An 
Absence of formal 
evaluation of KG's impact 
on learning outcomes. 

Han, et 
al. [69] 

 
 
to automatically construct a 
structured representation of 
course concepts and their 
relationships 
 
  

Computer Science 
& Economics 

MoocData, Open 
course outlines and 
Video Captions 

Structured and 
semi-structured 

NA 

Rule-based NER - 
POS Tagging 
with LTP 
CPM with NNGP 
BERT-BiLSTM-
CRF   

NLTK, 
POSTagger & 
ANST 
CRF 
RNN 
PMI 
  

Precision  
Recall   

Limited scope of relations 
as only inclusion relations 
between course concepts 
were considered; Data 
sources are primarily 
course outlines and video 
captions; Limited KG 
evaluation: Quantitative 
evaluation focused on 
concept extraction, no 
evaluation of the KG itself. 
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4.3. KG for Question Answering, Information Retrieval, and Semantic Search 
An essential aspect of teaching and learning is Question Answering (QA), usually done traditionally 

by verbal interactions between teachers and their respective learners. However, with increased interest 
in self-study, numerous open and online learning paradigms, and even times when teachers are not 
readily available, an automated question-answering system is a viable and effective alternative that 
could perform the same role, thereby reducing time, cost, and burden on the teachers, especially in large 
classes.[24, 74, 75]. A QA system could also recommend relevant follow-up questions to the user based 
on the topics of the initial queries [76]. One of the popular approaches to designing automated QA 
systems is via knowledge-powered systems. KG used for QA can provide precise and user-friendly 
answers to both explicit and open-ended questions asked by users [23, 69, 77]. It could also infer the 
user’s intentions and provide answers that meet the user’s personalized needs [23, 78]. Likewise, some 
KG for QA could also generate on-demand, expandable explanations [77]  provide diverse learners 
with quick personalized feedback on the subject [25, 78, 79]  and improve learners’ independent 
learning efficiency [25, 78]. Identified approaches used to design KG for QA include ontology [80, 81] 
transformer architectures such as BERT[79, 82, 83] RoBERTa [82, 84] and sometimes an existing KG 
could be aided by a pre-trained T2T language model such as the Text-to-Text Transfer Transformer 
(T5) for Graph Embedding [84, 85] . In a study by Zhao, et al. [86] the authors employed Graph 
Reasoning Transformers (GRT) to address the limitations of conventional approaches, such as the 
inability to capture triplet-level relational semantics and the modality gap between text and KGs. GRT 
utilizes a triplet-level graph encoder for semantic triplet and spatial position embeddings and a 
representation alignment pretraining process for text-triplet matching and masked language modelling. 
Finally, a cross-modal information fusion module with attention bias was used to facilitate effective 
interaction and fusion between language and KG information [86].  

Graph neural networks (GNNs) such as graph attention networks (GATs) have also contributed 
immensely to KG due to their ability to capture relational semantics and handle complex reasoning in 
KG-based QA systems [72, 87-89]. For instance, [89] employed Stanford's Open Information 
Extraction (OpenIE) and heuristic rules to dynamically construct a KG within an interactive text-based 
game environment. Using information extracted from game observations and the agent's actions, the 
constructed KG is processed using a GAT, which learns meaningful representations of the graph by 
attending to relevant nodes and their relationships, enabling the agent to understand the game world. 
The output from the GAT was further encoded into a fixed-length vector representation using a 
transformer encoder, making it compatible with other components of the QA system. Finally, a Deep Q-
Network (DQN) agent, a reinforcement learning algorithm, used the information from the GAT to 
learn an optimal policy for answering questions and navigating the game environment. Similarly, in 
another study [87] a muLti-task semAntic parSing with trAnsformer and Graph atteNtion nEtworks 
(LASAGNE) model was designed specifically for complex conversational question answering over a 
large-scale KG like Wikidata. This model employs a multi-task learning framework with a transformer 
model and a GAT for semantic parsing. The transformer translates the conversational input into a 
sequence of actions (a logical form) to represent the question's meaning. An entity recognition module 
identifies and links entities in the conversation to the KG, further filtering and permuting them based 
on context and logical form. The GAT in LASAGNE focuses on learning meaningful representations of 
entity types and predicates in the KG by exploiting their correlations. These representations are then 
combined with the transformer's output to predict the correct types and predicates for the logical form, 
facilitating accurate answer extraction [87]. 

Knowledge Graphs for Information Retrieval and Knowledge Graphs for Semantic Search are 
relatively identical to Knowledge Graphs for question-answering, as the trio incorporates semantic 
search as an essential feature. For a KG to be able to perform these tasks, NLP and ML techniques are 
usually required to comprehend the intent and context of a query, facilitating the retrieval of 
information or answers pertinent to the user's needs.  In information retrieval, semantic search 
facilitates the retrieval of documents relevant to a specific topic or entity, whilst, in question answering, 
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it aids in identifying the most appropriate response to a user's inquiry. This implies that the models to 
be used in the KG design must encapsulate the semantic links among entities and allow interrogation 
via semantic search methods [90, 91]. Table 6 summarizes different approaches and models to develop 
KG for question answering, Information retrieval, and semantic search.  
 

5. Summary of KG Construction Models and Discussion 
In the previous sections that explored the architectures of identified Knowledge Graphs designed 

for diverse purposes within the context of teaching and learning, it was observed that knowledge graph 
is an area of growing interest for powering systems used in different aspects of education due to their 
ability to turn data into machine-interpretable knowledge. It is a perfect technology for implementing 
Natural Language Processing Systems. The identified KG depicted in Tables 4-7 shows the utilization 
of KG for precision teaching and learning. These adaptive systems personalize and recommend learning 
resources such as learning objects, curriculum, concepts, etc., based on the learner’s knowledge gaps and 
provide adequate, timely feedback. KGs were also used for question answering, information retrieval, 
and semantic search, which ensures that learning inquiries on unclear areas can be clarified.    

With the emphasis of this SLR being primarily on the various models and algorithms, the respective 
authors of identified KGs used to design and develop their KGs and the baseline methods that were used 
to compare their proposed models, the most identified methods used are Ontology, Rule-based 
approaches, Machine Learning, and Deep Learning. Deep Learning is the dominant approach for 
knowledge extraction (entities and relation extraction), evidenced by the frequent use of deep learning 
models and algorithms across the surveyed studies.    

 Named Entity Recognition (NER), a crucial step in knowledge extraction, has seen a notable 
transition from manual curation to conventional machine learning techniques and rule-based approaches 
and is now dominated by deep learning models. The cited studies regularly emphasize the efficacy of 
deep learning models such as BERT, BiLSTM, and CRF in Named Entity Recognition tasks, ascribing 
deep learning's capability in identifying intricate linguistic patterns to attain superior performance over 
other methods [92]. Sometimes, these models were hybridized to achieve the utmost accuracy and 
precision. Deep Learning architectures such as BERT and CNN also greatly enhance relative 
extraction. Sources show that BERT-based models occasionally integrate with other architectures, such 
as BiGRU and CRF, which are exceptionally effective for relation extraction due to their ability to 
model complex relationships between entities, frequently surpassing conventional methods [54, 92].  

In most KG development, the knowledge extraction phase (entity, relation) is followed by a form of 
knowledge fusion and embedding, depending on the specific purpose of the KG application. For 
instance, in some KGs for recommendations, Knowledge Graph Embedding (KGE), which learns and 
utilizes dense vectors in a high-dimensional space for entities and relations representation, is employed 
to calculate the semantic similarities between users and the resources, thereby, facilitating diverse 
downstream tasks such as knowledge graph completion, relation prediction, and link prediction. These 
models can predict links between users and resources or any other outputs they might be interested in, 
forming the basis for recommendations.  
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Table 6. 
Selected KG for Question Answering, Semantic Search, and Information Retrieval. 

Refs KG Specific Purpose 
Knowledge 
Domain/Subject 

Dataset(s) 
Nature of 
Data 

KG Data 
Model 

Construction 
model(s) or 
Algorithm(s) 

Baseline Model(s) 
Evaluation 
Metrics 

Limitations 

Zhang, et 
al. [23] 

facilitation of precise 
answers to medical 
inquiries in the Chinese 
language and furnishing 
users with dependable 
medical information. 

Healthcare 
EHRs and the 
39 Health 
Network, 

Semi-
structured 

OWL 
Ontology 

Bootstrapping 
Annotation 
DNN 
Context Bridges 
MemNN 
CNN 
Bi-LSTM+CRF 

SVM 
Decision Tree 
CRF 
Bi-LSTM 
Bi-LSTM+CRF (w/o 
context bridge) 
BERT (SVM-
classifier) 
Attention+Bi-LSTM 

Precision and F1 
Score 

Shortage of data with good 
quality and availability; 
Complexity of medical 
languages and dependence 
on Knowledge Base; KG 
evaluation is limited to 
Precision and F1 Score 

Veena, et 
al. [92] 

to assist farmers with 
inquiries concerning 
different agricultural 
practices, disease control, 
and high productivity  

Agriculture 

Self-curated 
corpus from 
agriculture 
websites 
(30,000 
sentences) 

Unstructured NA 

Semi-supervised 
NER, Bootstrapping, 
Dependency parsing, 
Extended BERT, 
LDA, TuckER 

NA 

Accuracy, 
precision, recall, 
and F1-score 
 
Hits@N, Mean 
Reciprocal Rank, 
and  
Mean Rank 

Lack of benchmark 
datasets in the agriculture 
domain; Dependency parse 
may produce errors with 
out-of-vocabulary words; 
The study does not 
explore the system 
scalability for a larger 
dataset 

Cheng 
[80] 

For QA and IR that 
could assist 
programmers with 
technical questions and 
C programming 
concepts. 

C Programming 
Language 

C 
programming 
textbooks, 
papers, 
multimedia, 
syllabi, etc. 

Structured 
and 
Unstructured 

Property 
Graph 

Ontology 
construction 

NA NA 

Detailed evaluation 
metrics or benchmarks are 
not provided; Scope of 
datasets is limited to C 
programming; User 
interaction with the QA 
system may depend on 
users’ query formulation 
approach. 

Li [93] 

A framework for 
enhancing the accuracy 
and efficiency of 
responses to questions 
by utilizing the 
reasoning abilities of 
Large Language Models. 

General 
Knowledge (using 
Wikidata as the 
knowledge base) 

LC-QuAD 2.0 
and WebQSP 
dataset 

Structured 
RDFs 
(implied) 

 
Schema Tree 
MRC: TASE_IO + 
SSE 
JointGT 

Qanswer, Platypus 
GRAFT-Net, PullNet 
UniQORN, 
EmbedKGQA, and 
NSM 

Hits@1  
 
Hits@5 

Limited to answering 
simple factual questions 
and may not be effective 
for complex reasoning; 
The study does not 
explore the scalability of 
the approach to larger 
knowledge bases. 

Lan, et al. to facilitate the Chinese Recipes DuIE1.0 Unstructured NA BERT + Adversarial Bert + Bi-LSTM  Precision  Constrained to a particular 
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[94] extraction of relational 
triples from unstructured 
text on Chinese recipes 
to answer queries about 
these recipes and their 
respective components 

dataset 
 
Recipe_Chines
e (custom-
built dataset) 

Training + 
Cascaded Binary 
Tagging + 
Bi-LSTM 
(BertAdvCasLSTM) 

Bi-LSTM + CNN + 
Dense  
CasRel  
BertCasLSTM 

Recall  
F1-score 

domain and language 
(Chinese cuisine), the 
model's generalization 
capability to alternative 
domains or languages is 
not considered. 

Nair, et 
al. [79] 

for automated QA 
providing structured, 
accurate, and relevant 
responses and feedback 
to learners' queries with 
consideration for no-
native learners  

Remote 
Education 

SQUAD 
Dataset 
Eng-Hin 
Dataset 

Unstructured NA 

NLP techniques 
(dependency parsing 
and sentence 
segmentation) 
BERT 
LSTM 

NA NA 

Limited information on the 
KG evaluation; Future 
work to include more 
language, mobile device 
compatibility, and 
personalized learning  

Yu, et al. 
[25] 

For enhancing 
intelligent QA 
capabilities within the 
domain of 
entrepreneurship 
education. 

Entrepreneurship 
Education 

MOOCCube 
and a Custom-
built dataset 
of 
entrepreneurs
hip education 
questions and 
answers. 

Structured 
and 
Unstructured 

NA 

TFIDF and Flair 
embedding 
BERT 
GCN 
BiLSTM 

SW Algorithm  
SA Reader   
GA Reader  
BERT Reader  
AFS Graph Reader 

Paragraph Recall 
(PR)  
 
Prediction 
Accuracy  
 
Loss Function 

The study focused on the 
domain of 
entrepreneurship 
education, and the 
transferability of the model 
to other educational 
domains was not explored. 
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Researchers have utilized and compared numerous KGE models, including TransE, TransD, 
TransH, TransR, RESCAL, RotatE, DistMult, and ComplEx, and the authors eventually relied on the 
embedding technique with the best result for the KG development [51, 95].  The appeal of KGE 
approaches stems from their capacity to represent complex knowledge efficiently, facilitate various 
downstream activities, and integrate semantic information. This improves query performance and 
enhances reasoning and inference, improving the usability and precision of produced knowledge graphs.  

Graph Neural Network is another popular approach used to leverage the structured knowledge 
within a KG to connect users with relevant resources. GNNs operate directly on the graph structure of 
the KG, propagating information through nodes and edges to learn representations [50, 52] . GNNs 
can effectively capture complex relationships and dependencies between users, resources, and other 
entities in the KG. Examples of GNN models include Graph Convolutional Networks (GCNs) and 
Graph Attention Networks (GATs). Research has employed hybrid models by combining KGE and 
GNNs, in an attempt to leverage the strengths of both techniques. For example, a model might use 
KGE to learn initial entity embeddings and then employ a GNN to refine these embeddings based on 
graph structure and user interactions. Zhang, et al. [28]   introduces a model (CLGADN) that 
integrates contrastive learning with GAT for course recommendation, showcasing the efficacy of hybrid 
methodologies.  
 

6. Limitations and Open Research Issues in KG Development  
The benefits and roles of knowledge-powered systems for teaching and learning have been 

substantiated. However, as indicated in the references, many of the KGs or the studies that develop 
them face various obstacles and constraints that hinder or at least limit the development and 
deployment of KGs across multiple disciplines. The limitations could be in the form of performance 
restrictions, domain generalizability issues, limited domain-specific datasets, absence of standardized 
procedures or data formats, and evaluation difficulties. 

Data Limitations: Several researchers whose KGs are for educational purposes struggle with several 
dataset-related issues. Typical constraints include data sparsity or inadequacy of related datasets for 
knowledge extraction, model training, and KG populating. In many cases, the researchers had to settle 
for unstructured data as structured educational data from repositories are rare, and when they do, they 
exist in independent silo, which may not be open source. Unlike the healthcare domain, where platforms 
such as CDE Repository (Common Data Elements), Clinical Data Interchange Standards Consortium 
(CDISC), Bioportal, Havard DataVerse, and several repositories and research labs have structured data 
on clinical studies that are already in machine-readable formats, such educational data, especially on 
contents are rarely available. Most available datasets are usually limited, either in terms of single 
domain-based, unstructured, sparse, or unlabelled data. This hinders effective machine learning or deep 
learning model training for classification tasks like NER and relation extraction. Alas, the scarcity of 
annotated data forces researchers to devote significant manual effort and time. Another data limitation 
or constraint is the lack of standardized benchmarks in specific domains, such as agriculture, which 
complicates evaluating and comparing different KG construction methods. Furthermore, the 
heterogeneity of data sources poses a challenge, as the knowledge used in education is in various forms, 
including text, images, and videos. This heterogeneity necessitates the development of robust methods 
capable of handling multimodal data effectively. In addition, real-world data is often noisy, incomplete, 
and prone to errors. These issues can propagate through the KG, impacting the accuracy of downstream 
tasks and potentially leading to biased or unreliable insights from the KG developed on erroneous data. 

Construction Models Limitations - The performance of a KG largely depends on the KG 
construction techniques employed. At every step involved in KG construction, the algorithms' 
limitations subject the KG developed to the same limitations and potential biases. For example, 
Dependency parsing, a crucial component in relation extraction, can introduce errors due to the 
complexity and ambiguity of natural languages in the KG, which could lead to inaccurate or incomplete 
representation of the relationship between the entities, ultimately affecting the overall quality and 
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reliability of the KG. Additionally, the performance of deep learning models for NER and relation 
extraction is often limited by the maximum input length, and for KG, which involves knowledge 
embedding, the computational complexity of the specific KGE embedding techniques employed can be a 
concern, especially when dealing with large-scale KGs [92, 96].  

Inadequate Technical Documentation: KG construction is done in phases, and for every phase, 
specific algorithms or methods are used to accomplish the task or objective of that phase. Unfortunately, 
many researchers failed to report or were vague in reporting the technical procedures involved in KG 
construction. These include insufficient information on datasets such as the sources, collection 
techniques, pre-processing stages, and annotation rules utilized for their datasets. In KG constructed by 
ML or DL techniques, it could be a limited description of model architectures and hyperparameter 
tuning, primarily when authors might not explain the chosen deep learning model architectures, 
including the reasons for certain design choices. Additionally, specifics about hyperparameter tuning, 
such as the search space, optimization techniques, and evaluation metrics employed, can be omitted or 
insufficiently presented. This lack of transparency can make comprehending the model design's and 
hyperparameters' impact on the stated performance challenging. Furthermore, ambiguous descriptions 
of knowledge extraction and relation extraction methods are common. Authors might not adequately 
describe the precise knowledge and relation extraction strategies, including the chosen algorithms, pre-
trained models, and any rule-based heuristics employed. A lack of clarity in presenting these technical 
details can make it tough to reproduce the work, comprehend the limitations of the chosen 
methodologies, and build upon the study. It also fosters transparency and enables a more critical 
examination of the strengths and limits of the proposed approaches. 

Limited KG Evaluation and Performance Comparison: Researchers are usually expected to try 
different approaches in their studies and pick the model or methods with the best results; however, 
several KGs were developed from the author's supposed view only, without consideration or comparison 
with other related approaches, which could serve as baselines. Sometimes, authors could have compared, 
but there are insufficient details on critical components like splitting tactics, chosen measures, or 
statistical significance tests. A lack of transparency in reporting the evaluation methodologies can create 
issues about the trustworthiness and generalizability of the author's conclusion on results [71]. In 
addition, most KGs evaluated only the knowledge extraction (NER and RE) phase, using confusion 
matrix metrics such as Precision, Accuracy, and F-1 Score, the specific purpose or applicability of the 
KG, such as personalized learning, recommendation of resources, or Question Answering capabilities of 
the KGs, are rarely evaluated. Other forms of evaluation, like KG Data Quality [97]  or KG Structural 
Quality [98] and their respective dimensions, are seldom considered.  

Lack of Standardization: Another significant challenge is the lack of standardized methodologies, 
standardized KG data models or schema, and standardization of datasets, making it difficult to establish 
best practices and evaluate different approaches fairly. There is a need for clear standards in areas like 
concept extraction, where subjective interpretations and the absence of widely accepted definitions can 
hinder consistency and reproducibility. Standardized methodologies would help to introduce fairness 
and transparency from the user's perspective, especially in applications involving recommendations, 
where biases related to knowledge background or popularity of elements involved can lead to unfair 
outcomes. The need for explainable KG-based systems is also emphasized, as transparency in the 
decision-making process can enhance user trust and acceptance. 

Interoperability Challenges: KGs are expected to be a promising technical solution for adopting the 
FAIR Principles, which promote data findability, accessibility, interoperability, and reuse [99, 100]. 
However, several KGs find it challenging to integrate and exchange knowledge with one another 
seamlessly. The heterogeneity of data sources and varying data representation formats have been 
identified as significant interoperability barriers. In education, knowledge might be text, images, or 
videos, and integrating these disparate data sources into a single KG requires multimodal data 
processing approaches. The same applies to different KGs, which could contain different data modes, 
making their integration challenging. Different KGs' vocabularies, acronyms, and semantic 
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representations could differ across specializations even within a single data medium like text. Many 
domain-specific concepts often involve subjective interpretations, and integration of different KGs with 
the same concepts without resolving these conflicts could lead to inconsistencies and hinder the 
development of robust and generalizable methods [55]. As such, the making, merging, linking, and 
querying such KGs are challenging without a common knowledge representation language.  

Generalizability and Scalability Constraints: Many datasets used in KG development are tailored to 
specific domains, e.g., cancer datasets or textbooks on C programming. Generalizability refers to the 
ability of a KG and the respective construction methods to perform well on unseen data and different 
specializations or domains. Several authors indicate that despite their impressive performance, deep 
learning models are often limited in their generalizability. For example, while effective in specific 
domains, pre-trained language models like BERT may require significant adaptation to perform well on 
data from other domains. This adaptation can be computationally expensive and time-consuming, 
limiting the scalability of deep learning-based KG construction methods [92].  In the same light, robust 
KGs are often trained on extensive datasets from multiple sources, making the management, processing, 
and updating of the KG in real time computationally intensive. KG based on Deep Learning and graph 
convolutional networks for relation extractors usually require substantial computational resources for 
training and inference. This may restrict scalability, particularly in resource-constrained environments. 
As the size of knowledge graphs increases, tasks like knowledge graph completion and path-based 
reasoning become more intricate, time-intensive, and costly [101, 102]. 

Knowledge Representation, Trust, and Privacy Issues: The various constraints usually encountered 
in Knowledge Engineering apply to KG development. For instance, an expert is typically required to 
develop and maintain ontologies that accurately capture domain knowledge. When experts or the data 
used are biased, the KG applications reflect the biases present in the underlying data. Also, knowledge 
evolves, and KGs must adapt to changes in the concepts and their respective relationships. Continuous 
amendment of knowledge in a KG and keeping up with the latest trends is intensive. Regarding trust, 
KG models should be explainable to mitigate bias, ensure fairness, and promote responsible use. KGs 
may contain sensitive personal information, raising privacy concerns about data storage, access control, 
and potential misuse. While anonymizing data in KGs is excellent, it is challenging due to the 
interconnected nature of the information, and removing or obfuscating specific data points can 
compromise the graph's structure and weaken the graph. To address these concerns, data provenance 
and federated learning practices are recommended. With data provenance, the origin and usage of the 
data within the KG are tracked, allowing for the ease of verifying its accuracy and compliance with 
privacy regulations. Federated learning also alleviates privacy issues by ensuring that models are 
trained on decentralized datasets without sharing the raw data [103].  
 

7. Future Research Directions in KG Development  
The open research issues in KG development have exposed a lot of future research directions that 

could be explored to solve or mitigate the identified limitations. This includes, but is not limited to, 
developing automated and robust methods for extracting structured information from diverse 
unstructured data sources, including text, images, and videos, to overcome data scarcity. Research into 
few-shot[104, 105] zero-shot [106] extraction techniques and state-of-the-art deep learning models 
[107] could help build KGs with limited annotated data. Furthermore, establishing standardized 
benchmarks and evaluation metrics that assess the utilization of KGs for specific downstream tasks 
beyond simple link prediction is needed. To improve interoperability, future work should focus on 
developing common ontologies and data models across domains and creating methods for seamless KG 
merging and linking, perhaps by leveraging and extending semantic web standards. Addressing 
scalability requires research into more efficient KGE models and graph processing techniques for 
handling large-scale KGs. Finally, enhancing trust and explainability through explainable AI (XAI) -
based KG models such as SHapley Additive exPlanations (SHAP) or Local Interpretable Model-
Agnostic Explanations (LIME) would be beneficial towards deploying responsible KG. Future research 
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can also investigate how privacy-preserving KG construction and application methods like federated 
learning and prominent cryptographic techniques, such as Differential Privacy (DP), Secure Multi-Party 
Computation (SMPC), and Homomorphic Encryption (HE), can complement federated learning to 
protect sensitive information during knowledge graph (KG) queries [108, 109]. 
 

Abbreviations: 
The following abbreviations are used in this manuscript: 
AASC ACL Anthology Sentence Corpus 
ACCM Attentive Collaborative Contextual Model 

ACGCN Attentive Composition-based Graph Convolutional Network 

AFS-GR Axiomatic Fuzzy Set Graph Reader 
BPR Bayesian Personalized Ranking 

BST Behavior Sequence Transformer 
C2V-Kb Concept-to-Vector Knowledge Base 

CFKG Collaborative Filtering with Knowledge Graph 
CKE Collaborative Knowledge Base Embedding 
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PLRec Personalized Learning Recommendation. 
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RACR Relationship-Aware online Course Recommendation 
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