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Abstract: This study investigates the mathematical structure of Hilbert spaces, defined as complete 
inner product spaces, and their significance in both theoretical and applied contexts. We begin by 
exploring their foundational properties, including inner products, orthogonality, and completeness, 
which extend Euclidean geometric concepts to infinite-dimensional settings. Key mathematical tools, 
including the Cauchy–Schwarz inequality, triangle inequality, polarization identity, and Apollonius 
identity, are analyzed to highlight the analytical framework of Hilbert spaces and their relationship to 
normed spaces and Banach spaces. Then we examine practical applications in quantum mechanics, signal 
processing, and machine learning, where the inner product structure enables techniques like kernel 
methods, Support Vector Machines, and Principal Component Analysis. We provide MATLAB-based 
visualizations are provided, illustrating concepts such as projections and orthonormal expansions in 
computational contexts. This work integrates rigorous mathematical analysis with practical 
demonstrations, offering valuable insights for students and researchers in mathematics and data science. 

Keywords: Hilbert spaces, Inner product spaces, MATLAB visualization, Normed spaces, Principal component analysis 
(PCA), Reproducing kernel Hilbert space (RKHS), Support vector machines (SVM). 

 
1. Introduction  

This paper investigates the structure and significance of Hilbert spaces, which are complete inner 
product spaces. Addressing the fundamental geometric concepts such as distance, angle, and 
orthogonality, familiar in finite dimensional Euclidean spaces, be extended to infinite dimensional 
settings. Hilbert spaces, defined as complete inner product spaces, provide a robust framework for this 
generalization, blending algebraic rigor with geometric intuition [1, 2]. Their completeness, ensuring 
that every Cauchy sequence converges within the space, makes them a cornerstone of both theoretical 
mathematics and applied sciences. This study aims to elucidate the properties of Hilbert spaces, 
demonstrate their analytical power through key mathematical tools, and showcase their applications in 
fields such as quantum mechanics, signal processing, and machine learning. By integrating rigorous 
theory with computational tools like MATLAB based visualizations of mathematics and data science. 
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1.1. Historical Background and Literature Review 
The concept of Hilbert spaces emerged from the need to generalize Euclidean geometry to abstract 

vector spaces, including those with infinite dimensions. At the core of this generalization is the inner 
product, a bilinear form that formalizes notions of length, angle, and orthogonality in a way that 
extends naturally from finite to infinite dimensions. A Hilbert space is an inner product space that is 
complete with respect to the norm induced by the inner product, ensuring convergence of Cauchy 
sequences a property critical for theoretical and applied contexts. This completeness distinguishes 
Hilbert spaces from general normed spaces, preserving geometric properties that enable powerful 
analytical techniques. Foundational work introducing sampling techniques in discrete reproducing 
kernel Hilbert spaces (RKHS) [3, 4]. 

The development of Hilbert spaces contributions by mathematicians like Schmidt [5] refined the 
geometric interpretation and terminology, laying the groundwork for modern functional analysis. 
Fundamental tools, such as the Cauchy–Schwarz inequality and Bunyakovsky inequality [6] triangle 
inequality [7] and polarization identity [8] form the analytical backbone of Hilbert space theory. These 
results not only provide deep insights into the structure of these spaces but also facilitate practical 
computations in diverse scientific domains. 

Hilbert spaces have become indispensable in fields such as functional analysis, quantum mechanics, 
and partial differential equations [9]. The role of Hilbert spaces in quantum mechanics, focusing on 
their mathematical structure and applications [10]. In quantum mechanics, for instance, the state space 
of a quantum system is modeled as a Hilbert space, where the inner product governs probabilistic 
interpretations of wave functions. Similarly, in signal processing, Hilbert spaces underpin techniques for 
analyzing and reconstructing signals. More recently, the relevance of Hilbert spaces has surged in 
machine learning, where the inner product structure supports methods like Support Vector Machines 
(SVMs), Principal Component Analysis (PCA), and kernel methods [11-13]. These techniques leverage 
the geometry of high or infinite dimensional Hilbert spaces to address complex data analysis tasks, 
demonstrating the practical impact of abstract mathematical theory [8, 14]. 

This paper explores the theoretical foundations of Hilbert spaces and their inner product structure, 
supported by MATLAB based visualizations to illustrate abstract concepts. By examining applications 
in both traditional and modern contexts, we highlight the versatility of Hilbert spaces in bridging pure 
mathematics and computational practice. Our work aims to provide a unified perspective, making the 
theory accessible while emphasizing its relevance to contemporary challenges in science and technology 
[15, 16]. 
 
1.2. Preliminaries: Normed and Inner Product Spaces 

This subsection introduces the foundational concepts and definitions necessary for understanding 
Hilbert spaces. A normed space is a vector space equipped with a norm, which induces a metric to 
measure distance. An inner product space is a normed space with an inner product, a bilinear form that 
defines geometric properties like orthogonality and angle. A Hilbert space is an inner product space that 
is complete with respect to the norm induced by the inner product, meaning every Cauchy sequence 
converges to a point in the space.  

Normed Spaces: A normed on X is a real function ‖•‖: 𝑋 → 𝑅defined on X such that for any 𝑥, 𝑦 ∈

𝑋 and for all 𝜆 ∈ 𝐾. i. ‖𝑥‖ ≥ 0,  ii. ‖𝑥‖ = 0𝑖𝑓𝑎𝑛𝑑𝑜𝑛𝑙𝑦𝑖𝑓𝑥 = 0,  iii. xx  =  

iv. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖(𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦) 

A norm on X defines a metric d on X which is given by 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖; 𝑥, 𝑦 ∈ 𝑋and is called the 

metric induced by the norm. The normed space is denoted by ( )•,X  or simply by X 

Inner Product Spaces: Let X be a vector space over the field K of real or complex. Then a mapping 

⟨. , . ⟩: 𝑋 × 𝑋 → 𝐾 is called an inner product of any 𝑥, 𝑦 ∈ 𝑋 and for all 𝛼 ∈ 𝐾, which satisfies the 
following conditions:   
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i.   〈𝑥, 𝑥〉 ≥ 0 𝑎𝑛𝑑 〈𝑥, 𝑥〉 = 0 ⇔ x = 0     ii.  〈𝑥, 𝑦〉̅̅ ̅̅ ̅̅ ̅ = 〈𝑦, 𝑥〉    iii.   〈𝛼𝑥, 𝑦〉 = 𝛼〈𝑥, 𝑦〉 
iv.〈𝑥 + 𝑦, 𝑧〉 = 〈𝑥, 𝑧〉 + 〈𝑦, 𝑧〉     ∀  𝑥, 𝑦, 𝑧 ∈ 𝑋 

The vector space X together with inner product ⟨. , . ⟩  is called an inner product or pre- Hilbert 

space. The inner product space is denoted by (𝑋, ⟨. , . ⟩)  

The space 𝑙(𝑝): Let 𝑝𝑘 be +𝑣𝑒 𝑜𝑓 𝑅 that is bounded above, s.t. 0 < 𝑝𝑘 ≤ sup 𝑝𝑘 = 𝐻 < ∞ . Then 

the space 𝑙(𝑝) is defined as 𝑙(𝑝) = {𝑥 = (𝑥𝑘): ∑ |𝑥𝑘|𝑝𝑘 < ∞𝑘 }. Also 𝑑(𝑥, 𝑦) = (∑ |𝑥𝑘 − 𝑦𝑘|𝑝𝑘
𝑘 )

1

𝑀 

The space 𝑙𝑝: Let 𝑝𝑘 = 𝑝 be +𝑣𝑒 𝑜𝑓 𝑅 that is bounded above, s.t. 1 ≤ p < ∞ . Then the space  𝑙𝑝 is 

defined as 𝑙𝑝 = {𝑥 = (𝑥𝑘): ∑ |𝑥𝑘|𝑝 < ∞𝑘 }. Also  𝑑(𝑥, 𝑦) = (∑ |𝑥𝑘 − 𝑦𝑘|𝑝
𝑘 )

1

𝑝 

The space 𝑙∞(𝑝): Let 𝑝𝑘 be +𝑣𝑒 𝑜𝑓 𝑅 that is bounded above, s.t. 0 < 𝑝𝑘 ≤ sup 𝑝𝑘 = 𝐻 < ∞ . Then 

the space 𝑙(𝑝) is defined as 𝑙∞(𝑝) = {𝑥 = (𝑥𝑘): sup
𝑘

|𝑥𝑘|𝑝𝑘 < ∞}. Also  𝑑(𝑥, 𝑦) = sup
𝑘

|𝑥𝑘 − 𝑦𝑘|
𝑝𝑘
𝑀  

The space 𝑙∞ 𝑜𝑟 𝑙∞: Let 𝑝𝑘 = 𝑝  be +𝑣𝑒 𝑜𝑓 𝑅 that is bounded above, s.t. 1 ≤ p < ∞ . Then the 

space 𝑙∞ is defined as 𝑙∞ = {𝑥 = (𝑥𝑘): sup
𝑘

|𝑥𝑘|𝑝 < ∞}. Also 𝑑(𝑥, 𝑦) = sup
𝑘

|𝑥𝑘 − 𝑦𝑘| 

The space 𝑐(𝑝): Let 𝑝𝑘 be +𝑣𝑒 𝑜𝑓 𝑅 that is bounded above, s.t. 0 < 𝑝𝑘 ≤ sup 𝑝𝑘 = 𝐻 < ∞ . Then 

the space 𝑐(𝑝) is defined as 𝑙(𝑝) = {𝑥 = (𝑥𝑘): |𝑥𝑘 − 𝑙|𝑝𝑘 < ∞      ∀ 𝑙 ∈ 𝐶}. Also 𝑑(𝑥, 𝑦) = sup
𝑘

|𝑥𝑘 −

𝑦𝑘|
𝑝𝑘
𝑀  

The space 𝑐: Let 𝑝𝑘 = 𝑝 be  +𝑣𝑒 𝑜𝑓 𝑅 that is bounded above, s.t. 1 ≤ p < ∞ . Then the space 𝑐 is 
defined as 

 𝑐 = {𝑥 = (𝑥𝑘): |𝑥𝑘 − 𝑙|𝑝 < ∞}. Also, 𝑑(𝑥, 𝑦) = sup
𝑘

|𝑥𝑘 − 𝑦𝑘| 

The space 𝑐0(𝑝): Let 𝑝𝑘 be +𝑣𝑒 𝑜𝑓 𝑅 that is bounded above, s.t. 0 < 𝑝𝑘 ≤ sup 𝑝𝑘 = 𝐻 < ∞ . Then 

the space 𝑐(𝑝) is defined as 𝑙(𝑝) = {𝑥 = (𝑥𝑘): |𝑥𝑘|𝑝𝑘 < ∞      }. Also, 𝑑(𝑥, 𝑦) = sup
𝑘

|𝑥𝑘 − 𝑦𝑘|
𝑝𝑘
𝑀  

The space 𝑐0 : Let 𝑝𝑘 = 𝑝 be +𝑣𝑒 𝑜𝑓 𝑅 that is bounded above, s.t. 1 ≤ p < ∞ . Then the space 𝑐0 is 

defined as 𝑐0 = {𝑥 = (𝑥𝑘): |𝑥𝑘|𝑝 < ∞      }. Also, 𝑑(𝑥, 𝑦) = sup
𝑘

|𝑥𝑘 − 𝑦𝑘|,  

 
1.3. Arrangement of the Article 

The structure of this paper is organized as follows. Section 2 presents the parallelogram law and 
examines its importance in identifying Hilbert spaces. Section 3 focuses on the development and 
formulation of Hilbert spaces. Section 4 highlights general applications of Hilbert spaces. Section 5 the 
discussion to their use in machine learning. Section 6 explores applications of inner product spaces, 
followed by Section 7, which considers their role in machine learning. Section 8 integrates the 
applications of both inner product and Hilbert spaces in machine learning contexts. Section 9 provides a 
conceptual perspective on human reasoning in machine learning through the lens of these spaces. 
Finally, Section 10 offers concluding remarks. 
 

2. Parallelogram Law and Characterization of Hilbert Space 
In classical geometry, the parallelogram law asserts that the total of the squares of a parallelogram’s 

diagonals is equal to the sum of the squares of its four sides. This concept has a significant counterpart 
in functional analysis. In particular, within normed vector spaces, an analogous identity holds in inner 
product spaces. This identity is universally valid in inner product spaces and plays a vital role in 
identifying when a normed space originates from an inner product. It leads to a significant result that a 
normed linear space is a Hilbert space if and only if its norm satisfies the parallelogram law. If a normed 
space satisfies this condition, it is possible to define an inner product that induces the norm, effectively 
transforming the space into an inner product space. If, in addition, the space is complete under this 
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norm, it qualifies as a Hilbert space. Thus, the parallelogram law not only captures a fundamental 
geometric principle but also serves as a powerful analytical tool for recognizing Hilbert spaces within 
the wider context of normed vector spaces. 
 
2.1. Theorem (Parallelogram Law) 

For any two elements x and y belonging to an inner product space X, then ‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 =
2‖𝑥‖2 + 2‖𝑦‖2 
 

 
Figure 1. 
MATLAB Visualization of the Parallelogram Law. 

 
The Figure 1, provides a geometric illustration of the Parallelogram Law in a 2D inner product 

space. Two vectors x (red) and y (blue) originate from the origin and form the adjacent sides of a 

parallelogram. Their vector sum 𝑥 + 𝑦 (green) and difference 𝑥 − 𝑦 (magenta) serve as the diagonals. 

The shaded parallelogram visually demonstrates that the sum of the squared lengths ‖𝑥 + 𝑦‖2 +
‖𝑥 − 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2,confirming the Parallelogram Law in inner product spaces. 
 
2.2. Theorem 

Prove that the space 𝑙𝑝 is not a Hilbert space for 𝑝 ≠ 2 

 
2.2.1. Geometrical Explanation 

Why the space 𝑙𝑝 is not a Hilbert space for 𝑝 ≠ 2. To geometrically understand and why the space 

𝑙𝑝 is not a Hilbert space unless 𝑝 = 2, we must look at the shape of unit balls and the notion of angles in 

these spaces. 
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i. Hilbert Spaces and Inner Product Geometry 

In a Hilbert space i. e. 𝑙2, geometry behaves similarly to Euclidean space: a) A well-defined inner 
product spaces, b) Define angles and orthogonality, c) The unit ball (set of points with norm ≤ 1) is 
round — a perfect circle (in 2D) or sphere (in higher dimensions), d) The parallelogram law holds: it 
characterizes how vector lengths and angles interact. 
 

ii. 𝑙2 Spaces and Geometry of Unit Balls 

Let us consider the unit ball in R2 under different 𝑙𝑝 norms: 

P Unit Ball Shape Geometry Behavior 
P=1 Diamond-shaped Corners, no smoothness 
P=2 Perfect circle Euclidean, inner product exists 

𝑃 = ∞ Square Flat sides, angles not well-defined 

𝑝 ≠ 2 Smooth but not circular Geometry is distorted 

 
iii. Why This Matters for Hilbert Spaces 

A Hilbert space is more than just a complete normed space such that project one vector onto 
another, and angles make sense. 

For 𝑝 ≠ 2, these geometric tools break down: a) No proper projection theorem, b) No orthogonal 
decomposition, c) No true "angles" between vectors. 

The geometry of 𝑙𝑝 space for 𝑝 ≠ 2 is not Euclidean: The unit balls are not round, the norm does 

not IPS, and 𝑙𝑝 fails to be a Hilbert space unless p=2. 

Proof:  Let us take 𝑥 = (1,1,0,0, . . . ) ∈ 𝑙𝑝𝑎𝑛𝑑 𝑥 = (1, −1,0,0, . . . ) ∈ 𝑙𝑝.  

Then  𝑥 + 𝑦 = (2,0,0, . . . )    𝑎𝑛𝑑 𝑥 − 𝑦 = (0,2,0,0, . . . ). We have 

‖𝑥‖ = (∑|𝑥𝑘|𝑝

𝑛

𝑘=1

)

1

𝑝

= (|1|𝑝 + |1|𝑝 + 0 + 0+. . . +0)
1

𝑝 = 2 𝑎𝑛𝑑 ‖𝑦‖ = (|1|𝑝 + |−1|𝑝 + 0 + 0+. . . +0)
1

𝑝

= 2 

Also  ‖𝑥 + 𝑦‖ = (|2|𝑝 + 0 + 0+. . . +0)
1

𝑝 = 2 𝑎𝑛𝑑 ‖𝑥 − 𝑦‖ = (0 + |2|𝑝 + 0 + 0+. . . +0)
1

𝑝 = 2 

So that ‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 22 + 22 = 8 𝑎𝑛𝑑 2‖𝑥‖2 + 2‖𝑦‖2 = 2 (2
2

𝑝 + 2
2

𝑝) 

If p=2, then 2‖𝑥‖2 + 2‖𝑦‖2 = 2(2 + 2) = 8 

Thus, for p=2, the parallelogram law ‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2 is satisfied.  

This implies that the space 𝑙2 is a Hilbert space. 

When 𝑝 ≠ 2, the parallelogram law does not hold. Consequently, the space 𝑙𝑝 is not a Hilbert space 

for values of 𝑝 other than 2. 

To visualize the failure of the parallelogram law in MATLAB for 𝑙𝑝 spaces when 𝑝 ≠ 2, we can 

create a 2D plot showing how the quantity 𝐷(𝑝) = ‖𝑥 + 𝑦‖𝑝
2 + ‖𝑥 − 𝑦‖𝑝

2 , varies with p and compare it 

to the value 4 (which is required by the parallelogram law). 𝐹𝑜𝑟 𝑝 = 2, 𝐷(𝑝) = 4;  𝑓𝑜𝑟 𝑝 ≠ 2, 𝐷(𝑝) ≠ 4. 
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Figure 2. 

MATLAB Visualization of the Deviation from Parallelogram Law in 𝑙𝑝 Norms. 

 

This Figure 2, shows that 𝑙𝑝 spaces deviate most from the Parallelogram Law when p is far from 2, 

and the deviation gradually decreases as p approaches 2, highlighting that only when 𝑝 = 2 does the 
norm come from an inner product. 
 
2.3. Theorem (Cauchy Schwartz inequality) 

If 𝑋 is an inner product space and 𝑥, 𝑦 ∈ X, then |< 𝑥, y >|  ≤ ‖𝑥‖‖𝑦‖. 
 
2.3.1. Geometrical Interpretation of the Cauchy–Schwarz Inequality 

The Cauchy–Schwarz inequality provides a geometric bound on the inner product of two vectors. In 

Euclidean space, the inner product < 𝑥, y >  can be written as: < 𝑥, y > = ‖𝑥‖‖𝑦‖. 𝑐𝑜𝑠𝜃. 

Using this, the Cauchy–Schwarz inequality becomes: |< 𝑥, y >|  ≤ ‖𝑥‖. ‖𝑦‖. 𝑐𝑜𝑠𝜃 ≤ ‖𝑥‖. ‖𝑦‖. 

since ∣ 𝑐𝑜𝑠 𝜃 ∣≤ 1for all real angles θ. Equality occurs when 𝜃 = 0 𝑜𝑟 𝜋, meaning 𝑥 𝑎𝑛𝑑 𝑦 point in 
the same or opposite directions and are thus linearly dependent. In geometric terms, this inequality 
implies that the projection of one vector onto another cannot be longer than the product of their 

lengths. It ensures that the cosine of the angle between two vectors always lies between −1 and 1, 
preserving the familiar geometric structure even in abstract inner product spaces. 
 
2.3.2. MATLAB Visualization of the Cauchy–Schwarz Inequality 

The Cauchy–Schwarz inequality is a key result stating that the absolute value of the inner product 
of two vectors does not exceed the product of their norms. It is crucial for proving many other results in 
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functional analysis, Hilbert spaces, and vector geometry. Here, Plots two vectors 𝑥 𝑎𝑛𝑑 𝑦, the 

projection of 𝑥 𝑜𝑛𝑡𝑜 𝑦 and Computes both sides of the Cauchy–Schwarz inequality. 
 

 
Figure 3. 
MATLAB Visualization of the Cauchy–Schwarz inequality. 

 
The Figure 3, illustrates the Cauchy-Schwarz inequality and the projection of vector x onto vector y 

in a 2D space. The red vector x extends from (0,0) to approximately (2.5, 1), and the blue vector y 

extends to (2, 2). The green vector shows the projection of x onto y. The inequality |< 𝑥, y >| ≈
8.00 𝑡𝑜 8.94 is close to ‖𝑥‖. ‖𝑦‖. 
 
2.4. Theorem 

The space C [a, b] is not an inner product space, hence not a Hilbert space. 
 
2.4.1. Geometrical Explanation 
Why C [a, b] is not a Hilbert Space? 

Here, C [a, b] is not a Hilbert space because its norm is not induced by an inner product, and it is 

not complete under the 𝐿2 norm, which is essential for Hilbert spaces. 
 
i. Geometry in Hilbert Spaces (i. e. L2[a, b]) 

In Hilbert spaces: a) The norm comes from an inner product, b) Define angles and orthogonality, c) 

There is a clear Pythagorean geometry:  ‖𝑥 + 𝑦‖2 = ‖𝑥‖2 + ‖𝑦‖2  𝑖𝑓  𝑥 ⊥ 𝑦, d) A project of a function 
onto a subspace (like Fourier series projection), e) The geometry behaves like Euclidean space, but 
infinite-dimensional. 
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ii. Geometry in C [a, b] 

The space C [a, b], with the supremum norm: ‖𝑓‖∞ = 𝑠𝑢𝑝
𝑡∈[𝑎,𝑏]

|𝑓(𝑡)| 

iii. Geometrical Difference via Unit Balls 
In 2D geometry, you can visualize normed spaces by looking at unit balls (the set of 

vectors/functions with norm 1). 
Space Norm Unit Ball Shape Geometry Type 

𝑙2
2 ‖𝑥‖2 Circle Inner product space 

𝑙∞
2 ‖𝑥‖∞ Square Not inner product 

C [a, b] ‖𝑓‖∞ Infinite-dimensional cube-like No angles, no projection 

In C [a, b], the geometry is dominated by uniform height across the interval, not by averaging as in 
L2. This makes the "roundness" (essential for inner products) absent. 

The space C [a, b] lacks the Euclidean-like geometry of Hilbert spaces: The unit ball is not round, 
there is no inner product, so no angles, no orthogonality, and no projections and even under the L2 inner 
product, it's not complete, so you can't use Hilbert space geometry reliably. 
 

 
Figure 4. 
MATLAB Visualization for the space C [a, b]. 

 

The Figure 4, illustrates the pointwise convergence of the sequence 𝑓𝑛(𝑥) = 𝑥𝑛 𝑎𝑟𝑒 𝑖𝑛 𝐶[0,1]. It 

shows curves for 𝑥1(𝑏𝑙𝑢𝑒), 𝑥2(𝑐𝑦𝑎𝑛), 𝑥5 (𝑔𝑟𝑒𝑒𝑛), 𝑥10(𝑦𝑒𝑙𝑙𝑜𝑤), 𝑥50(𝑜𝑟𝑎𝑛𝑔𝑒), 𝑎𝑛𝑑 𝑥100 (𝑟𝑒𝑑), with 

the pointwise limit (black dashed line) approaching 0 for 𝑥 ∈ [0,1)  𝑎𝑛𝑑 1 𝑎𝑡 𝑥 = 1 . 
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3. Result and Discussion 
Hilbert spaces, as complete inner product spaces, extend Euclidean geometry to infinite dimensions 

while preserving key properties like orthogonality and completeness. They underpin important 
theorems and enable machine learning methods such as SVMs and kernel PCA through Reproducing 
Kernel Hilbert Spaces. MATLAB visualizations help illustrate these geometric concepts in data analysis 
and learning. 
 
3. 1. Theorem 

Prove that the Euclidean space ℝ𝑛 is a Hilbert space. 
Proof: The space Rn is a Hilbert space with inner product defined by 

〈𝑎, 𝑏〉 = 𝑎1𝑏1 + 𝑎2𝑏2 +   .   .   .  +𝑎𝑛𝑏𝑛                                  
(1) 

Where  𝑎 = (𝑎𝑖) = (𝑎1,   𝑎2,   .   .   .  , 𝑎𝑛) ∈ Rn  and 𝑏 = (𝑏𝑖) = (𝑏1,   𝑏2,   .   .   .  , 𝑏𝑛 ) ∈Rn 

In fact, from (1) we obtain,‖𝑎‖ = ⟨𝑎, 𝑎⟩
1

2 = ⟨𝑎1
2 + 𝑎2

2+. . . +𝑎𝑛
2⟩

1

2 

and 𝑑(𝑎, 𝑏) = ‖𝑎 − 𝑏‖ = ⟨𝑎 − 𝑏, 𝑎 − 𝑏⟩
1

2 = ⟨(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2+. . . +(𝑎𝑛 − 𝑏𝑛)2⟩
1

2 

Firstly, we will prove that the Euclidean space ℝ𝑛 is complete. 

We know that the metric of ℝ𝑛 is  𝑑(𝑎, 𝑏) =  (∑ (𝑎𝑖 − 𝑏𝑖)2𝑛
𝑖=1 )

1

2 

Where  𝑎𝑖 = 𝑎1 , 𝑎2, … … . . , 𝑎𝑛  and 𝑏𝑖 = 𝑏1, 𝑏2 … … … , 𝑏𝑛 , ∀ 𝑎𝑖, 𝑏𝑖 ∈ ℝ 

Let  < 𝑎𝑛 > be a Cauchy sequence in ℝ𝑛. For every 𝜖 > 0  ∃ 𝑚, 𝑟 ∈ ℕ 

s.t.  𝑑(𝑎𝑚, 𝑎𝑟) = (∑ (𝑎𝑖
(𝑚)

− 𝑎𝑖
(𝑟)

)
2

𝑛
𝑖=1 )

1

2

< 𝜖          ∀ 𝑚, 𝑟 ∈ ℕ  (2) 

Both sides squaring in(𝑖) , then we get (𝑎𝑖
(𝑚)

− 𝑎𝑖
(𝑟)

)
2

< 𝜖2        ∀  𝑖 = 1,2,3, … … … , 𝑛 ⇒ |𝑎𝑖
(𝑚)

−

𝑎𝑖
(𝑟)

| < 𝜖 

Fixed 𝑖, (1 ≤ 𝑖 ≤ 𝑛), and  < 𝑎𝑖
1, 𝑎𝑖

2 … … … … > is a Cauchy sequence of ℝ. So it converges i.e. 𝑎𝑖
𝑚 → 𝑎 

as 𝑚 → ∞. Using this n limits, we define 𝑎 = (𝑎1 , 𝑎2, … … . . , 𝑎𝑛). Clearly 𝑎 ∈ ℝ𝑛, From(2), 𝑎𝑟 → 𝑎 

𝑎𝑠 𝑟 → ∞,  then we have 𝑑(𝑎𝑚 , 𝑎) ≤ 𝜖 , 𝑚 > 𝑁 

So, 𝑙𝑖𝑚
𝑚→∞

𝑎𝑚 = 𝑎. Hence ℝ𝑛 is complete. 

If n=3, then (1) gives ⟨𝑎, 𝑏⟩ = 𝑎. 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3  

of 𝑎 = (𝑎1,   𝑎2, 𝑎3) ∈ 𝑅 and 𝑏 = (𝑏1,   𝑏2, 𝑏3) ∈ 𝑅 and the orthogonality ⟨𝑎, 𝑏⟩ = 𝑎. 𝑏 = 0 
This concept is consistent with the fundamental idea of perpendicularity, meaning that two vectors are 
orthogonal if their inner product is zero. 

Therefore, the Euclidean space ℝ𝑛 is a Hilbert space. 
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Figure 5. 
MATLAB Visualization for the Euclidean space in R2. 

 

The Figure 5, shows vectors in R2 with an angle of 45∘. The red vector x extends from (0, 0) to 

approximately (3, 1), the blue vector y extends to about (2, 2), and the green vector represents the 

projection of x onto y, ending at around (1.5, 1.5). 
Example (Orthogonality in Rn): In R2, let 𝑥 = (1,0) , 𝑦 = (0,1) . Then ⟨𝑥, 𝑦⟩ = 1 ⋅ 0 + 0 ⋅ 1 = 0, so 

x and y are orthogonal, representing perpendicular vectors. 

Example (Completeness in Rn): Consider a Cauchy sequence (𝑥𝑘) 𝑖𝑛 𝑅2, where 𝑥𝑘 = (1 −
1

𝑘
,

1

𝑘
). 

𝐹𝑜𝑟 𝑘 > 𝑚 , 𝑡he distance is ‖𝑥𝑘 − 𝑥𝑚‖ = √(
1

𝑘
−

1

𝑚
)2 + (

1

𝑚
−

1

𝑘
)2  , which approaches 0 as 𝑚, 𝑘 → ∞ . 

The sequence converges to (1,0) ∈ 𝑅2, confirming completeness. 
 
3.2. Theorem 

Prove that the unitary space 𝐶𝑛 is a Hilbert space. 
Proof: The space Cn is a Hilbert space with inner product defined by 

〈𝑎, 𝑏〉 = 𝑎1𝑏1
̅̅̅ + 𝑎2𝑏2

̅̅ ̅ +   .   .   .  +𝑎𝑛𝑏𝑛
̅̅ ̅                               

(3) 

Where  𝑎 = (𝑎𝑖) = (𝑎1,   𝑎2,   .   .   .  , 𝑎𝑛) ∈ Cn  and  𝑏 = (𝑏𝑖) = (𝑏1,   𝑏2,   .   .   .  , 𝑏𝑛 ) ∈Cn 

In fact, from (3) we obtain, ‖𝑎‖ = ⟨𝑎, 𝑎⟩
1

2 = (𝑎1𝑏1 + 𝑎2𝑏2+. . . +𝑎𝑛𝑏𝑛)
1

2 = (|𝑎|1
2

+ |𝑎2|2+. . . +|𝑎𝑛|2)
1

2 
and from this the unitary metric defined by 

𝑑(𝑎, 𝑏) = ‖𝑎 − 𝑏‖ = ⟨𝑎 − 𝑏, 𝑎 − 𝑏⟩
1

2 = ⟨|𝑎1 − 𝑏1|2 + |𝑎2 − 𝑏2|2+. . . +|𝑎𝑛 − 𝑏𝑛|2⟩
1

2 
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Firstly, we will prove that the unitary space 𝐶𝑛 is complete. 

We know that the metric in 𝐶𝑛 is 𝑑(𝑎, 𝑏) =  (∑  |𝑎𝑖 − 𝑏𝑖|2𝑛
𝑖=1 )

1

2 

Where  𝑎𝑖 = 𝑎1 , 𝑎2, … … . . , 𝑎𝑛  and 𝑏𝑖 = 𝑏1, 𝑏2 … … … , 𝑏𝑛  
Let  < 𝑥𝑛 > be a Cauchy sequence in 𝐶𝑛. For every 𝜖 > 0  ∃ 𝑚, 𝑛 ∈ ℕ 

s. t.  𝑑(𝑎𝑚, 𝑎𝑛) = (∑ (𝑎𝑖
(𝑚)

− 𝑎𝑖
(𝑛)

)
2

𝑛
𝑖=1 )

1

2

< 𝜖                     ∀ 𝑚, 𝑛 ∈ ℕ                                                                     

(4) 

Both sides squaring in(4) , then we get (𝑎𝑖
(𝑚)

− 𝑎𝑖
(𝑛)

)
2

< 𝜖2        ∀  𝑖 = 1,2,3, … … … , 𝑛  ⇒ |𝑎𝑖
(𝑚)

−

𝑎𝑖
(𝑛)

| < 𝜖 

Fixed 𝑖, (1 ≤ 𝑖 ≤ 𝑛), the sequence  < 𝑥𝑖
1, 𝑥𝑖

2 … … … … > is a Cauchy sequence of 𝐶. So it converges 

i.e. 𝑎𝑖
𝑚 → 𝑎 as 𝑚 → ∞. Using this n limits, we define 𝑎 = (𝑎1 , 𝑎2, … … . . , 𝑎𝑛). Clearly 𝑎 ∈ 𝐶𝑛, From(2), 

𝑎𝑛 → 𝑎 𝑎𝑠 𝑛 → ∞,  then we have 𝑑(𝑎𝑚 , 𝑎) ≤ 𝜖 , 𝑚 > 𝑁 

So, 𝑙𝑖𝑚
𝑚→∞

𝑎𝑚 = 𝑎. Hence the unitary space 𝐶𝑛 is complete 

If n=3, then (3) gives ⟨𝑎, 𝑏⟩ = 𝑎. 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3  

of 𝑎 = (𝑎1,   𝑎2, 𝑎3) ∈ 𝐶 and 𝑏 = (𝑏1,   𝑏2, 𝑏3) ∈ 𝐶 and the orthogonality ⟨𝑎, 𝑏⟩ = 𝑎. 𝑏 = 0. 
This concept is consistent with the fundamental idea of orthogonality, meaning that two vectors are 

orthogonal if their inner product is zero. Therefore, the unitary space 𝐶𝑛 is a Hilbert space. 
 

 
Figure 6. 
MATLAB Visualization for the unitary space in C2. 
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The Figure 6, depicts complex vectors in C2 with an angle of 68.180. The red solid line represents 

the real part of  z (Re(z)), the blue dashed line represents the real part of  w (Re(w)), the red dashed 

line represents the imaginary part of  z (Im(z)), and the blue solid line represents the imaginary part of  

w (Im(w)), showing their components in a 2D plane. 

Example (Orthogonality in 𝐶𝑛): In 𝐶2, let 𝑥 =  (1, 𝑖), 𝑦 =  (𝑖, −1). Then ⟨𝑥, 𝑦⟩  =  1 ·
(−𝑖)  + 𝑖 · 1 =  0. So 𝑥 𝑎𝑛𝑑 (𝑖, 1) are orthogonal. 
 
3.3. Theorem  

Prove that the space 𝑙2 is a Hilbert space. 
Proof: The space 𝑙2 is a Hilbert space with inner product defined by 

〈𝑎, 𝑏〉 = 𝑎1𝑏1
̅̅̅ + 𝑎2𝑏2

̅̅ ̅ +   .   .   .  +𝑎𝑛𝑏𝑛
̅̅ ̅                                 

(5) 

Where  𝑎 = (𝑎𝑖) = (𝑎1,   𝑎2,   .   .   .  , 𝑎𝑛) ∈ 𝑙2   and  𝑏 = (𝑏𝑖) = (𝑏1,   𝑏2,   .   .   .  , 𝑏𝑛 ) ∈ 𝑙2 

In fact, from (3) we obtain, ‖𝑎‖ = ⟨𝑎, 𝑎⟩
1

2 = (𝑎1𝑏1 + 𝑎2𝑏2+. . . +𝑎𝑛𝑏𝑛)
1

2 = (|𝑎|1
2

+ |𝑎2|2+. . . +|𝑎𝑛|2)
1

2 
and from this the unitary metric defined by 

𝑑(𝑎, 𝑏) = ‖𝑎 − 𝑏‖ = ⟨𝑎 − 𝑏, 𝑎 − 𝑏⟩
1

2 = ⟨|𝑎1 − 𝑏1|2 + |𝑎2 − 𝑏2|2+. . . +|𝑎𝑛 − 𝑏𝑛|2⟩
1

2 
Firstly, we will prove that the unitary space 𝑙2  is complete. 

We know that the metric in 𝐶𝑛 is 𝑑(𝑎, 𝑏) =  (∑  |𝑎𝑖 − 𝑏𝑖|2𝑛
𝑖=1 )

1

2 

Where  𝑎𝑖 = 𝑎1 , 𝑎2, … … . . , 𝑎𝑛  and 𝑏𝑖 = 𝑏1, 𝑏2 … … … , 𝑏𝑛  
Let  < 𝑥𝑛 > be a Cauchy sequence in 𝑙2 . For every 𝜖 > 0  ∃ 𝑚, 𝑛 ∈ ℕ 

s. t.  𝑑(𝑎𝑚, 𝑎𝑛) = (∑ (𝑎𝑖
(𝑚)

− 𝑎𝑖
(𝑛)

)
2

𝑛
𝑖=1 )

1

2

< 𝜖                     ∀ 𝑚, 𝑛 ∈ ℕ                                                                     

(6) 

Both sides squaring in(4) , then we get (𝑎𝑖
(𝑚)

− 𝑎𝑖
(𝑛)

)
2

< 𝜖2        ∀  𝑖 = 1,2,3, … … … , 𝑛  ⇒ |𝑎𝑖
(𝑚)

−

𝑎𝑖
(𝑛)

| < 𝜖 

Fixed 𝑖, (1 ≤ 𝑖 ≤ 𝑛), the sequence  < 𝑥𝑖
1, 𝑥𝑖

2 … … … … > is a Cauchy sequence of 𝑅. So it converges i.e. 

𝑎𝑖
𝑚 → 𝑎 as 𝑚 → ∞. Using this n limits, we define 𝑎 = (𝑎1 , 𝑎2, … … . . , 𝑎𝑛). Clearly 𝑎 ∈ 𝑙2 , From(2), 

𝑎𝑛 → 𝑎 𝑎𝑠 𝑛 → ∞,  then we have 𝑑(𝑎𝑚 , 𝑎) ≤ 𝜖 , 𝑚 > 𝑁 

So, 𝑙𝑖𝑚
𝑚→∞

𝑎𝑚 = 𝑎. Hence the unitary space 𝑙2  is complete  

If n=3, then (3) gives ⟨𝑎, 𝑏⟩ = 𝑎. 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3  

of 𝑎 = (𝑎1,   𝑎2, 𝑎3) ∈ 𝑅 and 𝑏 = (𝑏1,   𝑏2, 𝑏3) ∈ 𝑅 and the orthogonality ⟨𝑎, 𝑏⟩ = 𝑎. 𝑏 = 0. 
This concept is consistent with the fundamental idea of orthogonality, meaning that two vectors are 

orthogonal if their inner product is zero. Therefore, the space 𝑙2 is a Hilbert space. 
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Figure 7. 

MATLAB Visualization of 𝑙2 Truncations 

                                      

The Figure 7, shows that 𝑙2geometrically by projecting infinite-dimensional concepts onto 2D or 
3D subspaces of Rn. The inner product, norm, and orthogonality behave analogously to how they do in 
Euclidean space. This visualization preserves the core Hilbert space geometry: norm, angle, projection, 
and orthogonality. Also, this MATLAB code visualizes three orthogonal sequences (finite truncations) 
as vectors in R3. 

Example (Orthogonality in 𝑙2): Let 𝑥 =  (1, 0, 0, . . . ), 𝑦 =  (0, 1, 0, . . . ).  Then ⟨𝑥, 𝑦⟩  =
 1 ·  0 +  0 ·  1 +  0 =  0, So x and y are orthogonal. 

Example (Completeness in 𝑙2): Consider 𝑥𝑘  =  (
1

𝑘
,

1

𝑘2 ,   .    .    .
1

𝑘𝑛 , 0,    .   .   .   ). Compute 

‖𝑥𝑘 − 𝑥𝑚‖2 = ∑ |
1

𝑘𝑛 −
1

𝑚𝑛|
2

𝑚𝑖𝑛(𝑘,𝑚)
𝑛=1 + ∑ |

1

𝑘𝑛|
2

𝑚𝑎𝑥(𝑘,𝑚)
𝑛=min(𝑘,𝑚)+1 , which approaches 0. The limit (0,

0,   .   .    . ) ∈ 𝑙2, confirming completeness 
 
3.4. Theorem (Polarization Identity and Hilbert Space) 

Let B be a complex Banach space, and suppose the norm ∥⋅∥ on B satisfies the parallelogram law. 

Define a map ⟨⋅,⋅⟩ on 𝐵 × 𝐵 by 4⟨𝑝, 𝑞⟩: =∥ 𝑝 + 𝑞 ∥2−∥ 𝑝 − 𝑞 ∥2+ 𝑖 ∥ 𝑝 + 𝑖𝑞 ∥2− 𝑖 ∥ 𝑝 − 𝑖𝑞 ∥2.  
Then ⟨⋅,⋅⟩  is an inner product, and hence B, being complete, is a Hilbert space. 
Proof: 

To show that B is a Hilbert space, then the map ⟨⋅,⋅⟩ satisfies the axioms of an inner product on a 
complex vector space. 
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3.4.1. Positivity and Definiteness 

Set 𝑞 = 𝑝. Then 4⟨𝑝, 𝑝⟩ =∥ 𝑝 + 𝑞 ∥2−∥ 𝑝 − 𝑞 ∥2+ 𝑖 ∥ 𝑝 + 𝑖𝑞 ∥2− 𝑖 ∥ 𝑝 − 𝑖𝑞 ∥2 

=∥ 2𝑝 ∥2− 0 + 𝑖 ∥ 𝑝(1 + 𝑖) ∥2− 𝑖 ∥ 𝑝(1 − 𝑖) ∥2 

= 4 ∥ 𝑝 ∥2+ 𝑖 ∣ 1 + 𝑖 ∣2∥ 𝑝 ∥2− 𝑖 ∣ 1 − 𝑖 ∣2∥ 𝑝 ∥2 

= 4 ∥ 𝑝 ∥2+ 2𝑖 ∥ 𝑝 ∥2− 2𝑖 ∥ 𝑝 ∥2= 4 ∥ 𝑝 ∥2.  
Thus, ⟨𝑝, 𝑝⟩ =∥ 𝑝 ∥2≥ 0 and ⟨𝑝, 𝑝⟩ = 0 implies ∥ 𝑝 ∥= 0, hence 𝑝 = 0. 
 
3.4.2. Conjugate Symmetry 
Take the complex conjugate of the polarization identity: 

4〈𝑝, 𝑞〉̅̅ ̅̅ ̅̅ ̅ =∥ 𝑝 + 𝑞 ∥2−∥ 𝑝 − 𝑞 ∥2− 𝑖 ∥ 𝑝 + 𝑖𝑞 ∥2+ 𝑖 ∥ 𝑝 − 𝑖𝑞 ∥2  

By symmetry and norm properties: 4〈𝑝, 𝑞〉̅̅ ̅̅ ̅̅ ̅ = 4⟨𝑝, 𝑝⟩ ⇒ 〈𝑝, 𝑞〉̅̅ ̅̅ ̅̅ ̅ = ⟨𝑝, 𝑝⟩ 
 
3.4.3. Linearity in the First Argument 

Let 𝑝, 𝑞, 𝑟 ∈ 𝐵. We have, ⟨𝑝 + 𝑞, 𝑟⟩ = ⟨𝑝, 𝑟⟩ + ⟨𝑞, 𝑟⟩.  
Then we applying the polarization identity to 𝑝 + 𝑞 and 𝑟, expanding each term, and using the 

parallelogram law repeatedly s.t. ∥ 𝑝 + 𝑞 + 𝑟 ∥2−∥ 𝑝 + 𝑞 − 𝑟 ∥2= (∥ 𝑝 + 𝑟 ∥2−∥ 𝑝 − 𝑟 ∥2) +
(∥ 𝑞 + 𝑟 ∥2−∥ 𝑞 − 𝑟 ∥2) 

similarly for the imaginary parts, ⟨𝑝 + 𝑞, 𝑟⟩ = ⟨𝑝, 𝑟⟩ + ⟨𝑞, 𝑟⟩  
 
3.4.4. Homogeneity in the First Argument 

We verify for scalar 𝛼 ∈ 𝐶, 

• 𝐶𝑎𝑠𝑒 𝛼 = 𝑛 ∈ 𝑁: 𝑈𝑠𝑒 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑛. 
• 𝐶𝑎𝑠𝑒 𝛼 = −1: 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 − 𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑎𝑛𝑑 𝑠ℎ𝑜𝑤 ⟨−𝑝, 𝑞⟩ = −⟨𝑝, 𝑞⟩ 

• 𝐶𝑎𝑠𝑒 𝛼 ∈ 𝑄: 𝑊𝑟𝑖𝑡𝑒 𝛼 =
𝑠

𝑡
, 𝑎𝑛𝑑 𝑣𝑒𝑟𝑖𝑓𝑦 𝑢𝑠𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 𝑎𝑛𝑑 𝑠𝑐𝑎𝑙𝑎𝑟 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 

• 𝐶𝑎𝑠𝑒 𝛼 = 𝑖: 𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑝 𝑤𝑖𝑡ℎ 𝑖𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑎𝑛𝑑 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦: ⟨𝑖𝑝, 𝑞⟩ = 𝑖⟨𝑝, 𝑞⟩ 
• 𝐶𝑎𝑠𝑒 𝛼 = 𝑎 + 𝑖𝑏 ∈ 𝐶: 𝑈𝑠𝑒 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦: ⟨𝛼𝑝, 𝑞⟩ = ⟨𝑎𝑝 + 𝑖𝑏𝑝, 𝑞⟩ = 𝑎⟨𝑝, 𝑞⟩ + 𝑖𝑏⟨𝑝, 𝑞⟩ = 𝛼⟨𝑝, 𝑞⟩ 
⇒ ⟨𝛼𝑝, 𝑞⟩ = 𝛼⟨𝑝, 𝑞. 

The map ⟨⋅,⋅⟩ satisfies are all the properties of an inner product. Since B is already a Banach space 

(i.e., complete), thus, B satisfied all the conditions of an inner product space.  Therefore 𝐵 is an inner 

product space and hence 𝐵 is a Hilbert space. 
 
3.4.5. Interpretation 

• The polarization identity extracts full geometric information (lengths and angles) from norms. 

• By measuring lengths of carefully combined vectors, it reconstructs the inner product the 
fundamental tool for angle, projection, and orthogonality in Hilbert spaces. 

• The MATLAB plot shows how real and imaginary combinations of vectors contribute to the 
full inner product. 
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Figure 8. 
MATLAB Visualization of the Polarization Identity.                           

 

The Figure 8, visualizes the polarization identity in 𝐶2showing vectors x (red), y (blue), x +
 y (green), x +  iy  (magenta), and x −  iy(cyan) originating from the origin in a 3D space with axes 

𝑅𝑒(𝑥1), 𝑅𝑒(𝑥2), 𝑎𝑛𝑑 𝐼𝑚 (𝑥), illustrating the relationship between complex vector components. 
 
3.5. Discussion 

The preceding results confirm that ℝ𝑛, 𝐶𝑛 𝑎𝑛𝑑 𝑙2are Hilbert spaces by virtue of possessing both an 
inner product structure and completeness. These two features are essential in extending geometric 
intuition from Euclidean spaces to more abstract settings. Orthogonality allows for decomposition and 
projection of elements a mechanism at the heart of many computational techniques such as principal 
component analysis (PCA) in machine learning. Completeness guarantees that limits of Cauchy 
sequences remain within the space, providing a foundation for the convergence of iterative numerical 
algorithms. Together, these properties support a broad range of applications, from the mathematical 
formulation of quantum systems to signal representation and processing in engineering. 
 

4. Applications of Hilbert Spaces 
4.1. Quantum Mechanics 

In quantum mechanics, the state of a physical system is described by a vector in a complex Hilbert 
space. Observable physical quantities correspond to self-adjoint (Hermitian) operators acting on this 
space. The inner product on the Hilbert space is crucial for interpreting measurement results 
probabilistically: the squared magnitude of the inner product between two state vectors represents the 
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probability of transitioning from one state to another. This framework offers a precise mathematical 
foundation for the inherently probabilistic behavior observed in quantum systems. 
 
4.2. Signal and Image Processing 

Hilbert spaces are fundamental in Fourier analysis and the theory of wavelets. Signals are often 
modeled as elements of L2 spaces, and decomposing signals into orthonormal bases (e.g., sine/cosine in 
Fourier transforms) is a core technique. 
 
4.3. Machine Learning and Data Science 

Reproducing Kernel Hilbert Spaces (RKHS) are used in support vector machines and Gaussian 
processes. These spaces enable kernel methods that efficiently operate in high-dimensional or infinite-
dimensional feature spaces. 
 
4.4. Numerical Analysis and PDEs 

Hilbert spaces provide the setting for the variational formulation of partial differential equations. 
The famous Lax-Milgram theorem, for instance, guarantees the existence and uniqueness of solutions 
under certain conditions in a Hilbert space setting. 
 

5. Applications of Hilbert Spaces in Machine Learning 
5.1. Kernel Methods and Reproducing Kernel Hilbert Spaces (RKHS) [17, 18]. 

Kernel methods implicitly map data into high-dimensional Hilbert spaces without computing the 
coordinates directly. This allows for: Non-linear classification using linear techniques in transformed 

spaces. Efficient implementation via the kernel trick: K(x, y) = ⟨ϕ(x), ϕ(y)⟩ 
 

 
Figure 9. 
MATLAB Implementation of the Visualizing a Gaussian (RBF) Kernel and Feature Mapping.  
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The Figure 9, shows a Gaussian RBF (Radial Basis Function) Kernel Matrix, visualized as a 
heatmap. The x and y axes range from -3 to 3, representing pairs of data points. The color gradient, 

ranging from blue (0.1) 𝑡𝑜 𝑟𝑒𝑑 (1.0), indicates the similarity between these points, with warmer colors 
showing higher similarity. The diagonal line of red indicates maximum similarity where points are 
compared to themselves, while the similarity decreases as points move away from the diagonal. 
 
5.2. Support Vector Machines (SVMs)  

SVMs find the optimal hyperplane in a Hilbert space to separate data. The use of kernels enables 
non-linear boundaries in the original space while maintaining computational feasibility. SVMs is 
supervised algorithms applied to classification and regression problems. They identify the hyperplane 
that maximizes the margin between different classes in a transformed feature space. For datasets that 
are not linearly separable, kernel functions are used to project data into higher-dimensional spaces, 
enabling the discovery of a linear boundary. 
 

 
Figure 10. 
MATLAB Implementation: Visualizing a SVM Classification. 

 
The Figure 10, illustrates SVM (Support Vector Machine) classification using an RBF (Radial Basis 

Function) kernel. It shows two classes: Class 1 (red ′x′) and Class − 1 (blue ′o′), separated by a 
nonlinear decision boundary (black curve). The dashed lines represent the margins, which define the 
boundary's width, with support vectors (data points closest to the boundary) influencing its position. 
 
5.3. Principal Component Analysis (PCA) 

PCA is a statistical technique designed to reduce the dimensionality of a dataset by transforming it 
into a smaller set of variables while retaining most of the original information. This is achieved by 
identifying new axes, known as principal components, which are linear combinations of the original 
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features. These components are ranked based on how much of the data’s variation they capture. The 
first captures the greatest amount of variation, followed by the second, and so on. By projecting the data 
onto these principal components, PCA helps simplify complex data, making it easier to explore, 
visualize, and interpret. 
 

Figure 11. 
MATLAB Implementation: Visualizing a PCA Classification with quantum state vectors as unit vectors on a 3D Bloch sphere. 

 
The Figure11, consists of two parts. The left graph, "PCA Variance Explained," shows a plot where 

the y-axis represents the percentage of variance explained (75-100%) and the x-axis represents the 
number of principal components (1 to 2.8). The curve rises steeply, indicating that most variance is 
captured with a few components. The right image, "Quantum State Vector on Bloch Sphere," depicts a 
3D sphere with a red vector pointing from the origin to a point near the top, illustrating a quantum 
state vector's position in a Bloch sphere representation. 
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5.4. Orthonormal Basis in 𝐿2 (Fourier Sine and Cosine Functions) and Interactive Function Visualizations (e.g., 
Fourier Basis in L² Space)  
 

 
Figure 12. 

MATLAB Implementation: This visualizes how sine and cosine functions can act as orthonormal bases in the 𝐿2[0,2𝜋] Hilbert 
space. 

 

The Figure 12, shows orthonormal basis functions in 𝐿2[0, 2𝜋]on the left, with three curves: sin(x) 
in red, cos(x) in green, and sin(2x) in blue, oscillating between -1 and 1 over the interval [0, 7]. The 
right plot zooms in on sin(x), displaying its standard sinusoidal wave with a single peak and trough 
within [0, 7], ranging from -1 to 1. 
 

6.  Applications of Inner Product Spaces 
Inner product spaces play a pivotal role in both pure and applied mathematics due to their geometric 

structure and analytical properties. Their applications span across various disciplines, including: 
 
6.1. Quantum Mechanics 

In quantum theory, the state of a physical system is represented by a vector in a complex Hilbert 
space (a complete inner product space). Observables such as position and momentum are modeled as 
linear operators on these spaces. The inner product allows the computation of probabilities and 
expectations, forming the core of quantum measurement theory. 
 
6.2. Signal Processing and Fourier Analysis 

Inner product spaces provide the foundation for signal decomposition techniques such as the 
Fourier transform. Signals can be represented as sums of orthogonal basis functions, and inner products 
are used to compute the coefficients in these expansions. This is critical in filtering, compression, and 
noise reduction. 
 
6.3. Computer Graphics and Geometry 

In 3D graphics, the inner product (or dot product) is used to determine angles between vectors, 
shading, and projection operations. This underpins rendering techniques and physical simulations. 
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6.4. Statistics and Principal Component Analysis (PCA)  
In multivariate statistics, PCA uses the inner product to measure variance and correlation. Data is 

projected onto orthogonal components (eigenvectors of the covariance matrix), which are computed 
using inner product operations. 
 
6.5. Functional Analysis and PDEs 

Many boundary value problems for partial differential equations are solved within inner product 
spaces using methods such as the Galerkin or Ritz method. These rely on projecting infinite-
dimensional problems into finite-dimensional subspaces using orthogonality conditions. 
 
6.6. Signal Decomposition Using Orthonormal Basis (Fourier Analysis) 

Signals can be represented as linear combinations of orthonormal functions. The coefficients are 
obtained via inner products. 
 

 
Figure 13. 
MATLAB Implementation: Visualizing a Signal Decomposition Using Inner Product. 

                   
The Figure 13, illustrates signal decomposition using the inner product, comparing an original 

signal (blue) and its reconstructed signal (red). Both signals vary in amplitude from -1.5 to 1 over time 
(0 to 7), showing a similar pattern with peaks and troughs, indicating the reconstruction closely matches 
the original. 
 

7.  Applications of Inner Product Spaces in Machine Learning 
Inner product spaces form a mathematical foundation for many algorithms in machine learning, 

offering a framework to measure similarity, define geometry in feature spaces, and facilitate learning in 
high-dimensional settings. Their properties enable both theoretical insights and practical 
implementations in various learning paradigms. 
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7. 1. Similarity Measures and Kernel Methods 
The inner product is frequently used to quantify the similarity between vectors. In classification and 

clustering, similarity functions guide decisions about groupings or class membership. Kernel methods 
extend this idea by computing inner products in transformed feature spaces, often through kernel 
functions. This is central to algorithms like the Support Vector Machine (SVM), where the decision 
boundary is constructed using inner products between data points in a high-dimensional (possibly 
infinite-dimensional) Reproducing Kernel Hilbert Space (RKHS). 
 
7.2. Principal Component Analysis (PCA) 

PCA is a dimensionality reduction technique that relies on inner products to compute the covariance 
matrix and its eigenvectors. These eigenvectors form an orthogonal basis that captures the directions of 
maximum variance in the data. By projecting data onto these directions using inner products, PCA 
simplifies the feature space while preserving key information, improving both interpretability and 
computational efficiency. 
 
7.3. Neural Networks and Optimization 

Although neural networks are nonlinear models, inner products still appear in the computation of 
neuron activations, especially in fully connected layers. Each neuron computes a weighted inner product 
between the input vector and a weight vector, followed by a non-linear activation. Additionally, 
gradient-based optimization methods used to train networks rely on inner product-based notions such 
as gradient descent directions and orthogonal projections in parameter space. 
 
7.4. Recommendation Systems 

Matrix factorization techniques for collaborative filtering in recommendation systems use inner 
products to model user item interactions. In such systems, the predicted rating of a user for an item is 
computed as the inner product of the user’s and item’s latent feature vectors. Also, this manuscript 
builds on our earlier analytic work applying Sylow’s theorems to small composite orders [19, 20]. 
 

8. Applications of Inner Product and Hilbert Spaces in Machine Learning 
8.1. Inner Product Spaces in Machine Learning 

An inner product space provides a way to measure angles and distances between vectors. This 
structure underlies several machine learning concepts, especially where similarity, projection, and 
orthogonality are essential. Also, the machine learning concepts are like Similarity Measures, PCA & 
Data Compression, Regression & Optimization 
 
8.2. Hilbert Spaces in Machine Learning 

A Hilbert space is a complete inner product space, allowing infinite-dimensional extensions of 
vector space methods. In machine learning, Hilbert spaces (especially RKHS) are used to generalize 
linear algorithms to nonlinear contexts through kernel functions, Functional Regression, Spectral 
Learning Methods. 
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Table 1. 
Comparison in Inner Product and Hilbert Spaces in Machine Learning. 

Feature Inner Product Space Hilbert Space (Complete Inner Product Space) 

Dimensionality Finite-dimensional Can be infinite-dimensional 
Completeness Not necessarily complete Always complete 

Use in ML 
Feature similarity, projections, PCA, 
regression 

Kernel methods, Gaussian processes, RKHS, 
functional learning 

Examples in ML 
Linear regression, PCA, cosine 
similarity, k-means 

SVM (with kernel), Gaussian processes, spectral 
learning 

MATLAB Tool Use dot, eig, matrix algebra Kernel computation, functional inner products 
Mathematical Framework Euclidean geometry Functional analysis 

 

 
Figure 14. 
MATLAB Simulation: Inner Product vs. RKHS (Hilbert Space via Kernel). 

 
This simulation compares linear inner product similarity and kernel-based similarity (in RKHS). 

The Figure 14, compares the similarity of inner products in Euclidean versus Hilbert space. It 
shows a bar chart with two categories: "Linear IP" and "Kernel IP (RKHS)". The "Linear IP" bar 
reaches approximately 7 on the similarity scale, while the "Kernel IP (RKHS)" bar is much lower, 
around 1, indicating a significant difference in similarity measures between the two methods. 
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Table 2. 
The Comparison of Inner Product Spaces vs. Hilbert Spaces in Machine Learning. 

Feature 
Inner Product Space (e.g., Linear 
SVM) 

Hilbert Space (e.g., Kernel SVM with 
RBF) 

Mathematical Foundation 
Vector space with finite-dimensional 
inner product 

Complete inner product space (possibly 
infinite-dim) 

Key Use in ML Linear classification, regression, PCA Nonlinear classification, kernel methods 

Decision Boundary Shape Linear (hyperplane) Nonlinear (curved, flexible) 

Flexibility Limited to linear separability Can handle complex, nonlinear patterns 

Similarity Measure Euclidean dot product 
Kernel-induced inner product (e.g., 
Gaussian kernel) 

SVM Kernel Function in MATLAB 'linear' 'rbf', 'polynomial', or custom kernels 

Performance on Nonlinear Data Poor Excellent 
Computational Cost Low Higher (due to kernel matrix computation) 

 

 
Figure 15. 
MATLAB Simulation: Linear vs. Kernel SVM (Using Synthetic Data). 

 
We generate nonlinear data, then apply both linear and kernel SVMs to compare their 

performance—demonstrating the practical contrast between an inner product space and a Hilbert space. 
The Figure 15, shows a bar chart comparing the accuracy of SVM classification on the Iris dataset 

using Linear SVM and Kernel SVM. Both methods achieve an accuracy of approximately 90-100%, with 
no significant difference between them. 

 

9.  Conceptual Overview: Human Thinking in ML with Inner Product and Hilbert Spaces 
We visualize the Inner Product Space as the human thinking linearly—making decisions based on 

straight-line similarity or dot product intuition. And the Hilbert Space (via RKHS) as the human 
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thinking abstractly or nonlinearly, visualizing patterns beyond what’s visible—like imagination 
mapping reality to a higher-dimensional space[21, 22]. 
 

 
Figure 16. 
Human Thinking in ML with Inner Product and Hilbert Spaces. 

 
The Figure 16, emphasizes how human reasoning evolves: 

• In the inner product space, the approach is direct, simple, and linear. 

• In the Hilbert space, reasoning becomes abstract, enabling the recognition of nonlinear patterns—
similar to how kernel methods work in machine learning. 

 

10.  Limitations and Future Work 
Although this study provides both conceptual insight and computational demonstrations of Hilbert 

and inner product spaces with MATLAB based illustrations relevant to machine learning several 
limitations persist, offering opportunities for further research and refinement. 
 
10.1. Theoretical Limitations 

The present analysis is limited to separable Hilbert spaces and bounded linear operators. Advanced 
topics such as non-separable Hilbert spaces, unbounded operators, and spectral theory were not 
explored. These areas, however, are crucial for a deeper understanding in fields like quantum mechanics, 
mathematical physics, and infinite-dimensional learning theory, and warrant further investigation in 
future work. 
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10.2. Methodological and Modeling Gaps 

This study focuses on foundational concepts and techniques and does not incorporate more 
sophisticated machine learning models such as deep neural networks, support vector machines with 
kernel methods, or recent developments in deep kernel learning. In particular, the practical utilization of 
reproducing kernel Hilbert space (RKHS) frameworks within contemporary deep learning models has 
not been addressed. Bridging this gap could be a valuable direction for future research. 
 

11. Conclusion 
This study demonstrates that Hilbert and inner product spaces generalize the geometric and 

algebraic structure of Euclidean spaces to infinite dimensional settings, providing a rigorous framework 

for projections, orthogonality, and completeness. By formally analyzing  ℝ𝑛, 𝐶𝑛 𝑎𝑛𝑑 𝑙2, illustrating the 
parallelogram law, and applying these concepts in PCA, SVMs, quantum mechanics, and signal 
processing, we highlighted the practical and theoretical significance of Hilbert spaces. While the focus 
was on separable Hilbert spaces and illustrative computational examples, the work lays a foundation for 
exploring advanced topics such as Hilbert Schmidt operators, RKHS-Banach duality, and applications in 
large-scale machine learning or quantum computing. Overall, Hilbert spaces emerge as a central 
mathematical framework that bridges theory with practical algorithms, enabling robust problem-
solving across mathematics, data science, and physics. 
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