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Abstract: Hypertension is a global health concern and a major risk factor for cardiovascular disease. Early 
prevention and management based on risk prediction is a principal goal of many national health policies. 
We studied the relationship between blood cadmium concentrations and hypertension and developed an 
artificial neural network (ANN) that predicts hypertension risk. For this study, we utilized data from the 
Korean National Health and Nutrition Examination Survey (KNHANES), conducted between 2008 and 
2013, which is a nationwide population-based survey of the Korean population. We extracted and analyzed 
sociodemographic characteristics, serum cadmium levels, and blood pressure information from a sample 
of adults aged 19 years and above (n=11,530). After adjusting for sociodemographic factors, cadmium 
levels were positively associated with the risk of hypertension (p < 0.001). Groups with high cadmium 
levels significantly increased the odds ratios for hypertension compared to the lowest tertile. An ANN 
model in which sociodemographic factors and the blood concentration of cadmium were the principal 
inputs yielded a predictive accuracy of 0.773 and an area under the curve of 0.823. ANNs with appropriate 
inputs can identify population subgroups at high risk of developing hypertension and will aid in the 
formulation of policies that prevent disease. 

Keywords: Artificial neural network, Blood concentration, Cadmium, Hypertension, KNHANES, Risk prediction. 

 
1. Introduction  

Hypertension is a major public health problem worldwide and one of the main risk factors for 
cardiovascular disease. Hypertension's global clinical and economic burdens are high and continue to 
increase; in 2015, hypertension caused 17.7 million deaths worldwide [1, 2]. In Korea, the mortality rate 
from hypertension in 2020 was 2.0%. It was the ninth leading cause of death, and its prevalence in those 
aged 30 years and older was 34.2% [3]. The Korean National Health and Nutrition Examination Survey 
(KNHANES), a nationwide population-based survey conducted by the Korean Centers for Disease Control 
and Prevention, usefully identifies factors that cause hypertension given the big data on blood pressure 
[4-6]. Well-known risk factors for hypertension include a genetic predisposition and certain lifestyle 
factors, but heavy metal exposure may also play an important role [7-9]. 

Previous studies have indicated a potential association between cadmium (Cd) exposure and 
hypertension. Upon exposure to Cd, its concentration in the blood serves as a biomarker for the level of 
exposure. Cd is primarily stored in soft tissues, with the liver and kidneys being the major sites of 
accumulation [10]. A population-based cohort study by Gambelunghe, et al. [11] revealed an association 
between lead exposure and blood pressure, as well as hypertension. Moreover, a meta-analysis of eight 
studies conducted by Navas-Acien, et al. [9] and Martins, et al. [12] suggested a link between arsenic 
exposure and hypertension. The 2011-2018 US National Health and Nutrition Examination Survey found 
an association between mercury exposure and the prevalence of hypertension among Asian populations 
in the US [13]. Furthermore, a study in Korea's general population revealed a correlation between high 
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blood manganese levels and hypertension [14]. Exposure to Cd has been reported to increase 
hypertension in several epidemiological and experimental studies [12, 13]. A prospective study conducted 
in the US reported a positive association between low to moderate levels of urinary Cd and hypertension 
in the general population [14]. Various mechanisms have been reported to elucidate the link between Cd 
exposure and blood pressure, with tubular epithelial cell damage recognized as a prominent consequence 
of Cd exposure [15]. The impairment of renal function caused by tubular dysfunction may influence the 
relationship between Cd levels and blood pressure [12]. 

Healthcare research has widely applied artificial neural network (ANN) models recently. ANNs can 
derive highly accurate nonlinear correlations between independent and dependent (outcome) variables 
[16]. Recently, they have become increasingly used for disease classification given the massive 
computational resources available, the big data of large surveys, and the precise measurements [17, 18]. 
Such data efficiently trains machine-learning models that detect trends and patterns when screening and 
classifying many diseases [19, 20]. We thus sought a correlation between the body burden of Cd and 
hypertension and developed an ANN for predicting hypertension in Korean adults; we used KNHANES 
data to these ends. 
 

2. Methods 
2.1. Study Population 

Data were obtained from the 2008–2013 KNHANES, a nationwide survey conducted by the Korean 
Centers for Disease Control and Prevention. The KNHNES Website 
(https://knhanes.kdca.go.kr/knhanes/) contains the survey data that is available to the general public. 
The KNHANES utilizes a stratified, multistage cluster-sampling procedure; the proportional allocation 
is based on National Census Registry information. In total, 11,530 adults aged at least 19 years were 
included in the analysis, after excluding those for whom adequate blood pressure and blood Cd data were 
lacking and who did not answer the relevant questionnaire items. The protocol was approved by the 
Korean Ministry of Health and Welfare and the research adhered to the principles of the Declaration of 
Helsinki. All participants provided written, informed consent. 
 
2.2. Data Collection 

We extracted data on demographics (age, sex), socioeconomic status (income, educational level), and 
lifestyle habits (physical exercise, smoking status, and alcohol consumption) from the KNHANES 
database. We obtained anthropometric measurements such as height and weight, from participants 
wearing lightweight clothing without shoes. We calculated the Body Mass Index (BMI) by dividing the 
weight (kg) by the square of the height (m). Based on the World Health Organization (WHO) guidelines 
for Asian populations, participants were categorized as underweight (BMI < 18.5 kg/m2), normal weight 
(18.5 ≤ BMI < 23.0 kg/m2), overweight (23.0 ≤ BMI < 25.0 kg/m2), or obese (BMI ≥ 25.0 kg/m2). Cd 
levels were measured using Zeeman effect graphite furnace atomic absorption spectrophotometry (Perkin-

Elmer AAnalyst 600, Turku, Finland) with a limit of detection (LOD) of approximately 0.30 μg/L. For 
participants with blood Cd concentrations below the LOD, a detection limit value divided by the square 
root of 2 was assigned. We measured blood pressure on the right arm three times using a mercury 
sphygmomanometer and recorded the average of the second and third measurements. Hypertension was 
defined as a systolic blood pressure (SBP) ≥ 140 mmHg and/or a diastolic blood pressure (DPB) ≥ 90 
mmHg, or the taking of medication to treat hypertension [21]. 
 
2.3. ANN Model Development 

The data were pre-processed using the StandardScaler function of the Python scikit-learn library. 
The data were split into training and test sets at a ratio of approximately 7:3. The ANN included input 
layer, 12 hidden layers, and 1 output layer. We employed a stochastic gradient descent (SGD) optimizer 
with the ADAM variant for training the ANN. The learning rate was set to 0.001, and the training process 
spanned 100 epochs. Rectified linear unit (ReLU) activation functions were used in all hidden layers, while 
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the output layer utilized a sigmoid function. To prevent overfitting, dropout regularization (30%) was 
applied to the input layer. Categorical cross-entropy served as the loss function, reflecting the binary 
classification nature of the problem. The model was implemented using TensorFlow v1.12.0. Finally, we 
evaluated the model's predictive performance using receiver operating characteristic (ROC) curve 
analysis. 
 
2.4. Statistical Analysis 

We used the Mantel-Haenszel chi-square test to compare between-group differences in categorical 
variables and the two-sample t test to compare differences in continuous variables. We calculated the 
geometric means with 95% confidence intervals (CIs) of blood concentration of Cd using the antilog values 
of the mean, natural-log-transformed values. We employed geometric means on a normal probability plot 
to enhance the resemblance to a normal distribution. We derived odds ratios (ORs) for hypertension, with 
95% CIs (compared to the reference values), via multivariate logistic regression analyses that incorporated 
all covariates. The Cochrane-Armitage test for trends was used to explore the linearity of the relationship 
between the Cd level and hypertension prevalence. The statistical analyses considered the unique features 
of the survey design; appropriate procedures employed weighted data. SAS version 9.4 software (SAS 
Institute Inc., Cary, NC, USA) performed all analyses. 
 

3. Results 
The mean age of the 11,530 participants was 44.9 years (standard deviation: 15.0 years); 49.2% were 

male and 26.3% were hypertensive. Age, sex, household income, education level, body mass index, and 
alcohol consumption differed significantly between the participants with and without hypertension (all p 
< 0.001). The geometric mean blood level of Cd was significantly higher in the hypertension group (p < 
0.001) (Table 1).  

 
Table 1. 
The sociodemographic characteristics and blood level of cadmium by hypertension (HTN) status in Korean adults aged ≥ 19 
years. 

Characteristic 
Total HTN Non-HTN 

p-valuea 
(n = 11,530) (n = 3,033) (n = 8,497) 

Age, years (SD) 44.9 (15.0) 55.5 (12.7) 41.1 (13.9) < 0.001 
Sex, n (%)    < 0.001 

Male 5.676 (49.2) 1.730 (15.0) 3.946 (34.2)  
Female 5.854 (50.8) 1.303 (11.3) 4.551 (39.5)  

Income, $US/month (SD) 3.052 (2.183) 2.532 (2.108) 3.237 (2.180) < 0.001 
Education, n (%)    < 0.001 

≤ Elementary school 2.091 (18.1) 1,061 (9.2) 1.030 (8.9)  
Middle school 1.215 (10.6) 453 (4.0) 762 (6.6)  
High school 4.393 (38.1) 927 (8.0) 3.466 (30.1)  
≥ College 3.831 (33.2) 592 (5.1) 3239 (28.1)  

BMI, kg/m2 (SD) 23.7 (3.4) 25.1 (3.3) 23.2 (3.2) < 0.001 
Regular exercise, n (%) 2.638 (22.9) 660 (21.8) 1.978 (23.3) 0.088 
Current smoker, n (%) 2.900 (25.2) 746 (24.6) 2.154 (25.4) 0.411 
Alcohol consumer, n (%) 6.718 (58.3) 1.995 (65.8) 4.723 (55.6) < 0.001 
Cadmium (µg/L), geometric 
mean (95% CI) 

0.94 (0.93-0.95) 1.15 (1.13-1.17) 0.88 (0.87-0.89) < 0.001 

Note: ap-values were calculated using the t-test or the Mantel-Haenszel chi-squared test. 

 
Table 2 lists the prevalences of hypertension by the tertiles of blood concentration of Cd. The 

prevalences and ORs correlated positively with increasing Cd levels (p for trend < 0.001). Compared to 
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subjects in the lowest tertile of Cd (<0.76 μg/L), the crude hypertension OR was 3.09 (95% CI, 2.71–3.51) 

among those with Cd > 1.25 μg/L. This association remained unchanged after adjustment for age and 
sex (OR = 1.64; 95% CI, 1.41–1.90; p for trend < 0.001) (model 1), and indeed after adjustment for all 
potential risk factors (OR = 1.82; 95% CI, 1.17–2.83; p for trend < 0.001) (model 2). 

 
Table 2. 
Prevalences and odds ratios (with 95% CIs) of hypertension when the two highest tertiles were compared to the population 
with the lowest tertile of blood level of cadmium among Korean adults ≥ 19 years of age. 

Risk measurement 
Blood level of cadmium 

p for trend Tertile 1 
 (< 0.76 µg/L) 

Tertile 2  
(0.76–1.25 µg/L) 

Tertile 3  
(> 1.25 µg/L) 

Prevalence % 5.33 8.96 12.02 < 0.001 
Odds ratioa  
Crude 1.00 (Reference) 2.04 (1.77–2.34) 3.09 (2.71–3.51) < 0.001 
Model 1 1.00 (Reference) 1.32 (1.13–1.53) 1.64 (1.41–1.90) < 0.001 
Model 2 1.00 (Reference) 1.32 (1.13–1.55) 1.62 (1.38–1.92) < 0.001 
Note: aModel 1: Adjusted for age and sex. Model 2: Additionally adjusted for income, educational status, BMI, regular exercise, and 

cigarette smoking and alcohol consumption status. 

 
Based on the logistic regression data, we developed an ANN with nine inputs, including 

sociodemographic characteristics and blood levels of Cd (Figure 1). After normalizing all variables, the 
ANN model achieved an accuracy of 0.773. The area under the ROC curve (AUC) was 0.823 (Figure 2). 

 

 
Figure 1.  
Schematic diagram of ANN model. 
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Figure 2.  
Receiver operating characteristic (ROC) curve of the ANN predicting hypertension. 

 

4. Discussion 
In this nationwide cross-sectional study that enrolled adult Koreans aged at least 19 years, a positive 

association was apparent between the blood level of Cd and hypertension. After taking into account all 
the other factors, the odds ratios for high blood pressure went up linearly as Cd levels went up. This is in 
line with what other studies have found, which is that high Cd levels are linked to high blood pressure 
[13, 22]. In addition, as smoking is intricately linked to blood Cd levels and poses a potential risk factor 
for cardiovascular disease [23, 24] we performed subgroup analyses focusing on smoking. The results 
showed that current smoking may make the link between high blood pressure and Cd levels stronger, 
with a fully adjusted OR of 1.97 (95% CI, 1.42–2.74) among people in the highest Cd exposure tertile. 
Although the underlying mechanism remains poorly understood, disruption of calcium homeostasis, 
increased oxidative stress, and vascular endothelium impairment may all be involved [25-27].  

This study utilized blood Cd concentrations as a biomarker to assess the body burden of Cd. 
Epidemiologic research commonly uses blood or urine Cd concentrations as primary biomarkers to 
evaluate exposure and internal dose. However, it is important to consider that Cd's half-life differs between 
blood and urine [28]. Urinary and blood Cd levels increase proportionately to the stored Cd in the body, 
reflecting cumulative Cd exposure in both biomarkers. Moreover, blood Cd, with a half-life of 3–4 months, 
also provides insight into recent exposure [29, 30]. Furthermore, considering the absorption route of Cd is 

crucial, as the bloodstream absorbs inhaled Cd more efficiently than ingested Cd [29]. Therefore, blood and 
urinary Cd levels may provide distinct information regarding the timing and source of Cd exposure [31]. 
Nevertheless, blood cadmium levels correlated well with urinary cadmium levels [32, 33]. 
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Associations between blood Cd levels and hypertension in the general population were reported in 
several studies [34, 35]. On the other hand, some studies have found no association between blood Cd 
levels, blood pressure, or hypertension [36, 37]. Disparities in the geographic, ethnic, and socioeconomic 
backgrounds of the participants involved in each study may account for these differences in research 
findings. Furthermore, it implies that using whole blood as a biomarker for assessing exposure or body 
burden could affect the strength of the association. Cross-sectional studies utilizing blood as a potential 
biomarker for Cd exposure may have limited applicability in terms of temporal interpretation. 
Furthermore, there were inconsistencies in the definition of hypertension across the studies. The present 
study classified participants as hypertensive if they were using antihypertensive medications and had 
elevated systolic and/or diastolic blood pressure. However, some studies did not consider the use of 
antihypertensive drugs as one of the criteria for defining hypertension, and others only considered 
"history of hypertension" for the classification of hypertension. 

ANNs represent a recent and notable advancement in the field of nature-inspired algorithms. ANNs 
emulate the structure and function of the human brain and offer a powerful tool for analyzing intricate 
and non-obvious relationships among diverse predictors. By employing suitable neural network 
architectures and optimizing training weights, ANNs facilitate the prediction of medical outcomes. The 
medical field primarily developed ANNs and widely uses them for disease diagnosis, prognosis, and 
clinical decision-making [38]. Recently, researchers have used ANNs to predict the development of 
various diseases, such as diabetes and heart failure  [39, 40]. Recently, they have become recognized as 
powerful tools for predicting the impacts of multiple variables with complex inter-relationships on specific 
outcomes [41]. ANNs identify complex, nonlinear relationships between dependent and independent 
variables and all interactions among predictors [42].  

Several attempts have been made to use ANNs to predict hypertension, employing various datasets. 
Most recent studies have reported AUCs from 0.64 to 0.82, lower than our 0.823, with the exception of 
one that reported a remarkable AUC of 0.96 [43-47]. One possible explanation of the among-study 
disparities is that most prior ANNs employed only sociodemographic factors and/or comorbidities as 
inputs; we added the blood level of Cd. As Cd status significantly affects hypertension, that inclusion may 
have enhanced the AUC. Our ANN predicts hypertension based on both Cd levels and sociodemographic 
parameters. Our study is subject to several limitations. First, the cross-sectional design of the data 
precluded the establishment of a causal relationship between blood Cd levels and hypertension. Second, 
the single measurement of blood Cd may not accurately reflect long-term exposure to Cd. Third, despite 
the incorporation of demographic and lifestyle factors into the ANN model, unmeasured confounders such 
as the severity of hypertension, family history, complications, and renal function could still have 
influenced the outcomes. Fourth, the ANN model has a tendency to overfit, making it difficult to optimize 
parameters for optimal accuracy. Consequently, we selected parameters that yielded the best results 
among the models we evaluated. ANNs can serve as an effective adjunctive tool for clinical decision-
making, enabling the identification of adults at high risk for hypertension and facilitating early 
intervention. To enhance prediction performance and improve precision and accuracy, future studies 
should incorporate a broader range of input data, including detailed population variables and pathological 
factors, and apply the proposed model trained on datasets from more diverse populations. 

 

5. Conclusions 
In this population-based study of 11,530 participants, the blood level of Cd significantly predicted the 

hypertension risk. We developed an ANN as a predictive model to estimate hypertension risk; the inputs 
included both the Cd levels and the sociodemographic characteristics of the KNHANES databases. Our 
ANN could be useful for identifying individuals at risk of developing hypertension, allowing for early 
treatment and possible prevention. However, we must validate our model in other clinical settings. 
However, our model must be validated in other clinical settings. Also, further studies employing different 
ANN architectures and input features are required to improve predictive accuracy and precision. 
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