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Abstract: Poor sitting posture is a common issue that can lead to musculoskeletal disorders and long-
term health complications, especially with the rise in sedentary work. This study aims to design and 
develop an intelligent, real-time pressure sensing system to monitor and classify sitting posture 
accurately. The system uses Velostat-based pressure mats positioned on a seat and backrest, connected 
to an ESP32 microcontroller, to collect real-time data. A support vector machine (SVM) model 
processes this data to classify ten distinct postures. A Bluetooth interface transmits data to a graphical 
user interface (GUI), which offers real-time feedback and tracks the duration of poor posture. The SVM 
model achieved 100% classification accuracy on a dataset collected from 25 participants using a 90/10 
train-test split. Cross-validation further confirmed the model’s reliability, with an average accuracy of 
99%. The system’s precise classification and intuitive feedback make it a practical tool for posture 
correction in office and home settings. These results suggest significant potential for reducing posture-
related health risks through early intervention and real-time monitoring. 

Keywords: Sitting Posture Monitoring, Support Vector Machine, Velostat Pressure Sensor. 

 
1. Introduction  

In today’s digital and technology-driven age, prolonged sitting has become an almost unavoidable 
aspect of modern life, deeply ingrained in our daily routines. This shift towards sedentary behaviour is 
evident across various domains, including work environments, education systems, and even leisure 
activities [1] as people spend long hours seated in front of computers, attending virtual meetings, 
working from home, or engaging in screen-based entertainment. According to study done by Saiful, et 
al. [2] the average daily sitting time of Malaysian office worker is 5.96 hours [3]. Besides, Bailey, et al. 
[4]  reported that the average sitting time of American when they are not working is 8.07 hours per 
day [4]. As the average sitting time of people increases over the year, this widespread norm comes with 
significant consequences, as it causes a rise in posture-related health issues, raising concerns among 
health professionals and researchers [5]. One of the most prominent consequences of poor sitting 
posture is its association with musculoskeletal disorders (MSDs), which encompass a range of conditions 
affecting muscles, joints, and connective tissues. These disorders not only result in chronic back pain, 
discomfort, and reduced mobility but also contribute to decreased productivity and mental focus [6] 
thereby affecting both personal well-being and professional performance. Highlighting the severity of 
the issue, a study by Gill, et al. [7] revealed that MSDs rank as the second leading cause of non-fatal 
disability globally, impacting over a billion individuals and placing a substantial burden on healthcare 
systems and economies worldwide [7]. These findings show the importance of promoting correct 
sitting posture to mitigate the risk of developing such conditions. By adopting proper ergonomic 
practices and raising awareness about posture-related health risks, individuals can significantly reduce 
the likelihood of musculoskeletal problems, improve overall quality of life, and foster long-term physical 
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and mental well-being [8]. Consequently, addressing this pressing issue is not merely a matter of 
individual health but a collective responsibility that demands attention from workplaces, educational 
institutions, and policymakers to create environments that support healthier sitting habits. 

Traditional methods to address poor sitting posture, such as the use of ergonomic furniture and 
wearable posture-correcting devices are useful in encouraging proper posture alignment and reducing 
strain. These tools are designed to provide external support and reminders, making it easier for 
individuals to maintain a healthier sitting habit. According to research by Choobineh, et al. [9] 
ergonomic adjustments can alleviate pain and symptoms commonly associated with musculoskeletal 
disorders (MSDs) [9]. On the other hand, the widespread adoption of these solutions faces several 
critical barriers. High costs remain a significant deterrent, as many consumers are unwilling or unable 
to invest in these often-expensive products. Additionally, the intrusive nature of wearable devices can 
discourage consistent use, as they may feel uncomfortable or inconvenient for everyday activities. 
Accessibility also presents a challenge, as these products are not always readily available in all markets 
or regions, limiting their reach. Furthermore, many existing solutions lack the capability to deliver real-
time corrective feedback—a feature that is crucial for enabling users to make immediate adjustments 
and develop long-term, sustainable improvements in their posture. This absence of dynamic feedback 
reduces their overall effectiveness and appeal. Consequently, most individuals are unlikely to seek out or 
invest in such products unless they have already been diagnosed with posture-related health issues or 
are experiencing significant discomfort. This reactive approach highlights a gap in preventative 
measures and underscores the need for innovative, accessible, and user-friendly solutions that address 
these limitations while encouraging proactive posture management. 

Besides, camera-based systems for detecting poor sitting posture are increasingly popular due to 
advancements in computer vision and artificial intelligence [10]. These systems use cameras, sometimes 
combined with depth sensors, to monitor and analyse body positions, tracking key points like the spine, 
shoulders, and head. One of the application examples is Posture AI, which provides 360˚ posture 
monitoring and habit analysis. By recognizing deviations from optimal posture, camera-based solutions 
can offer real-time feedback, helping users to correct slouching or leaning. Despite their effectiveness, 
these systems come with significant drawbacks. Privacy is a major concern, as continuous monitoring 
can feel invasive, especially in shared or open spaces [11]. Additionally, their accuracy can be affected 
by environmental factors like lighting, background, and potential obstructions, which can interfere with 
posture tracking. 

To solve the problem, this project proposes a low-cost, non-intrusive pressure mat system that 
leverages the unique properties of Velostat for detecting changes in pressure distribution associated 
with different sitting postures. Pressure mats provide a more discrete and private alternative. By placing 
a mat equipped with pressure sensors on the user’s seat, the system can detect weight distribution and 
posture without visual monitoring. This approach not only preserves privacy but also works 
consistently regardless of environmental conditions, making it a practical solution for accurate and 
unobtrusive posture correction. By applying machine learning algorithms, the pressure mat will classify 
various sitting positions, allowing for real-time feedback and detailed posture analysis. This system aims 
to empower users to develop healthier sitting habits and reduce the physical risks associated with poor 
posture. 

In addition to aiding individual users, this project has potential applications in offices, schools, and 
healthcare facilities, where it can contribute to preventive health strategies for employees and students 
alike. Through this approach, the study seeks to advance posture classification technology and create a 
practical tool for real-time posture correction. 
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2. Related Work 
2.1. Sensors for Sitting Posture Monitoring 

A pressure sensor is a device that measures the force or pressure applied to the surface. It typically 
converts this physical force into an electrical signal that can be read and processed by a system. Many 
pressures sensor-based methods have been proposed in recent years. The main idea is to install pressure 
sensors on the hip area and back area of a chair to capture signals of sitting postures. There are a few 
types of pressure sensors being adopted in the pressure mat for detecting the sitting posture.  

Textile pressure sensors are innovative materials that integrate conductive fibres or threads into 
textiles to measure pressure or force [12]. The implementation of textile pressure sensor on the sitting 
posture classification were introduced by Meyer, et al. [13]. These sensors detect changes in electrical 
properties, such as resistance [14] piezoelectric voltages [15] or capacitance [13, 16, 17] to detect 
applied pressure. Typically, they are fabricated by embedding conductive materials (e.g., carbon-based 
fibres, metallic yarns, or conductive polymers) within the textile structure or coating textiles with 
conductive layers. When pressure is applied, the deformation of the textile alters its electrical 
properties, enabling the measurement of force distribution across a surface. Textile pressure sensors are 
lightweight, flexible, and conformable, making them ideal for wearable technology, healthcare 
monitoring, and ergonomic applications [18]. 

Force sensing resistors (FSRs) are a widely utilized type of sensor in pressure mats due to their 
simplicity and cost-effectiveness [19]. FSRs operate on the principle that their electrical resistance 
decreases as pressure increases [20]. This behaviour enables them to detect and measure force or 
pressure variations across a surface area. FSRs are typically composed of a thin polymer film embedded 
with conductive material [21] which makes them lightweight, flexible, and suitable for integration into 
pressure-sensitive applications such as mats and ergonomic devices. 

Load cells are widely utilized sensors in pressure and weight measurement applications due to their 
high accuracy and reliability. Operating on the principle of strain gauge technology, load cells convert 
mechanical force into an electrical signal [22]. This signal is proportional to the applied load, allowing 
precise quantification of forces such as weight or pressure. Load cells are constructed using a rigid 
structure with strain gauges bonded to it, ensuring robustness and durability in various operational 
environments. 

Hybrid sensors combine the functionalities of multiple sensing technologies to offer enhanced 
performance and versatility in pressure and weight measurement applications. By integrating the 
strengths of different sensor types, such as tilt sensor, distance sensor, load cell and FSR [23, 24] 
hybrid sensors provide improved sensitivity, accuracy, and adaptability to diverse operating conditions. 
These sensors are advantageous in applications requiring multi-modal data acquisition or operation 
under varying environmental conditions. 

Velostat is a conductive piezoelectric polymer material that changes its electrical resistance when 
pressure is applied [25]. This property makes Velostat an ideal choice for constructing pressure-
sensitive surfaces, while at the same time enabling the creation of large-area pressure sensor arrays 
capable of detecting and mapping pressure distribution across extensive surfaces. 

 
2.2. Technologies for Sitting Posture Monitoring 

Many pressures sensor-based systems have been introduced in recent years. The type of pressure 
sensors and techniques used by them were explained in the section above.  

Xu, et al. [12] developed a system integrated with electronic textile (eTextile) pressure sensors as 
the sitting pressure mat and rule-based system to classify sitting postures. The eTextile was composed 
of fibers coated with a conductive polymer, while the conductive polymer was made of pressure and 
strain sensors. In overall, after the system collected the pressure data of the user sitting on the pressure 
mat, it will filter the background noise and use Dynamic Time Warping (DTW), a signal matching 
algorithm, to classify seven sitting postures. The system achieved an accuracy of only 85.9%. In another 
study, Kim, et al. [26] designed a washable textile pressure sensor and integrate it into their sitting 
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posture monitoring system with a decision-tree algorithm. The system has high durability which can 
still function well after 1000 times of repetitive loading and unloading. However, the fabrication of the 
pressure mat was complicated, and the system could only detect seven sitting postures. 

Wang, et al. [27] designed a pressure mat with 81 FSR sensors on the hip and 90 FSR sensors on 
the back. By using SNNs, the system can classify 15 sitting postures with an accuracy of only 88.52%. 
Besides, the implementation cost of the system was high as a total of 171 FSR sensors are needed. In 
2023, Tsai, et al. [28] proposed a sitting posture recognition system called SPRS which integrated 13 
FSR 406 sensor on the hip and SVM to classify 10 different sitting postures. The system can achieve an 
accuracy of 99.1%, but the system did not have pressure sensing on the back. 

In 2018, Roh, et al. [29] designed a smart chair which consists of 4 load cell sensors on the hip. The 
smart chair was low cost and can have accuracy of up to 97.94% with SVM model being implemented. 
However, the system can only classify 6 sitting postures, and there was no pressure sensing on the back 
too.  

In 2023, Tavares, et al. [30] developed a smart office chair which can detect the sitting posture, 
body temperature and respiratory frequency of the user. The chair consisted of 4 load cells, 4 FSR 
sensors, 1 body temperature sensor, 1 temperature and humidity sensor, 1 noise sensor, 1 light sensor, 
and 1 carbon dioxide (CO2) sensor. The system can detect 6 different postures with 100% accuracy. 
Although the sensors implemented in the chair are low cost, the Raspberry PI used in the system 
significantly increased the overall cost. Jeong and Park [24] placed six pressure sensors on the hip and 
six Infrared Reflective Distance Sensors at the back in their smart chair system. The system can 
measure the spinal trunk angle, which is one of the main limitations seen with other smart chair 
systems. In summary, the proposed system can classify 11 sitting postures with an accuracy of 92% by 
implementing KNN. 

In 2021, Anwary, et al. [25] designed a smart cover using Velostat for real time sitting behavior 
monitoring. The cover had a 5-layered architecture, 2 layers of conductor at the top and bottom, while 2 
layers of Velostat and 1 layer of polyethylene foam sandwiched between the conductor layers.  A rule-
based system, named Fuzzy Logic System, was designed to analyze the sitting behavior of the users. 
One of the limitations of the system is that it only displayed the sitting behavior of the users, which is 
the sensor readings. It did not have a sitting posture classification function. In 2024, Cao, et al. [31] 
introduced Velostat-based pressure mat for sitting posture classification. The system has a high 
accuracy (99.14%), but it can only classify 5 sitting postures, and there is no real time monitoring 
function for the system. 

 

3. Methodology 
3.1. Hardware Design 
 

 
Figure 1.  
Overall System Block Diagram. 
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Figure 2.  
Overall System Flowchart. 

 
Figure 1 shows the overall system block diagram of the real-time pressure sensing system for 

sitting posture monitoring. The system consists of both hardware and software elements: pressure 
sensor, microcontroller (ESP32), laptop and sitting posture monitoring application, which consists of a 
trained Support Vector Machine (SVM) model. At the same time, Figure 2 shows the flowchart of the 
system. When the power of the pressure mat is on and a user sits on the mat, the pressure sensors will 
start to detect the pressure distribution of the user’s sitting posture. The pressure value is sent to the 
ESP32 via the multiplexer, and the data is further sent to the laptop via Bluetooth connection. After the 
laptop receives the pressure data, it will start the pre-process the data before inputting the data into the 
trained model and display the pressure distribution on the screen. After that, sitting posture 
classification and display will be done on the software. If correct sitting posture is detected, the pressure 
mat will continue to detect the sitting posture. On the other hand, if wrong sitting posture is detected, 
the software will calculate the period of wrong sitting posture then display it out when the sitting 
posture is corrected.  

 

 
Figure 3. 
Layers of pressure mat. 

 
Figure 3 shows the layers of the Velostat-based pressure mat. The mat consists of 5 layers in total, 2 

layers of PVC cloth, 2 layers of coper plate, and 1 layer of Velostat. The outermost layers are made of 
PVC cloth, which serves as a protective and durable covering, ensuring the structural integrity of the 
sensor while providing a comfortable surface for the user. Beneath these layers, two sets of copper plates 
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act as electrodes, arranged in a grid-like pattern where one set is oriented horizontally and the other 
vertically, forming an X-Y sensor matrix. These copper electrodes are responsible for detecting 
pressure distribution when a user sits on the mat. Sandwiching between the copper electrodes is the 
Velostat, a conductive polymer material that exhibits changes in electrical resistance in response to 
applied pressure. When the user sits on the mat, the pressure exerted at different points causes 
Velostat’s resistance to vary, allowing the system to capture detailed force distribution data. This data is 
then processed to generate a pressure map, which can be analyzed to classify the user’s sitting posture. 
The combination of PVC cloth, copper plates, and Velostat enables the mat to function as a real-time 
sitting posture monitoring system, where variations in pressure distribution are translated into 
meaningful insights about the user’s posture. 
 

 
Figure 4. 
Schematic circuit diagram of the system. 

 
A schematic circuit diagram for the system as shown in Figure 4 has been designed. The circuit is 

consisting of 1 ESP32-wroom module with 38 pin, 4 CD47HC4067 16-channel multiplexer, 32 1kΩ 
resistors, 1 220Ω resistor, and 1 LED. Each pressure mat needs 2 multiplexers, one of which responsible 
for the pressure value on horizontal layer, while another responsible for the pressure value on vertical 
layer. The 1 kΩ resistors act as pull-down resistors. They are placed on the multiplexer for vertical 
layer. The COM port of horizontal multiplexer serves as voltage supply pin where 3.3V is supplied to 
this pin. On the other hand, the COM port of vertical multiplexer serves as input pin where the voltage 
value will be detected based on the selected port. For example, when S3 of vertical and horizontal 
multiplexer are set high, while others are set low, then the COM port of vertical multiplexer will store 
the voltage value of array channel. Hence, by alternating the S0, S1, S2 and S3 pin of the multiplexers, 
the voltage value of the corresponding channel can be obtained, and the pressure value of the channel 
can be obtained by converting the voltage value in 8-bit value (0-255).  
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Figure 5. 
Sitting Pressure Mat. 

 
The sitting pressure mat for sitting posture monitoring is as shown in Figure . The mat consists of 

two Velostat pressure mats to monitor and classify the user's sitting posture in real time. The system 
comprises a hip pressure mat placed on the seat and a back pressure mat attached to the backrest. These 
mats have array size of 16×16, allowing for high-resolution pressure distribution mapping. 

The pressure mats are connected to a Printed Circuit Board (PCB) designed for the system, 
positioned on the right side of the chair for convenient access. The PCB integrates a microcontroller 
(ESP32-WROOM), multiplexers (CD74HC4067), and a power management system. The recorded 
pressure data is continuously transmitted to the posture classification algorithm, which processes the 
pressure distribution to determine whether the user is sitting correctly. 

For power supply, a 12V rechargeable LiPo battery is used, ensuring portability and prolonged 
operation. The system also features a plug-and-play mechanism, allowing easy attachment and 
detachment of the pressure mats to accommodate different types of chairs.  

 
3.2. Sitting Posture Monitoring with SVM 

The core machine learning model used in this study is the Support Vector Machine (SVM), a 
supervised learning algorithm known for its effectiveness in classification tasks. SVM operates by 
finding an optimal hyperplane that best separates different classes—in this case, the ten sitting postures 
based on pressure distribution. Given the high dimensionality of the input data (pressure readings from 
512 elements across the hip and back pressure mats), SVM is well-suited due to its ability to handle 
complex decision boundaries and high-dimensional feature spaces. 

During the training phase, the SVM model is fitted using the 90% training data. The model learns 
to classify postures by mapping input features (pressure values) to predefined posture labels. The Radial 
Basis Function (RBF) kernel is used to enhance classification accuracy, as it effectively handles non-
linear relationships between pressure distributions and posture categories. The training process 
involves optimizing the hyperparameters, such as the regularization parameter C and the kernel 

coefficient γ, to achieve the best balance between model complexity and generalization. Hyperparameter 
tuning is performed using techniques such as cross-validation, ensuring the model achieves high 
accuracy without overfitting. 

 
3.3. Dataset Collection 

To develop an accurate sitting posture classification system using Support Vector Machine (SVM), a 
dataset was collected from 25 volunteers within the age range of 20 to 50 years and weight range of 50 
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kg to 80 kg. These volunteers were selected to ensure diversity in body types and sitting behaviours, 
which would enhance the robustness of the trained model. 

Each participant was instructed to sit on the pressure-sensing mat and perform 10 predefined 
sitting postures as shown in Figure  (label 1-10): sitting upright (1), leaning left (2), leaning right (3), 
sitting at the front edge (4), upper body hunched (5), leaning forward (6), leaning backward (7), right leg 
crossed (8), left leg crossed (9), and crossed leg (10).  

 

 
(a).  Sitting Upright 
 

 
(b). Leaning left 
 

 
(c). Leaning right 

 
(d). Sitting at the front edge 

 
(e). Upper body hunched 

 
(f). Leaning forward 

 
(g). Leaning backward 

 
(h). Right leg crossed 

 
(i). Left leg crossed 

 
(j). Cross-legged 

Figure 6.  
Types of sitting postures. 
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The sitting upright posture as in Figure 6  (a) represents the ideal ergonomic position, where the 
user maintains a straight back, relaxed shoulders, and balanced weight distribution across both hips and 
the back. In the leaning left posture as in Figure  (b), the user shifts their upper body toward the left 
side, resulting in increased pressure on the left half of the hip and back regions. Conversely, in the 
leaning right posture as in Figure  (c), pressure is concentrated more on the right side as the user leans 
to the right. The sitting at the edge posture as in Figure  (d) occurs when the user moves forward 
toward the edge of the seat, typically reducing contact with the backrest, leading to front-loaded hip 
pressure and minimal back pressure.  

The upper body hunched posture as in Figure  (e) involves a forward curvature of the upper spine 
while still maintaining some back support, often producing heightened pressure in the mid-back region. 
A more pronounced version of forward leaning is seen in the leaning forward posture as in Figure  (f), 
where the user leans away from the backrest entirely, concentrating pressure at the front of the hips 
with little to no contact at the back. In the leaning backward posture as in Figure  (g), the user reclines 
against the backrest, causing increased pressure on the upper and lower back areas, often with a 
backward shift in hip pressure.  

Postures involving leg positions include the right leg crossed as in Figure  (h), where the right leg 
is placed over the left, reducing pressure on the right side of the hip, and the left leg crossed as in Figure  
(i), where the left leg is placed over the right, reducing left hip pressure. Lastly, the crossed leg posture 
as in Figure  (j) involves both legs being folded or crossed in a lotus-like manner, producing a central or 
uneven pressure distribution that differs distinctly from the other postures. 

To capture sufficient variability in pressure distribution, 5 samples were collected for each sitting 
posture per individual, resulting in a total of 1250 data samples (25 participants × 10 postures × 5 
samples per posture). Each sample consisted of pressure readings recorded from the 16×16 sensor array 
in both the hip and back regions. 

The pressure data were recorded in real-time using a data acquisition system interfaced with the 
Velostat-based pressure mat. Each sample was saved as a 512-element vector for both the hip and back 
pressure mats, representing the distribution of pressure across the seating surface. These vectors were 
then labelled according to the sitting posture performed by the participant. 

The dataset collection process was conducted in a controlled indoor environment, ensuring uniform 
seating conditions for all participants. Participants were asked to maintain each posture for a few 
seconds to allow stable pressure readings before moving to the next sample collection. The collected 
dataset was later pre-processed using min-max scaling before being split into 90% training and 10% 
testing sets for SVM model training and evaluation. 

This dataset serves as the foundation for training the sitting posture classification model, enabling 
real-time posture monitoring and corrective feedback in the developed intelligent sitting posture 
system. 

 
3.4. Software Design 

A GUI was designed for displaying the user’s pressure data in real time. In the GUI, by toggling 
the Bluetooth button, the user can connect to the ESP32 with the pressure sensor. After connection is 
established, the pressure data will be sent to the computer, and the sitting posture will be determined by 
the SVM model. The result will be displayed in the GUI. Besides sitting posture classification function, 
the GUI has features to track the correctness of the sitting posture and timer to calculate the total 
incorrect sitting posture duration.  

 
4. Results and Discussion 
4.1. Evaluation of Trained Model 

The trained SVM model is evaluated by using the test data. The test data consists of 125 samples of 
different sitting posture data. The accuracy, precision, recall and F1 score of the SVM model are 
recorded in Error! Reference source not found..  
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Table 1.  
Evaluation matrix of trained SVM model. 
Accuracy 1.00 

Precision 1.00 

Recall 1.00 
F1 Score 1.00 

 
The evaluation of the trained Support Vector Machine (SVM) model for sitting posture 

classification yielded an exceptional performance, achieving an accuracy of 100% (1.00) across all key 
evaluation metrics, including precision, recall, and F1-score. This result suggests that the model is 
capable of correctly identifying and classifying all tested sitting postures without any misclassification. 
The precision score of 1.00 indicates that whenever the model predicts a particular sitting posture, it is 
always correct, meaning that there are very little false positives in the classification results. Similarly, 
the recall score of 1.00 signifies that the model can correctly identify all instances of each sitting 
posture, without missing most of the true cases, ensuring that there are very little false negatives. The 
F1-score, which is a harmonic means of precision and recall, also being 1.00, further confirms the 
robustness and reliability of the trained SVM classifier. 
 

 
Figure 7.  
Confusion matrix of trained SVM model. 

 
Figure  shows the confusion matrix for the SVM-based sitting posture classification model, which 

was trained using pressure data collected from velostat-based sensor mats. The system is capable of 
classifying 11 classes, including 10 different sitting postures and one "not sitting" condition (label 0). 
The diagonal elements of the matrix represent the number of correct predictions for each posture class, 
while the off-diagonal elements indicate misclassifications. The model demonstrates high classification 
accuracy across all postures, with most labels achieving over all correct predictions. Notably, the "Not 
sitting" class (label 0) had fewer samples (only 50), as the pressure data of not sitting is all zero all the 
time. Minimal confusion can be observed, with only a few instances of misclassification, such as 1 sample 
from "left leg crossed (label 9) being misclassified as "crossed leg" (label 10. These results indicate that 
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the SVM model is highly effective in distinguishing between subtle variations in sitting postures, 
validating the capability of the proposed pressure sensing system for accurate posture monitoring. 
 
4.2. Testing Under Different Train: Split Ratio 
 
Table 2. 
Evaluation of models under different train test split ratio. 

Train: test split ratio Accuracy Precision Recall F1-score 
90-10 1 1 1 1 

80-20 0.99 0.99 0.99 0.99 
70-30 0.99 0.99 0.99 0.98 

60-40 0.99 0.99 0.99 0.99 

50-50 0.99 0.99 0.99 0.99 

40-60 0.98 0.98 0.98 0.98 

30-70 0.95 0.95 0.95 0.95 
20-80 0.93 0.94 0.93 0.93 

10-90 0.84 0.85 0.84 0.84 
5-95 0.73 0.78 0.73 0.69 

 
To further investigate the performance and generalization ability of the SVM model under different 

data availability scenarios, a range of train-test split ratios were evaluated, from 90:10 down to 5:95. 

The evaluation metrics considered were accuracy, precision, recall, and F1-score, as shown in  

. The results clearly illustrate the impact of training data size on the model's effectiveness. 
When 90% of the dataset was used for training and 10% for testing, the model achieved perfect 

scores across all evaluation metrics, with an accuracy, precision, recall, and F1-score of 1.00. This 
indicates that the model had sufficient data to learn the patterns associated with each sitting posture and 
could generalize well to unseen test data. Similarly, the 80:20 split also yielded excellent performance, 
maintaining high scores of 0.99 in all four metrics, showing that even with a slightly reduced training 
set, the model retained robust classification capabilities. 

As the proportion of training data continued to decrease, a gradual decline in performance was 
observed. This trend became more significant in the lower split ratios. For instance, with only 10% of 
data used for training and 90% for testing, the model's accuracy dropped to 0.84, with corresponding 
decreases in precision, recall, and F1-score. The decline became even more pronounced in the 5:95 split, 
where accuracy fell to 0.73, and F1-score dropped to 0.69. These results reflect the model's limited 
ability to learn effective decision boundaries with insufficient training data, particularly given the 
complexity of distinguishing between 10 subtle sitting postures. 

Overall, the results emphasize the importance of having a sufficiently large and diverse training 
dataset for accurate posture classification. While the model performs exceptionally well with 80–90% of 
the data allocated for training, its predictive power diminishes significantly with very small training 
sets, highlighting a trade-off between training data size and model generalization. 

 
4.3. Cross-Validation 
 
Table 3.  
5-fold cross validation results. 

K-fold Accuracy Precision Recall F1 Score 
Fold 1 0.9885 0.9888 0.9885 0.9885 

Fold 2 0.9923 0.9929 0.9923 0.9923 
Fold 3 0.9923 0.9925 0.9923 0.9923 

Fold 4 0.9923 0.9925 0.9923 0.9923 

Fold 5 0.9962 0.9963 0.9962 0.9962 
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Average 0.9923 0.9926 0.9923 0.9923 

 
To evaluate the robustness and generalization performance of the SVM classification model, 5-fold 

cross-validation was performed using the complete dataset. The samples from dataset were randomly 
divided into five equal subsets (folds), ensuring that each fold maintained a balanced representation of all 
posture classes. In each iteration of the cross-validation, four folds were used for training while the 
remaining fold was used for testing, with this process repeated five times to ensure that each subset 
served as the testing set once. The results, summarized in Table , show consistently high performance 
across all folds, with an average accuracy of 99.23%, precision of 99.26%, recall of 99.23%, and F1-score 
of 99.23%. The slight variation observed in Fold 1 can be attributed to the random split of data and 
potentially higher intra-subject or inter-posture variability in that subset. Overall, the high and stable 
metrics across all folds confirm the model’s effectiveness in accurately classifying various sitting 
postures using pressure data from the Velostat-based sensing system. 

 
4.4. Overall System Performance 

The trained Support Vector Machine (SVM) model achieved a high classification accuracy of 100%, 
as validated through testing with 1 additional volunteer who was not part of the training dataset. This 
result demonstrates the model's effectiveness in recognizing different sitting postures based on the 
pressure distribution obtained from the Velostat-based pressure mat. The high accuracy indicates that 
the system can reliably distinguish between correct and incorrect sitting postures, which is essential for 
real-time posture monitoring and feedback. 
 

 
Figure 8.  
Testing of system on correct posture. 

 
Figure 8  shows the performance of the system when the user performs correct sitting posture: 

sitting upright. As shown in the figure, the pressure data are displayed on the left side of the GUI, back 
pressure data followed by hip pressure data. On the right side, the predicted sitting posture by the 
trained SVM model is displayed, along with the icon indicating the respective posture. The correctness 
of the user’s sitting posture is displayed below the predicted posture. Then, the timer at the bottom 
right of the GUI indicated the total wrong sitting posture duration by the user. As shown in Figure , 
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the system can detect “sitting upright” accurately and classify it as correct sitting posture. From the 
pressure heatmap, it has a symmetrical pressure distribution on hip because this posture ensures an even 
weight distribution across the buttocks. Since the user is performing correct sitting posture, the timer is 
not started, hence it remains at 0.  
 

 
Figure 9.  
Testing of system on wrong posture (right leg crossed). 

 

 
Figure 10.  
Testing of system on wrong posture (upper body hunched). 
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Figure 11.  
Testing of system on wrong posture (Leaning left). 

 
Figure  shows the performance of the system when the user is performing a wrong sitting posture: 

right leg crossed. In the heatmap, there is higher pressure on the left buttock and a leftward shift in 
back pressure. On the right side, the SVM model can detect and classify the posture correctly and label 
it as “Incorrect Posture”. Right after that, the timer is started as wrong sitting posture is detected. The 
figure shows the timer value as 00:00:32, which means the user has maintained the wrong sitting 
posture for 32 seconds. Then, Figure  and Figure  shows the system performance when the user is 
sitting with upper body hunched and leaning left on real time. The SVM model can predict the output of 
the pressure data immediately when the user changes their sitting posture accurately. As in the heatmap 
in Figure , the pressure distribution of the back is on the mid back region, while the hip data is similar to 
sitting upright posture. As in Figure ,  when the user is leaning left, there is increased pressure on the 
left half of the hip and back regions. 
 

5. Conclusion 
This study displayed an intelligent real-time pressure sensing system for sitting posture 

monitoring, integrating velostat-based pressure mats with SVM model for posture classification. The 
system achieved 100% accuracy using an SVM classifier, demonstrating its ability to reliably detect 10 
different sitting postures. A graphical user interface (GUI) was implemented to provide real-time 
feedback, track incorrect posture duration, and help users improve their sitting habits. The successful 
integration of sensor hardware, machine learning, and a user-friendly interface highlights the system’s 
effectiveness in posture monitoring applications. 

The project has strong potential for applications in ergonomics, workplace health monitoring, and 
rehabilitation. By providing real-time feedback on sitting posture, the system can help notifying the user 
to maintain a good posture habit. Future improvements could include deep learning models for 
enhanced classification, mobile app integration for accessibility, and power-efficient hardware for 
portability. With further refinement, this system could become a valuable tool for promoting better 
posture habits and reducing posture-related health issues in daily life. 

 

6. Limitations 
Despite the high accuracy achieved by the system, certain limitations exist when applied to real-

world scenarios. One notable limitation is that the model was primarily trained on data collected from 
individuals weighing between 50 to 80 kg. As a result, the system’s performance may be affected when 
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used by individuals outside this weight range, as pressure distributions could differ significantly. This 
could impact on the accuracy of posture classification, requiring additional calibration or retraining with 
a more diverse range of users. 

Furthermore, external factors such as chair type, cushion thickness, and surface material could 
influence pressure readings, potentially requiring additional tuning to maintain accuracy across different 
seating conditions. 
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