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Abstract: This paper presents the development of the Affectionate Real-Time Assistant (A.R.A), a 
pressure-sensitive infant holding monitoring system designed to enhance neonatal safety. The system 
employs five pressure pads integrated with an Arduino Uno to capture pressure distribution data from 
six distinct infant holding postures. Data were collected from 33 participants, including 12 parents, 11 
non-parents, and 10 neonatal medical professionals. Machine learning algorithms were applied to 
classify holding postures accurately. Additionally, a NodeMCU module and an MPU6050 accelerometer 
and gyroscope sensor were incorporated to detect excessive tilting and shaking, which can prevent 
Shaken Baby Syndrome (SBS) and milk aspiration. Real-time feedback and alerts are delivered through 
the Blynk IoT platform, enabling caregivers to monitor and adjust infant handling promptly. Survey 
results from 20 parents informed system requirements, emphasizing the need for user-friendly, real-time 
safety monitoring. Experimental evaluation demonstrates the system’s effectiveness in posture 
classification, tilt detection, and shaking prevention, highlighting its potential as a practical tool for 
improving infant care. Future work will focus on expanding sensor capabilities and refining machine 
learning models for broader application. 

Keywords: Infant health risk, Infant holding, Infant monitoring systems, IoT, Machine learning, Milk aspiration,  
Neonatal safety, Shaken baby syndrome. 

 
1. Introduction  

Neonatal safety remains a critical concern worldwide, with infant mortality and injury risks such as 
Sudden Infant Death Syndrome (SIDS) [1, 2] Milk Aspiration [3] and Shaken Baby Syndrome (SBS) 
[4] posing significant challenges to caregivers and healthcare providers. Advances in biosensor 
technology and Internet of Things (IoT) platforms have enabled continuous, real-time monitoring of 
infant physiological parameters and environmental conditions, improved early detection of health issues 
and enhancing caregiving practices [5-8]. However, current infant monitoring systems predominantly 
focus on vital signs and gross movement detection, often overlooking the nuanced assessment of infant 
handling and posture, which are crucial factors influencing infant safety and comfort. Motivated by 
these gaps, this study aims to develop an innovative system that directly monitors infant holding 
postures through pressure-sensitive sensing, integrated with machine learning [9] and IoT 
technologies to provide caregivers with actionable, real-time feedback. 

Despite the proliferation of infant monitoring devices, there is a lack of effective solutions that 
objectively and continuously assess caregiver-infant physical interactions, particularly the detection of 
unsafe infant holding postures that can lead to injury or distress. Existing wearable [10] and camera-
based systems primarily track general motion or physiological signals but do not adequately capture the 
pressure distribution patterns associated with different holding postures. Moreover, preventive 
mechanisms to detect and alert caregivers about excessive tilting or shaking which are the key 
contributors to SBS and milk aspiration are insufficiently integrated into current monitoring platforms. 
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This gap limits caregivers’ ability to receive timely warnings and intervene to ensure infant safety 
during handling.  

The primary objective of this study is to design and implement a training and educational system - 
A.R.A (Affectionate Real-Time Assistant), a pressure-sensitive infant holding monitoring system that: 

• Accurately captures and classifies multiple infant holding postures using an array of pressure 
sensors. 

• Integrates machine learning algorithms to analyse pressure data for real-time posture 
classification. 

• Incorporates sensor modules to detect excessive tilting and shaking to provide preventive alerts 
against Shaken Baby Syndrome and Milk Aspiration. 

• Delivers real-time feedback and notifications to caregivers through an IoT platform (Blynk), 
facilitating immediate corrective actions. 

The scope includes conducting a caregiver survey to identify key safety concerns and system 
requirements, developing a hardware prototype with pressure pads interfaced to Arduino Uno and 
NodeMCU ESP8266 microcontrollers, collecting and analysing data from diverse participant groups, 
and evaluating system performance in realistic holding scenarios. 

This study employs a mixed-methods approach combining qualitative and quantitative data 
collection with hardware prototyping and machine learning analysis. Initially, a survey was conducted 
with 20 parents to gather insights on neonatal safety concerns and expectations from infant monitoring 
systems. These findings informed the design specifications for the hardware system, which consists of 
five pressure pads attached to a baby doll to simulate infant holding postures. Pressure data were 
collected from 33 participants (12 parents, 11 non-parents, and 10 neonatal medical professionals) across 
six distinct holding postures. The data were processed and classified using machine learning techniques 
to develop accurate posture recognition models. Additionally, a NodeMCU ESP8266 module and 
MPU6050 Accelerometer and Gyroscope sensor was integrated to monitor tilting angles, excessive 
shaking and trigger alerts to prevent unsafe handling. The entire system communicates with the Blynk 
IoT platform to provide caregivers with real-time feedback and visualizations, enabling proactive infant 
care.  

 

2. Literature Review 
This section reviews existing research related to infant safety, posture monitoring technologies, and 

AI-based caregiving support systems. It highlights current gaps in the literature and provides context 
for the development of a real-time infant-holding monitoring solution. 

Several studies have explored caregiver perspectives and concerns regarding neonatal safety and 
infant care practices through survey methodologies. These investigations typically assess parental 
awareness of risks such as Sudden Infant Death Syndrome (SIDS) [11] and Shaken Baby Syndrome 
(SBS) [12] as well as their attitudes toward infant monitoring technologies. Survey results often 
highlight the need for real-time, user-friendly monitoring systems that provide actionable feedback to 
caregivers, emphasizing safety and ease of use. Surveys conducted with caregivers reveal a generally 
positive attitude toward remote in-home monitoring systems, especially those that are non-invasive and 
user-friendly, such as wearable smart suits and sensing bands [13]. However, many existing surveys 
focus primarily on general infant health monitoring rather than specific infant handling or posture 
concerns, indicating a gap in understanding caregiver needs related to physical infant holding and 
positioning. 

Wearable and embedded systems for infant monitoring have seen notable progress in recent years. 
Products like Owlet® Dream Sock [14] and Mimo Wearable Baby Monitor - Smart Clothing Lab [15] 
focus on physiological tracking (heart rate, oxygen levels, breathing), while posture detection has 
primarily been explored in areas such as elder care and physical therapy. Technologies such as pressure 
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sensors, accelerometers, and smart textiles have enabled the detection of motion, orientation, and 
pressure distribution. 

In a related context, studies have demonstrated how flexible sensors combined with machine 
learning can classify body movements and posture changes in rehabilitation settings [16, 17]. Similarly, 
posture-correcting wearables for adults using accelerometer and gyroscope data have proven effective in 
training users to adjust their body alignment. However, such solutions are seldom applied to infant-care 
interactions, where the wearable must be designed for the caregiver, not the infant. 

A variety of hardware-based infant monitoring systems have been developed, leveraging sensors 
such as accelerometers, cameras, pressure mats, and physiological monitors to track infant health and 
behaviour [18]. A broad spectrum of hardware solutions has been developed to monitor infant health 
and behaviour using various sensor modalities. Wearable accelerometers and inertial measurement units 
(IMUs) have been employed to detect infant carrying and movement patterns, providing valuable data 
on gross motor activity [19]. Camera-based systems enable posture recognition and emotion detection, 
leveraging machine learning algorithms to interpret visual and auditory cues [5, 20]. Pressure-sensitive 
mats and smart cradles equipped with environmental and physiological sensors offer non-invasive 
monitoring of vital signs such as heart rate, temperature, and humidity [19, 21]. IoT integration allows 
these devices to transmit real-time data to caregivers via mobile applications and cloud platforms, 
enhancing accessibility and responsiveness [5, 22]. 

Despite these advances, most existing systems primarily focus on physiological monitoring or 
general movement detection rather than detailed assessment of infant holding postures. The ability to 
detect unsafe handling practices, such as excessive tilting or shaking that can lead to Shaken Baby 
Syndrome, remains underdeveloped in current hardware solutions [19, 23]. Moreover, while some 
systems incorporate machine learning for emotion or cry analysis, integration of pressure-based sensing 
specifically for posture classification and real-time preventive feedback is limited. Most commercial 
devices also lack access to raw sensor data, restricting their utility for complex research or personalized 
training applications [24]. These limitations highlight opportunities for developing comprehensive 
systems that combine pressure sensing, machine learning classification, and IoT-enabled real-time 
feedback to enhance neonatal safety and caregiver support. 

The reviewed literature reveals several gaps that motivate the present study. First, there is a lack of 
systems that directly measure and classify infant holding postures using pressure-based sensing, which 
can provide more precise and immediate assessment of caregiver-infant interactions. Second, existing 
solutions rarely incorporate preventive modules aimed at mitigating risks such as excessive tilting or 
shaking during infant handling. Third, comprehensive integration of machine learning algorithms with 
IoT-enabled real-time feedback tailored to caregiver needs is underdeveloped. Addressing these gaps by 
combining pressure-sensitive hardware, machine learning classification, and IoT feedback mechanisms 
[25] can significantly enhance neonatal safety monitoring and caregiver support. 

 

3. Survey Methodology and Findings: Defining Caregiver Requirements 
To support this research, a detailed survey was conducted among parents and guardians in Malaysia 

to understand their experiences, concerns, and practices related to infant safety and care. The goal was 
to gather both qualitative and quantitative data to know about current childcare methods, levels of 
safety awareness, and areas needing improvement in helping to address gaps in existing child healthcare 
research. 

The survey included various topics such as knowledge of safe handling practices, use of childcare 
products, sleeping and feeding habits, emergency readiness, and familiarity with safety devices. In 
addition, selected respondents participated in interviews to provide deeper insights into the factors 
influencing their caregiving decisions and routines. 
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3.1. Survey Design and Participant Demographics 
A total of  20 individuals took part in the survey. As shown in Figure 1, 55% were parents of  a 

single child, while 45% had multiple children. This suggests that many participants were first-time 
parents—a relevant factor since they may have different levels of  knowledge and preparedness 
regarding infant safety. 

 

 
Figure 1. 
Number of children (pie chart). 

 
The survey also highlighted concerns about handling babies. According to Figure 2, 70% of  

respondents worried about how they or others held their infants. Figure 3 provides a breakdown of  
these concerns, with the most common being safety risks (80%), discomfort to the baby (65%), improper 
carrying techniques (55%), and excessive shaking (50%). These results point to a heightened awareness 
of  handling risks and emphasize the need for improved education on safe practices. 

 

 
Figure 2. 
Concern of baby handling (bar chart). 
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Figure 3. 
Specific concerns regarding baby handling (bar chart). 

 
When asked about their confidence in carrying an infant, 45% felt assured, while 55% were unsure 

as shown in Figure 4. Those who felt uncertain mainly cited worries about head and neck support and 
the potential harm from incorrect cradling, especially for newborns. 
 

 
Figure 4. 
Uncertainty on how to carry or handle baby (pie chart). 
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Awareness of monitoring technologies for baby handling was generally low; 70% of participants 
were unaware of such solutions as shown in Figure 5. However, 45% expressed interest in adopting a 
device that monitors handling and issues alerts for excessive shaking as shown in Figure 6. 

 

 
Figure 5. 
Awareness of baby handling technologies (pie chart). 

 

 
Figure 6. 
Interest regarding device that monitors how to carry the baby and provides alerts when excessive shaking 
occurs (bar chart). 

 
Lastly, Figure 7 outlines the features that participants valued most in a monitoring device. The top 

three were: real-time alerts for excessive movement (85%), a user-friendly mobile interface (80%), and 
built-in educational content on safe handling (80%). These preferences indicate a strong demand for an 
all-in-one, accessible solution that not only ensures safety but also enhances caregiver knowledge and 
confidence. 
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Figure 7. 
Important features in monitoring device (bar chart) 

 
In summary, these demographic and perceptual findings offer valuable insights into the current 

state of parental knowledge and the lack of support tools. They also serve as a foundation for designing 
targeted interventions and technologies to encourage safer infant care practices. 
 
3.2. Key Findings: Quantitative and Qualitative Analysis 

The combined survey and experimental findings offer key insights into current infant-holding 
practices and the potential role of smart monitoring in enhancing safety. Among the 20 surveyed 
parents, 70% reported concerns regarding baby handling, citing safety risks (80%), infant discomfort 
(65%), improper techniques (55%), and excessive shaking (50%). While 55% expressed confidence in 
holding their baby, 45% were uncertain, particularly about supporting the head and neck. Awareness of 
existing monitoring technologies was limited (70% unaware), though 45% showed interest in adopting 
such devices. Preferred features included real-time alerts for excessive movement (85%), a user-friendly 
mobile interface (80%), and integrated educational content (80%). 

An experimental evaluation involving 33 participants (12 parents, 11 non-parents, and 10 neonatal 
professionals) revealed distinct differences in infant-holding posture across groups based on pressure 
sensor data from six standardized positions. Medical professionals served as a reference group due to 
their clinical experience, though not assumed to be flawless. Notably, non-parents exhibited broader 
sensor pad coverage, indicating heightened caution and adherence to instructions, likely due to 
inexperience. In contrast, parents showed lower coverage, potentially reflecting habitual familiarity. 
These patterns suggest that experience level influences holding technique. Qualitative insights further 
revealed that first-time parents often rely on intuition, while non-parents lacked clinical knowledge but 
followed instructions closely. These findings underscore the need for a real-time, AI-driven monitoring 
system that provides corrective feedback and educational guidance 
 

4. System Design and Implementation: From Requirements to Prototype 
This section outlines the development process of the proposed infant-holding monitoring system, 

from initial requirements gathering to functional prototype realization. It details the hardware and 
software components, integration strategies, and design decisions that shaped the system architecture. 
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4.1. System Architecture and Functional Overview 
The proposed system comprises two primary subsystems working in tandem to monitor infant 

handling posture and motion: a pressure-sensitive classification unit for holding posture detection and a 
tilt-shake detection module for movement analysis. Sensor data is processed by microcontrollers 
(Arduino Uno and NodeMCU ESP8266), analysed using trained machine learning models, and 
transmitted wirelessly to the Blynk IoT dashboard. The architecture supports real-time classification of 
both holding type and correctness, alongside alerts for excessive tilting or shaking, thereby ensuring 
holistic monitoring of infant safety. 
 
4.2. Component Selection and Justification 

• Pressure Sensor Pads (PadA to PadE): Chosen for their flexibility and responsiveness in detecting 
subtle pressure variations across critical support regions on the baby doll (head, neck, spine, 
limbs). 

• Arduino Uno: Used for capturing analog sensor readings and transmitting serial data to the 
processing interface. Its simplicity and reliable analog-to-digital conversion make it ideal for 
prototyping. 

• NodeMCU ESP8266: Chosen for its built-in Wi-Fi capabilities and compact design. Integrated 
with the MPU6050 sensor to monitor tilt and shake, it relays data to the Blynk IoT dashboard 
wirelessly. 

• MPU6050 Accelerometer & Gyroscope: Selected for its 6-axis measurement capability to detect 
dangerous angles or sudden shaking motions [26]. 

• Blynk IoT Platform: Offers real-time visualization and alerting via a mobile dashboard without 
the need for custom app development [25]. 

 
4.2.1. Implementation Details: Hardware and Software Development 

The Arduino Uno is connected to five pressure sensors that are calibration and connected via analog 
pins (A0–A4). These readings are collected every second and transmitted via serial communication to a 
PC for preprocessing and ML inference. Simultaneously, the ESP8266 collects tilt and motion data from 
the MPU6050 and communicates with the Blynk cloud [27]. The software components include Arduino 
IDE for embedded code, Python (Jupyter Notebook) for Machine Learning inference, and Blynk for 
visualization. The pressure pad composition is shown in Figure 8 while the schematic diagrams are 
shown in Figure 9 and Figure 10.  
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Figure 8. 
Pressure pad components 

 

 
Figure 9. 
Circuit Diagram of Pressure Pads connection to Arduino Uno. 
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Figure 10. 
Circuit Diagram of Sensor with ESP8266 NodeMCU V3. 

 
4.2.2. Processing and Communication Layer 
The data processing is bifurcated: 

1. Holding Posture Data: Analog pressure values are interpreted by a trained XGBoost model [28] 
to classify both holding type (multiclass) and posture correctness (binary). This is done offline 
during training, but in deployment, can be ported to real-time Python inference scripts. 

2. Tilt & Shake Detection: Real-time tilt angle is calculated using trigonometric functions on 
accelerometer data. Classification is as follows: 

• Safe: >30° 

• Moderate: 30°–50° 

• Dangerous: >50° 
Shake detection is based on a threshold (acceleration >3 m/s²). 

Data is transmitted via Wi-Fi using the Blynk.virtualWrite() API. 
 

4.2.3. Feedback and Interface Layer 
The feedback system is hosted on the Blynk mobile dashboard: 

• V0: Gauge widget for tilt angle 

• V1: LED widget for danger level (Green/Yellow/Red) 

• V2: Terminal/notification for shake alerts 

• V3/V4/V5: Additional widgets for handling type, correctness status, or visual indicators 
This configuration ensures both visual and text-based alerts are accessible to caregivers in real time 

as shown in Figure 11 to Figure 13.  
 
 



586 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 576-595, 2025 
DOI: 10.55214/2576-8484.v9i9.9925 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 11. 
Dashboard interface when tilt in safe range. 

 

 
Figure 12. 
Dashboard interface when tilt not in safe range. 
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Figure 13. 
Notification received on phone when shaking detected. 

 
4.3. Implementation Details: Hardware and Software Development 

This subsection presents the technical implementation of the system, focusing on both hardware 
assembly and software development. It describes the integration of pressure sensors and motion 
modules with microcontrollers, as well as the programming logic used for data acquisition, processing, 
and user interface deployment. 

 
4.3.1. Materials and Components 

Table 1 presents a comprehensive list of all hardware and material components used in the 
development of the prototype system, along with detailed descriptions of their roles and functions 
within the overall architecture. 
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Table 1. 
List of components and their description. 

Component Description 

Arduino Uno Reads analog input from pressure sensors and transmits to PC for ML 
inference. 

ESP8266 NodeMCU Handles real-time tilt and shake detection via Wi-Fi using the Blynk IoT 
app. 

MPU6050 Sensor Detects 3-axis tilt angle and acceleration for shake detection. 

Pressure Sensor Pads Custom-built using felt, silicone, copper tape, and Velostat layers to detect 
distributed pressure. 

Blynk IoT App Displays tilt angle, shake alerts, and posture classification in real time. 
Baby Mannequin Simulates a 3–4 kg infant for realistic posture testing. 

USB Cable, Breadboard, Jumper Wires Used for prototyping and circuit assembly. 

Laptop (Jupyter Notebook) Runs the machine learning models and processes serial input from Arduino. 

 
4.3.2. Assembly 

The development of the system involved several key steps in both hardware integration and 
software configuration. The custom pressure sensors were constructed by sandwiching a Velostat sheet 
between two conductive layers of copper tape, forming a pressure-sensitive pad capable of detecting 
varying force levels [29]. These pads were then connected to the Arduino Uno, which served as the 
primary microcontroller for analog signal acquisition. Meanwhile, the MPU6050 accelerometer and 
gyroscope module was interfaced with the ESP8266 NodeMCU, enabling wireless tilt and shake 
detection. 

To ensure reliable data transmission and stable readings, resistors were incorporated into the circuit 
design where appropriate. Firmware development and sensor programming were carried out using 
Arduino IDE, while data collection and preprocessing were performed using Google Colab for machine 
learning integration. For real-time feedback, the Blynk IoT platform was configured to receive data 
from the ESP8266 and display posture classification results, tilt angle, and shake alerts directly on the 
user’s mobile device. The circuit set up on the baby mannequin is illustrated in Figure 14. 
 

 
Figure 14. 
Frontal (left) and Side (right) View of Circuit Set Up on Baby Mannequin. 
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The data collection process was carried out involving a total of 33 participants. To ensure a broad 
and representative understanding of infant-holding practices, participants were categorized into three 
distinct groups: 12 parents, 11 non-parents, and 10 medical professionals (comprising 5 doctors and 5 
nurses) with direct experience in neonatal care. This categorization was intended to capture a range of 
handling techniques and familiarity levels, thereby enriching the dataset with diverse infant-care 
perspectives. 

Each participant was instructed to perform six standardized infant-holding positions based on 
recommended caregiving techniques as detailed in Table 2. For every trial, the posture was evaluated 
and labelled as either “Correct” or “Incorrect”, according to predefined safety and ergonomic criteria 
relevant to neonatal support particularly regarding head, neck, and spinal alignment. 

During each holding instance, pressure sensor data was collected using multiple pressure-sensitive 
pads placed strategically on a baby mannequin. The recorded data included timestamped pressure 
values, along with annotated metadata such as participant group, specific holding position, and the 
evaluated posture label. This data was initially logged in a structured Excel spreadsheet and 
subsequently exported in CSV format for further analysis. 

All data was processed using Python in a Jupyter Notebook environment. The labelled dataset was 
cleaned and prepared for training a supervised machine learning model. A classification algorithm was 
implemented to analyse sensor input and distinguish between correct and incorrect infant-holding 
postures. The end goal of this model was to facilitate real-time posture evaluation through an interface 
that can provide instant feedback to caregivers, thereby improving infant safety practices. 

Ethical considerations were carefully observed throughout the data collection process. All 
participants were informed about the study's purpose, procedures, and use of anonymized data for 
research and system development. Consent was obtained from each participant prior to data collection. 
No real infants were involved in the study; instead, a standardized baby mannequin was used to simulate 
realistic holding scenarios while eliminating any ethical risks associated with infant involvement. 
 
Table 2. 
Position number and their types. 

Position Number Position Type 
1 One Arm Holding 

2 Cradling 

3 Upright Lap Hold 
4 Shoulder Hold 

5 Breast Feeding 
6 Bottle Feeding 

 

5. Results and Performance Analysis 
This section presents the outcomes of the system evaluation based on both survey responses and 

experimental data. It analyses the system's performance in detecting infant-holding postures and 
assesses user feedback to validate its effectiveness and usability using machine learning. 

The evaluation of the system was conducted through a two-stage supervised machine learning 
pipeline, which classified both the type of infant-holding position and its correctness based on pressure 
data. The data was collected from 33 participants: 12 parents, 11 non-parents, and 10 medical 
professionals (5 doctors and 5 nurses), each performing six standardized holding types. These included 
One Arm Hold, Cradling, Upright Lap Hold, Shoulder Hold, Breast Feeding, and Bottle Feeding. Each 
holding instance was manually labelled as “Correct” or “Incorrect” according to predefined ergonomic 
and safety guidelines. 

Sensor data were recorded using five pressure pads (Pad A–E), and the raw readings were tagged 
with metadata (participant type, holding position, and posture label). The data was cleaned and encoded 
using Python and pre-processed into training-ready format. Features included raw pad values and 
encoded participant types. The models were implemented using XGBoost classifiers [30] after 
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comparing between the support vector machines (SVM) [31] and Random Forest [32] for model 
performance as shown in Figure 15, selected for their robustness with small to medium-sized structured 
datasets. 
 

 
Figure 15. 
Model Performance: Infant Holding Posture Classification. 

 
5.1. Classification Accuracy 

Two separate classification models were developed: Model 1 is the Holding Type Classifier, and 
Model 2 is the Correctness Classifier. The first model was trained to identify the holding position. Due 
to inconsistencies in the raw labels (e.g., "Cradling" vs. "Cradling "), similar classes were merged into 
five unified holding types. Using an 80:20 stratified train-test split, the XGBoost model achieved a 
classification accuracy of 83%. Performance was evaluated using precision, recall, and F1-score for each 
holding class. Figure 16 displays a bar chart of classification accuracy across all five classes. The highest 
scores were observed in One Arm Hold and Cradling, while Shoulder Hold showed slightly lower 
precision due to overlapping pad pressure with Upright Hold. 
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Figure 16. 
Distribution of Merged Holding Types (5 Classes). 

 
The second model used the predicted holding type, pressure values, and participant type as input 

features to classify the posture as either "Correct" or "Incorrect." This binary classification achieved an 
impressive accuracy of 93%, with balanced precision and recall. Figure 17 shows the confusion matrix 
for the XGBoost training model. The correctness classifier was particularly effective in identifying 
incorrect postures, a critical requirement for real-time feedback systems. 

 

 
Figure 17. 
XGBoost Confusion Matrix. 

 



592 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 576-595, 2025 
DOI: 10.55214/2576-8484.v9i9.9925 
© 2025 by the authors; licensee Learning Gate 

 

The XGBoost confusion matrix demonstrates its effectiveness in classifying holding postures. The 
model correctly identified 373 "Correct" instances and 179 "Incorrect" instances. It had a low number of 
misclassifications, with only 18 false positives and 14 false negatives. 

Figure 18 shows the classification report for this model, demonstrating a macro-average F1-score of 
0.94 and a strong ability to generalize across different user groups. 
 

 
Figure 18. 
Classification Report for XGBoost. 

 
5.2. System Response Time 

While model inference was initially tested offline, integration with the ESP8266 NodeMCU 
microcontroller enabled real-time deployment. Sensor readings were streamed to the Blynk IoT 
platform at a rate of one update every 1000 milliseconds (1 second). Testing showed the system could 
generate and transmit predictions within 1 second, allowing near-instantaneous feedback. For the 
shaking and tilting detection module, the system reliably triggered alerts when the tilt angle exceeded 
±45° or shake intensity crossed a defined threshold, helping to mitigate risks associated with Shaken 
Baby Syndrome (SBS). 

 
5.3. Comparative Analysis: Aligning System Performance with Survey-Derived Expectations 

The system’s design and results were benchmarked against expectations derived from the parent 
survey. According to survey results, 70% of parents expressed concern over baby handling, 50% feared 
excessive shaking, and 85% prioritized real-time alerts as a desired feature. The system delivered on all 
three fronts by offering automated posture detection, shake/tilt monitoring, and real-time mobile alerts. 

Interestingly, although medical professionals were used as the reference group for defining correct 
posture, analysis revealed that non-parents showed broader pressure pad coverage during holding tasks. 
This may reflect increased caution and attentiveness among those with less experience. In contrast, 
parents exhibited more compact pressure distribution, possibly indicating routine handling confidence. 
These patterns are illustrated in a dashboard form in Figure 19, which visualizes average total pressure 
coverage across participant groups. 
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Figure 19. 
Pressure Comparison Dashboard (Medical Professional vs Parent vs Non-Parent). 

 
This comprehensive dashboard compares pressure data across all three participant types: medical 

professionals, non-parents, and parents. The top-left bar chart shows that non-parents apply the highest 
average total pressure, followed by parents, and then medical professionals. The top-right bar plot 
details the average total pressure for each holding type across the three groups. The bottom-left violin 
plot illustrates the total pressure distribution for each participant type, and the bottom-right heatmap 
shows the average pressure per pad for each group, providing a holistic view of pressure dynamics. 

The results validate both the technical robustness and real-world applicability of the system. The 
high classification performance, low latency, and alignment with user expectations make it a promising 
tool for improving infant safety and guiding untrained caregivers. 

 

6. Conclusion and Future Work 
This study presents the development of the Affectionate Real-Time Assistant (A.R.A), a pressure-

sensitive infant holding monitoring system that combines machine learning and IoT technologies. It 
classifies six baby-holding types and identifies whether each posture is correct or potentially harmful, 
based on sensor data from 33 participants, including parents, non-parents, and medical professionals. A 
separate survey involving 20 parents explored attitudes toward smart baby care technologies. The 
trained XGBoost classifiers achieved high accuracy for both posture type and correctness detection. 
Integration with Blynk IoT enabled real-time monitoring of excessive tilting and shaking which are key 
factors in preventing Shaken Baby Syndrome (SBS) and milk aspiration. 

Despite promising performance, the system faced several limitations. Variations in pressure 
application across users caused inconsistencies in readings, and clinical validation was not feasible due to 
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ethical and logistical barriers. As a training and educational tool, A.R.A does not replace expert 
supervision and is limited by its dataset and the use of a baby doll, which may not fully reflect real-life 
biomechanics. Overlapping pressure patterns in multi-class classification highlighted the need for 
improved sensor placement and preprocessing. Some caregivers may also require guidance to interpret 
IoT feedback effectively. Lessons learned include the importance of consistent data labelling, the 
sensitivity of pressure sensors, and the complexity of posture classification. Future work will involve 
expanding the dataset and improving sensor ergonomics and the user interface. 
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