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Abstract: This paper presents a novel approach for sidewalk detection in urban environments using 
multi-scale feature fusion combined with adaptive edge enhancement techniques. The proposed method 
integrates a modified U-Net architecture with attention mechanisms and incorporates geometric 
constraints based on urban infrastructure characteristics. Our approach processes RGB images captured 
from vehicle-mounted cameras and pedestrian viewpoints to segment sidewalk regions with high 
accuracy. The multi-scale feature fusion module captures both fine-grained texture details and global 
contextual information, while the adaptive edge enhancement component refines boundary detection 
between sidewalks and adjacent surfaces. Experimental validation on a custom dataset of 5,000 urban 
images from various cities demonstrates that our method achieves a mean Intersection over Union (IoU) 
of 87.3% and an F1-score of 91.2%, outperforming existing state-of-the-art methods by 5.8% and 4.6%, 
respectively. The approach shows robust performance across different lighting conditions, weather 
scenarios, and urban layouts, making it suitable for real-world applications in autonomous navigation 
systems and accessibility planning tools. 

Keywords: Edge enhancement, Multi-scale features, Semantic segmentation, Sidewalk detection, Urban scene understanding. 

 
1. Introduction  

Urban mobility and accessibility have become critical concerns as cities worldwide experience rapid 
population growth and increasing urbanization [1]. Sidewalks serve as fundamental infrastructure 
elements that facilitate pedestrian movement, support accessibility for individuals with mobility 
impairments, and contribute to overall urban safety [2]. Accurate detection and mapping of sidewalk 
areas are essential for various applications, including autonomous vehicle navigation, assistive 
technologies for visually impaired individuals, urban planning, and infrastructure maintenance [3, 4]. 

Traditional methods for sidewalk identification and mapping rely heavily on manual surveys and 
GPS-based data collection, which are time-consuming, labor-intensive, and often lack the spatial 
precision required for modern applications [5]. The advent of computer vision and machine learning 
techniques has opened new possibilities for automated sidewalk detection using visual data from 
cameras mounted on vehicles, smartphones, or dedicated mapping equipment [6]. 

Recent advances in deep learning, particularly convolutional neural networks (CNNs) and semantic 
segmentation architectures, have shown promising results in urban scene understanding tasks [7]. 
However, sidewalk detection poses particular difficulties thanks to the high variability in sidewalk 
appearances, materials, and surrounding contexts. Sidewalks can be constructed from various materials, 
including concrete, asphalt, brick, or stone, and their visual characteristics can be significantly affected 
by lighting conditions, weather, vegetation overgrowth, and the presence of pedestrians or street 
furniture [8]. 

Existing approaches for sidewalk detection primarily focus on traditional semantic segmentation 
methods or rely on geometric assumptions that may not hold across diverse urban environments [9, 
10]. While these methods have achieved reasonable performance in controlled scenarios, they often 
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struggle with boundary precision, particularly at the interfaces between sidewalks and roads, grass 
areas, or building facades [11]. 

This paper introduces a novel approach that addresses these limitations through the integration of 
multi-scale feature fusion and adaptive edge enhancement techniques. Our contributions are threefold: 
(1) a multi-scale feature extraction module that captures both local texture patterns and global 
contextual information relevant to sidewalk identification, (2) an adaptive edge enhancement mechanism 
that improves boundary delineation between sidewalks and adjacent surfaces, and (3) a comprehensive 
evaluation framework that demonstrates the effectiveness of our approach across diverse urban 
scenarios. 
 
2. Literature Review 
2.1. Traditional Computer Vision Approaches 

Early work in sidewalk detection primarily relied on handcrafted features and classical computer 
vision techniques. Johnson, et al. [12] proposed a method based on edge detection and line fitting to 
identify sidewalk boundaries using geometric constraints. Their approach assumed that sidewalks 
exhibit distinct linear edges parallel to road directions, but this assumption often fails in complex urban 
environments with curved paths or irregular layouts. 

Color-based segmentation techniques were explored by Martinez and Chen [13] who developed a 
system that classifies pixels based on color histograms and texture features extracted using Local 
Binary Patterns (LBP). While this approach showed reasonable performance for sidewalks with uniform 
materials, it struggled with variations in lighting and material diversity commonly found in real-world 
scenarios. 

Histogram of Oriented Gradients (HOG) features combined with sliding window detection were 
investigated by Brown, et al. [14] for identifying sidewalk regions. Their method achieved moderate 
success in detecting rectangular sidewalk patches but failed to provide the pixel-level segmentation 
accuracy required for precise boundary detection. 

Gabor filter banks were employed by Williams and Davis [15] to capture texture information at 
multiple orientations and scales. While this approach showed improved robustness to texture variations, 
it required extensive parameter tuning and struggled with complex urban scenes containing multiple 
surface types. 

  
2.2. Classical Machine Learning Approaches 

The introduction of machine learning techniques brought significant improvements to sidewalk 
detection accuracy. Anderson, et al. [16] employed Support Vector Machines (SVMs) with handcrafted 
features, including color, texture, and geometric descriptors. Their method achieved better 
generalization compared to purely rule-based approaches but remained limited by the quality and 
representativeness of manually designed features. 

Random Forest-based approaches were investigated by Liu and Wang [17] who combined multiple 
weak classifiers trained on different feature representations. Their ensemble method demonstrated 
improved robustness to varying environmental conditions but required extensive feature engineering 
and domain knowledge. 

K-means clustering combined with morphological operations was proposed by Garcia, et al. [18] 
for unsupervised sidewalk detection. While this approach avoided the need for labeled training data, it 
struggled with complex urban scenes containing multiple surface types with similar visual 
characteristics. 

Conditional Random Fields (CRFs) were introduced by Thompson and Lee [19] to incorporate 
spatial context into sidewalk classification. Their probabilistic framework showed improvements in 
spatial consistency but was computationally expensive and required careful parameter tuning. 
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2.3. Early Deep Learning Methods 
The emergence of deep learning revolutionized sidewalk detection capabilities. Caltagirone, et al. 

[20] were among the first to apply Fully Convolutional Networks (FCNs) to urban scene segmentation, 
including sidewalk detection. Their approach achieved significant improvements in accuracy compared 
to traditional methods but suffered from poor boundary localization due to the limited resolution of 
feature maps in FCN architectures. 

Long, et al. [21] introduced skip connections in FCN architectures to combine coarse semantic 
information with fine spatial details. Their FCN-8s model showed improved boundary detection for 
sidewalk segmentation but still lacked the precision required for practical applications. 

SegNet, proposed by Badrinarayanan, et al. [22] employed an encoder-decoder architecture with 
pooling indices to preserve spatial information during upsampling. This approach demonstrated better 
boundary preservation compared to standard FCNs but required significant memory resources during 
training. 

The ParseNet architecture by Liu, et al. [23] incorporated global context pooling to capture scene-
level information. While effective for general scene understanding, this approach lacked the fine-grained 
detail necessary for accurate sidewalk boundary detection. 
 
2.4. Advanced CNN Architectures 

U-Net-based approaches gained popularity due to their ability to combine high-resolution features 
with semantic information. Kim and Park [24] adapted U-Net for sidewalk segmentation and 
incorporated skip connections to preserve spatial details. While their method showed good performance 
on well-defined sidewalks, it struggled with partially occluded or irregular sidewalk areas. 

The introduction of dilated convolutions by Chen, et al. [25] in the DeepLab series enabled 
capturing multi-scale contextual information without losing spatial resolution. DeepLab-v2 and 
subsequent versions showed improved performance on urban scene segmentation tasks, including 
sidewalk detection. 

ResNet-based segmentation networks were explored by Rodriguez, et al. [26] who demonstrated 
that deeper networks with residual connections could achieve better feature representation for sidewalk 
detection. However, these approaches required substantial computational resources and careful 
regularization to prevent overfitting. 

More recent work by Thompson, et al. [27] introduced attention mechanisms to focus on relevant 
features for sidewalk detection. Their attention-guided network achieved state-of-the-art performance 
on standard benchmarks but required substantial computational resources, limiting its applicability for 
real-time scenarios. 

  
2.5. Multi-Scale Feature Learning  

Multi-scale feature learning has shown promise in various computer vision tasks. Wang and Lee 
[28] demonstrated that combining features at different scales improves segmentation accuracy for 
urban scenes. However, their approach was not specifically optimized for sidewalk detection and did not 
address the unique challenges posed by sidewalk boundary identification. 

Pyramid-based architectures have been explored by several researchers. Chen, et al. [29] proposed 
a feature pyramid network for urban scene understanding that captures multi-scale contextual 
information. While effective for general scene segmentation, their method lacks the specialized 
components necessary for accurate sidewalk boundary detection. 

The Pyramid Scene Parsing Network (PSPNet) by Zhao, et al. [30] employed pyramid pooling 
modules to capture global context at multiple scales. This approach showed promising results for 
sidewalk detection but struggled with fine-grained boundary details. 

Feature Pyramid Networks (FPN) were adapted for semantic segmentation by Lin, et al. [31] 
demonstrating improved performance on multi-scale object detection and segmentation tasks. These 
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architectures have inspired subsequent work in sidewalk detection but require careful adaptation to 
handle the specific characteristics of urban infrastructure. 

 
2.6. Attention Mechanisms and Feature Enhancement 

Attention mechanisms have gained significant traction in computer vision applications. Wang, et al. 
[32] introduced spatial attention modules that dynamically focus on relevant image regions. Their 
approach showed improvements in sidewalk detection accuracy but added computational complexity to 
the overall system. 

Channel attention mechanisms were explored by Hu, et al. [33] through Squeeze-and-Excitation 
(SE) networks. These modules learn to emphasize informative features while suppressing irrelevant 
ones, leading to improved segmentation performance. 

The Convolutional Block Attention Module (CBAM) proposed by Woo, et al. [34] combines both 
spatial and channel attention mechanisms. This approach has been successfully applied to various 
segmentation tasks, including urban scene understanding. 

Non-local neural networks by Wang, et al. [35] capture long-range dependencies in feature maps 
through self-attention mechanisms. While computationally expensive, these approaches have shown 
promise for capturing global context in sidewalk detection tasks. 
 
2.7. Edge Detection and Boundary Refinement 

Edge information has been recognized as crucial for precise boundary detection in segmentation 
tasks. Liu, et al. [36] introduced edge-aware loss functions that penalize prediction errors near object 
boundaries more heavily than errors in homogeneous regions. Their approach improved boundary 
quality but was not specifically designed for sidewalk detection scenarios. 

The Holistically-Nested Edge Detection (HED) network by Xie and Tu [37] learns rich 
hierarchical representations for edge detection. Several researchers have incorporated HED-like 
architectures into segmentation networks to improve boundary accuracy. 

Structured edge detection methods by Dollar and Zitnick [38] use structured learning to predict 
edges from local image patches. These approaches have been adapted for sidewalk boundary detection 
with moderate success. 

Adaptive edge enhancement techniques have been less explored in the context of sidewalk detection. 
Most existing methods rely on fixed edge detection kernels that may not adapt well to the varying 
characteristics of sidewalk boundaries in different urban environments [39]. 

 
2.8. Real-Time and Efficient Architectures 

Real-time performance is crucial for practical sidewalk detection applications. ICNet, proposed by 
Zhao, et al. [40] employs a cascade architecture with different input resolutions to balance accuracy and 
speed. This approach achieved real-time performance while maintaining reasonable accuracy for urban 
scene segmentation. 

BiSeNet by Yu, et al. [41] introduces a two-pathway architecture that separately captures spatial 
details and semantic context. This design enables real-time inference while preserving segmentation 
accuracy, making it suitable for sidewalk detection in autonomous driving scenarios. 

MobileNets by Howard, et al. [42] and subsequent versions focus on computational efficiency 
through depthwise separable convolutions. These architectures have been successfully adapted for 
mobile sidewalk detection applications. 

ENet by Paszke, et al. [43] provides an extremely efficient architecture for real-time semantic 
segmentation. While achieving good speed-accuracy trade-offs, these lightweight architectures often 
struggle with fine-grained boundary detection required for precise sidewalk segmentation. 
 
 
 



774 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 770-783, 2025 
DOI: 10.55214/2576-8484.v9i9.9971 
© 2025 by the author; licensee Learning Gate 

 

2.9. Domain Adaptation and Generalization 
Domain adaptation techniques have been investigated to improve the generalization of sidewalk 

detection models across different urban environments. Hoffman, et al. [44] proposed adversarial 
training methods to reduce domain shift between different cities and imaging conditions. 

Unsupervised domain adaptation approaches by Tsai, et al. [45] use adversarial learning to align 
feature distributions between source and target domains. These methods have shown promise for 
adapting sidewalk detection models trained on one city to work effectively in different urban 
environments. 

Style transfer techniques for domain adaptation were explored by Zhang, et al. [46] who used 
generative adversarial networks to synthesize training data that bridges the gap between different 
urban environments. 

 

3. Materials and Method 
3.1. Problem Formulation 

Sidewalk detection is formulated as a binary semantic segmentation problem where each pixel in an 
input RGB image is classified as either sidewalk (class 1) or non-sidewalk (class 0 ). The goal is to learn 
a mapping function that produces a probability map indicating the likelihood of each pixel belonging to 
a sidewalk region. 
 

 
Figure 1. 
Overall Network Architecture. 

 
3.2. Network Architecture Overview 

The proposed architecture consists of three main components: (1) a multi-scale feature extraction 
backbone, (2) a feature fusion module with attention mechanisms, and (3) an adaptive edge enhancement 
module. The overall architecture is illustrated in Figure 1. 
 
3.2.1. Multi-Scale Feature Extraction Backbone 

The backbone network is based on a modified ResNet-50 architecture that extracts features at four 
different scales: , and  of the input resolution. Each scale captures different levels of semantic and 
spatial information relevant to sidewalk detection. 
The feature extraction process can be formulated as: 

𝐹𝑖 = 𝑖(𝐼), 𝑖𝜖(1,2,3,4)  
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where  𝑖  represents the feature extraction function at scale i, and 𝐹𝑖𝜖  𝑅𝐻𝑖×𝑊𝑖×𝐶𝑖denotes the 

extracted features with 𝐻𝑖 = 𝐻/2𝑖+1, 𝑊𝑖 = 𝑊/2𝑖+1, and 𝐶𝑖 representing the number of channels at 
scale. 
 
3.2.2. Multi-Scale Feature Fusion Module 

The feature fusion module combines information from different scales using a top-down pathway 
with lateral connections. The fusion process incorporates attention mechanisms to emphasize features 
most relevant to sidewalk detection. 
The attention weights are computed as: 

 
where 𝜎 represents the sigmoid activation function, 𝐶𝑜𝑛𝑣1×1 denotes 1 × 1 convolution, and 

𝐹𝑖−1
↑  indicates the upsampled features from the previous level. 

 
The fused features are obtained through: 

 
where ⊙ denotes element-wise multiplication. 

 
3.2.3. Adaptive Edge Enhancement Module 

The adaptive edge enhancement module refines boundary detection by learning edge-specific 
features. This module consists of two parallel branches: an edge detection branch and an edge 
refinement branch. 

The edge detection branch uses a combination of Sobel operators and learnable convolution filters 
to identify potential sidewalk boundaries: 

 
The edge refinement branch adaptively adjusts edge responses based on local context: 
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Figure 2. 
Multi-Scale Feature Fusion Process. 

 
3.3. Loss Function 

The training objective combines three loss components: segmentation loss, edge loss, and 
consistency loss. 

1) Segmentation Loss 
A weighted binary cross-entropy loss is used to address class imbalance: 

 
where 𝑦𝑖 is the ground truth label, 𝑝𝑖 is the predicted probability, and 𝑎 is the weighting factor. 

2) Edge Loss 
The edge loss encourages accurate boundary prediction: 

 
where 𝐸𝑝𝑟𝑒𝑑 and 𝐸𝑔𝑡 represent predicted and ground truth edge maps, respectively. 

3) Consistency Loss 
A consistency loss ensures that edge predictions align with segmentation outputs: 

 
where             represents the gradient of the segmentation prediction. 
 
 
The total loss is formulated as: 
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where 𝜆1, 𝜆2, and 𝜆3 are weighting hyperparameters. 
 
3.4. Training Strategy 

The network is trained using a two-stage approach. In the first stage, only the segmentation loss is 
used to pre-train the feature extraction and fusion components. In the second stage, all loss components 
are activated to fine-tune the entire network, including the edge enhancement module. Data 
augmentation techniques include random rotation (±15°), brightness adjustment (±20%), contrast 
variation (±15%), and horizontal flipping to improve model generalization. 
 
4. Results and Discussion 
4.1. Experimental Setup 
4.1.1. Dataset Description 

Experiments were conducted on a custom dataset comprising 5,000 RGB images collected from 
urban environments that are from online repositories. The images were captured using vehicle-mounted 
cameras and handheld devices at various times of day and weather conditions. Ground truth annotations 
were created through manual labeling by three independent annotators, with inter-annotator agreement 

measured using Cohen's kappa (κ = 0.89). The dataset was divided into training (3,500 images), 
validation (750 images), and testing (750 images) sets, ensuring geographical diversity across all splits. 
 
4.1.2. Implementation Details 

The proposed method was implemented using PyTorch framework on NVIDIA RTX 3080 GPUs. 
The input images were resized to 512×512 pixels for training and inference. The Adam optimizer was 
used with an initial learning rate of 1e-4, weight decay of 1e-5, and batch size of 16. Training was 
performed for 100 epochs with learning rate scheduling that reduced the rate by a factor of 0.1 every 30 
epochs. 

The hyperparameters were set as follows: 𝜆1 = 1.0, 𝜆2 = 0.5, 𝜆3 = 0.3, and 𝛼 =  0.7 based on 
validation set performance. 

 
4.2. Quantitative Results 
4.2.1. Overall Performance 
 
Table 1. 
Quantitative Comparison With State-Of-The-Art Methods. 

Method IoU (%) F1-Score (%) Precision (%) Recall (%) Boundary F1 (%) 

FCN-8s Long, et al. 
[21] 

76.8 82.1 85.3 79.2 71.4 

SegNet 
Badrinarayanan, et al. 
[22] 

78.3 83.9 86.1 81.8 73.2 

U-Net Kim and Park 
[24] 

81.5 86.7 88.9 84.6 76.8 

DeepLab-v3+ Chen, et 
al. [25] 

83.2 88.4 90.1 86.8 79.3 

PSPNet Zhao, et al. 
[30] 

84.1 89.1 90.8 87.5 80.7 

ICNet Zhao, et al. 
[40] 

82.7 87.9 89.4 86.5 78.1 

BiSeNet Yu, et al. [41] 84.6 89.5 91.1 87.9 81.4 
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The proposed method achieves a mean IoU of 87.3%, representing a 2.2% improvement over the 
previous best-performing method. The F1-score of 91.2% demonstrates strong overall performance, 
while the boundary F1-score of 85.4% indicates superior edge detection capabilities. 
 
4.2.2. Ablation Study 
 
Table 2. 
Quantitative Comparison With State-of-the-Art Methods. 

Configuration IoU (%) F1-Score (%) Boundary F1 (%) FPS 

Baseline (ResNet-50 + FCN) 79.4 84.6 73.2 28.3 

+ Multi-scale Fusion 83.8 88.1 78.9 24.7 

+ Attention Mechanism 85.2 89.4 81.7 23.1 

+ Edge Enhancement 87.3 91.2 85.4 22.0 

 
The results demonstrate that each component contributes positively to the overall performance, 

with the edge enhancement module providing the most significant improvement in boundary detection 
accuracy. 

 

 
Figure 3. 
Qualitative Results Comparison. 

 
4.3. Qualitative Analysis 

Figure 3 presents qualitative results showing sidewalk detection under various challenging 
conditions. The proposed method successfully identifies sidewalk regions across different scenarios: 
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1) Material Diversity: The method accurately detects sidewalks constructed from concrete, brick, 
and stone materials. 

2) Lighting Variations: Performance remains consistent under different lighting conditions, 
including shadows and bright sunlight. 

3) Occlusions: The method handles partial occlusions caused by pedestrians, street furniture, and 
vegetation with reasonable accuracy. 

4) Irregular Shapes: Non-rectangular sidewalk regions and curved pathways are detected effectively. 
 
4.4. Performance Analysis 
4.4.1. Computational Efficiency 

The proposed method achieves real-time performance with an average inference time of 45 
milliseconds per 512×512 image on an RTX 3080 GPU, corresponding to approximately 22 FPS. The 
multi-scale architecture adds minimal computational overhead compared to single-scale approaches 
while providing substantial accuracy improvements. 
 
Table 3. 
Computational Efficiency Comparison. 

Method Parameters (M) FLOPs (G) GPU Memory (GB) FPS 

U-Net Kim and Park [24] 31.0 28.4 2.8 35.2 

DeepLab-v3+ Chen, et al. [25] 43.5 34.7 4.1 18.9 

PSPNet Zhao, et al. [30] 46.7 42.3 5.2 15.3 

BiSeNet Yu, et al. [41] 12.8 14.2 2.1 47.8 

Proposed Method 38.2 31.6 3.4 22.0 

 
4.4.2. Cross-Domain Evaluation 
 
Table 4. 
Cross-City Generalization Results. 

Train Cities Test City IoU (%) F1-Score (%) Performance Drop (%) 

NY, London, Tokyo, Berlin Sydney 84.1 88.7 3.2 

Sydney, London, Tokyo, Berlin New York 85.2 89.9 2.1 

NY, Sydney, Tokyo, Berlin London 83.8 88.4 3.5 

NY, London, Sydney, Berlin Tokyo 84.7 89.3 2.6 

NY, London, Tokyo, Sydney Berlin 85.0 89.6 2.3 

Average - 84.6 89.2 2.7 

 
Cross-city evaluation demonstrates the method's generalization capability. When trained on data 

from four cities and tested on the fifth, the average performance drop is only 2.7% in IoU, indicating 
good transferability across different urban environments. 
 
4.4.3. Weather Condition Analysis 
 
Table 5. 
Performance Under Different Weather Conditions. 

Weather Condition IoU (%) F1-Score (%) Boundary F1 (%) Sample Size 

Clear/Sunny 88.1 92.0 86.2 2,850 

Overcast/Cloudy 86.8 91.1 85.1 1,650 

Light Rain 85.4 90.3 83.7 350 

Heavy Rain/Snow 82.7 87.8 80.9 150 
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Weather condition analysis shows consistent performance across clear (IoU: 88.1%), overcast (IoU: 
86.8%), and light rain (IoU: 85.4%) conditions, though performance degrades slightly during heavy rain 
(IoU: 82.7%) due to reduced visibility and surface reflections. 
 
4.4.4. Failure Cases Analysis 

The method encounters difficulties in several scenarios: 
1) Severe Occlusions: When more than 70% of a sidewalk region is occluded by vehicles or 

construction barriers, detection accuracy drops to 73.2% IoU. 
2) Extreme Lighting: Very dark shadows or severe overexposure can cause misclassification of 

sidewalk boundaries, with performance dropping to 79.4% IoU. 
3) Similar Materials: Distinguishing between sidewalks and adjacent surfaces with similar materials 

(e.g., concrete sidewalks next to concrete driveways) remains challenging, achieving only 81.7% 
IoU in such cases. 

4) Construction Zones: Temporary walkways and construction areas pose significant challenges, 
with detection accuracy dropping to 75.8% IoU. 

5)  

 
Figure 4. 
Failure Cases Analysis 
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4.4.5. Comparison with Recent Methods 
Additional experiments were conducted comparing our method with recent transformer-based and 

attention-based architectures: 
 
Table 6. 
Comparison With Recent Advanced Methods. 

Method Year IoU (%) F1-Score (%) Parameters (M) FPS 

SegFormer-B2 Xie, et al. 
[47] 

2021 86.1 90.5 27.4 12.8 

Swin-UNet Cao, et al. [48] 2021 85.8 90.2 41.9 8.3 

TransUNet Chen, et al. [49] 2021 84.9 89.6 93.2 6.1 

SegNeXt Guo, et al. [50] 2022 86.4 90.8 32.1 15.7 

Proposed Method 2024 87.3 91.2 38.2 22.0 

 
While transformer models like SegFormer achieved competitive IoU scores (86.1%), they required 

significantly more computational resources and longer training times. The proposed CNN-based 
approach offers an optimal balance between accuracy and computational efficiency. 

 
5. Conclusion 

This paper presented a novel approach for sidewalk detection that combines multi-scale feature 
fusion with adaptive edge enhancement techniques. The proposed method addresses key limitations of 
existing approaches by incorporating attention mechanisms and specialized edge detection components 
optimized for sidewalk boundary identification. 

Experimental validation on a comprehensive dataset of 5,000 urban images demonstrates that our 
method achieves state-of-the-art performance with a mean IoU of 87.3% and F1-score of 91.2%, 
representing significant improvements over existing methods. The approach shows robust performance 
across diverse environmental conditions and urban layouts, making it suitable for practical applications. 

The multi-scale feature fusion module effectively captures both fine-grained texture details and 
global contextual information, while the adaptive edge enhancement component significantly improves 
boundary detection accuracy. Ablation studies confirm the contribution of each component to the overall 
performance improvement. 

Key findings include: (1) the importance of multi-scale feature fusion for capturing both local and 
global sidewalk characteristics, (2) the effectiveness of adaptive edge enhancement in improving 
boundary precision, (3) the method's robust generalization across different cities with minimal 
performance degradation, and (4) the practical feasibility of real-time deployment with 22 FPS 
performance. 

Future work will focus on extending the method to handle more challenging scenarios, including 
severe weather conditions and highly occluded environments. Additionally, we plan to investigate the 
integration of temporal information from video sequences to further improve detection robustness and 
consistency. Research directions also include exploring lightweight architectures for mobile deployment 
and incorporating 3D geometric constraints for enhanced urban scene understanding. 

The proposed method offers practical value for applications in autonomous navigation, accessibility 
planning, and urban infrastructure management, contributing to the development of smarter and more 
accessible cities. 
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