The rapid expansion of the solar industry has underscored the importance of photovoltaic installations in the ongoing transition to sustainable energy. With this growth comes the crucial task of effectively monitoring and controlling the power generated. Photovoltaic systems are particularly vulnerable to defects due to their exposure to challenging environmental conditions, which can lead to reduced power output and an increased risk of fire. Therefore, a thorough analysis of any faults is essential in order to mitigate potential damage to the system. The present study proposes a comprehensive analysis of the behavior of a photovoltaic generator comprising four modules. MATLAB/Simulink software is used to model the generator in healthy operation. Subsequently, a simulation of the generator in faulty conditions is conducted, considering four fault cases: partial shading (PS), open circuit fault (OCF), bypass diode disconnected (PSBD), and twinned fault bypass diode disconnected plus open circuit (PSBDOC). A detailed examination of the simulation results for the faults above reveals that the twinned fault results in a substantial reduction in the output current, as well as an elimination of the open circuit voltage of the photovoltaic generator. This contrasts the behavior observed in a system comprising two modules, wherein the open circuit voltage remains unaltered. This particular fault offers a compelling rationale for the monitoring of photovoltaic installations, to enhance overall productivity while avoiding any potential damage to the system.