This study presents a Mamdani-type fuzzy logic model for classifying Parkinson’s disease (PD) based on voice signals. The model demonstrates improved performance compared to several existing methods, achieving 97.2% accuracy, 0.9696 sensitivity, 1.0 specificity, and an F-measure of 0.98. These metrics suggest that the proposed model offers higher classification precision than previous approaches. By leveraging fuzzy logic, the model enhances interpretability and addresses some uncertainties inherent in medical data. While the results are promising, further validation with more extensive and diverse datasets is necessary before the model can be integrated into clinical decision support systems for the early diagnosis of PD.
Fuzzy model for the classification of Parkinson’s disease based on voice signals
Authors
- Yamid Fabián Hernández-Julio Facultad de Ciencias Económicas, Administrativas y Contables, Universidad del Sinú Elías Bechara Zainúm, Mon-tería, Córdoba 230001, and Systems Engineering Department, Universidad del Norte, Puerto Colombia, Atlántico 080001, Colombia.
- Martha Janeth Prieto-Guevara Departamento de Ciencias Acuícolas–Medicina Veterinaria y Zootecnia (CINPIC), Universidad de Córdoba, Monte-ría, Córdoba 230001, Colombia.
- Leonardo Antonio Díaz-Pertuz Facultad de Ciencias Económicas, Administrativas y Contables, Universidad del Sinú Elías Bechara Zainúm, Mon-tería, Córdoba 230001, Colombia.
- Benjamín Castillo-Osorio Facultad de Ciencias Económicas, Administrativas y Contables, Universidad del Sinú Elías Bechara Zainúm, Mon-tería, Córdoba 230001, Colombia.
- Mauricio Barrios-Barrios Computer Science and Electronics Department, Universidad de la Costa, Barranquilla 080001, Colombia.
- Wilson Nieto-Bernal Systems Engineering Department, Universidad del Norte, Puerto Colombia, Atlántico 080001, Colombia.